Short-Term High-Intensity Interval Training on Body Composition and Blood Glucose in Overweight and Obese Young Women

Zhaowei Kong, Shengyan Sun, Min Liu, Qingde Shi, Zhaowei Kong, Shengyan Sun, Min Liu, Qingde Shi

Abstract

This study was to determine the effects of five-week high-intensity interval training (HIIT) on cardiorespiratory fitness, body composition, blood glucose, and relevant systemic hormones when compared to moderate-intensity continuous training (MICT) in overweight and obese young women. Methods. Eighteen subjects completed 20 sessions of HIIT or MICT for five weeks. HIIT involved 60 × 8 s cycling at ~90% of peak oxygen consumption ([Formula: see text]) interspersed with 12 s recovery, whereas MICT involved 40-minute continuous cycling at 65% of [Formula: see text]. [Formula: see text], body composition, blood glucose, and fasting serum hormones, including leptin, growth hormone, testosterone, cortisol, and fibroblast growth factor 21, were measured before and after training. Results. Both exercise groups achieved significant improvements in [Formula: see text] (+7.9% in HIIT versus +11.7% in MICT) and peak power output (+13.8% in HIIT versus +21.9% in MICT) despite no training effects on body composition or the relevant systemic hormones. Blood glucose tended to be decreased after the intervention (p = 0.062). The rating of perceived exertion in MICT was higher than that in HIIT (p = 0.042). Conclusion. Compared with MICT, short-term HIIT is more time-efficient and is perceived as being easier for improving cardiorespiratory fitness and fasting blood glucose for overweight and obese young women.

Figures

Figure 1
Figure 1
Flow of participants through the intervention of the study.

References

    1. Pate R. R., Pratt M., Blair S. N., et al. Physical activity and public health: a recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. The Journal of the American Medical Association. 1995;273(5):402–407. doi: 10.1001/jama.1995.03520290054029.
    1. Trost S. G., Owen N., Bauman A. E., Sallis J. F., Brown W. Correlates of adults' participation in physical activity: review and update. Medicine & Science in Sports & Exercise. 2002;34(12):1996–2001. doi: 10.1097/00005768-200212000-00020.
    1. Weston M., Taylor K. L., Batterham A. M., Hopkins W. G. Effects of low-volume high-intensity interval training (HIT) on fitness in adults: a meta-analysis of controlled and non-controlled trials. Sports Medicine. 2014;44(7):1005–1017. doi: 10.1007/s40279-014-0180-z.
    1. Gibala M. J., Gillen J. B., Percival M. E. Physiological and health-related adaptations to low-volume interval training: influences of nutrition and sex. Sports Medicine. 2014;44(supplement 2):S127–S137. doi: 10.1007/s40279-014-0259-6.
    1. Trapp E. G., Chisholm D. J., Freund J., Boutcher S. H. The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. International Journal of Obesity. 2008;32(4):684–691. doi: 10.1038/sj.ijo.0803781.
    1. MacPherson R. E. K., Hazell T. J., Olver T. D., Paterson D. H., Lemon P. W. R. Run sprint interval training improves aerobic performance but not maximal cardiac output. Medicine and Science in Sports and Exercise. 2011;43(1):115–122. doi: 10.1249/MSS.0b013e3181e5eacd.
    1. Gibala M. J., Little J. P., van Essen M., et al. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. The Journal of Physiology. 2006;575(3):901–911. doi: 10.1113/jphysiol.2006.112094.
    1. Tremblay A., Simoneau J.-A., Bouchard C. Impact of exercise intensity on body fatness and skeletal muscle metabolism. Metabolism. 1994;43(7):814–818. doi: 10.1016/0026-0495(94)90259-3.
    1. Fox C. S., Massaro J. M., Hoffmann U., et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116(1):39–48. doi: 10.1161/circulationaha.106.675355.
    1. Heydari M., Freund J., Boutcher S. H. The effect of high-intensity intermittent exercise on body composition of overweight young males. Journal of Obesity. 2012;2012:8. doi: 10.1155/2012/480467.480467
    1. Hazell T. J., Hamilton C. D., Olver T. D., Lemon P. W. R. Running sprint interval training induces fat loss in women. Applied Physiology, Nutrition and Metabolism. 2014;39(8):944–950. doi: 10.1139/apnm-2013-0503.
    1. Gillen J. B., Percival M. E., Ludzki A., Tarnopolsky M. A., Gibala M. J. Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women. Obesity. 2013;21(11):2249–2255. doi: 10.1002/oby.20379.
    1. Whyte L. J., Gill J. M. R., Cathcart A. J. Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism. 2010;59(10):1421–1428. doi: 10.1016/j.metabol.2010.01.002.
    1. Metcalfe R. S., Babraj J. A., Fawkner S. G., Vollaard N. B. J. Towards the minimal amount of exercise for improving metabolic health: beneficial effects of reduced-exertion high-intensity interval training. European Journal of Applied Physiology. 2012;112(7):2767–2775. doi: 10.1007/s00421-011-2254-z.
    1. Perry C. G. R., Heigenhauser G. J. F., Bonen A., Spriet L. L. High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Applied Physiology, Nutrition and Metabolism. 2008;33(6):1112–1123. doi: 10.1139/H08-097.
    1. Smith-Ryan A. E., Melvin M. N., Wingfield H. L. High-intensity interval training: modulating interval duration in overweight/obese men. The Physician and Sportsmedicine. 2015;43(2):107–113. doi: 10.1080/00913847.2015.1037231.
    1. Keating S. E., Machan E. A., O'Connor H. T., et al. Continuous exercise but not high intensity interval training improves fat distribution in overweight adults. Journal of Obesity. 2014;2014:12. doi: 10.1155/2014/834865.834865
    1. Bartlett J. D., Close G. L., MacLaren D. P. M., Gregson W., Drust B., Morton J. P. High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: implications for exercise adherence. Journal of Sports Sciences. 2011;29(6):547–553. doi: 10.1080/02640414.2010.545427.
    1. Jung M. E., Bourne J. E., Little J. P. Where does HIT fit? an examination of the affective response to high-intensity intervals in comparison to continuous moderate- and continuous vigorous-intensity exercise in the exercise intensity-affect continuum. PLoS ONE. 2014;9(12) doi: 10.1371/journal.pone.0114541.e114541
    1. Hardcastle S. J., Ray H., Beale L., Hagger M. S. Why sprint interval training is inappropriate for a largely sedentary population. Frontiers in Psychology. 2014;5, article 1505 doi: 10.3389/fpsyg.2014.01505.
    1. Little J. P., Gillen J. B., Percival M. E., et al. Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. Journal of Applied Physiology. 2011;111(6):1554–1560. doi: 10.1152/japplphysiol.00921.2011.
    1. Zumoff B. Hormonal abnormalities in obesity. Acta Medica Scandinavica. Supplementum. 1988;723:153–160.
    1. Cuevas-Ramos D., Almeda-Valdés P., Meza-Arana C. E., et al. Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLoS ONE. 2012;7(5) doi: 10.1371/journal.pone.0038022.e38022
    1. Kraemer W. J., Ratamess N. A. Hormonal responses and adaptations to resistance exercise and training. Sports Medicine. 2005;35(4):339–361. doi: 10.2165/00007256-200535040-00004.
    1. Hackney A. C., Hosick K. P., Myer A., Rubin D. A., Battaglini C. L. Testosterone responses to intensive interval versus steady-state endurance exercise. Journal of Endocrinological Investigation. 2012;35(11):947–950. doi: 10.1007/BF03346740.
    1. Peake J. M., Tan S. J., Markworth J. F., Broadbent J. A., Skinner T. L., Cameron-Smith D. Metabolic and hormonal responses to isoenergetic high-intensity interval exercise and continuous moderate-intensity exercise. American Journal of Physiology—Endocrinology and Metabolism. 2014;307(7):E539–E552. doi: 10.1152/ajpendo.00276.2014.
    1. Bussau V. A., Ferreira L. D., Jones T. W., Fournier P. A. The 10-s maximal sprint: a novel approach to counter an exercise-mediated fall in glycemia in individuals with type 1 diabetes. Diabetes Care. 2006;29(3):601–606. doi: 10.2337/diacare.29.03.06.dc05-1764.
    1. McArdle W. D., Katch F. I., Katch V. L. Exercise Physiology: Nutrition, Energy, and Human Performance. Philadelphia, Pa, USA: Lippincott Williams & Wilkins; 2010.
    1. Gist N. H., Fedewa M. V., Dishman R. K., Cureton K. J. Sprint interval training effects on aerobic capacity: a systematic review and meta-analysis. Sports Medicine. 2014;44(2):269–279. doi: 10.1007/s40279-013-0115-0.
    1. Rossiter H. B., Kowalchuk J. M., Whipp B. J. A test to establish maximum O2 uptake despite no plateau in the O2 uptake response to ramp incremental exercise. Journal of Applied Physiology. 2006;100(3):764–770. doi: 10.1152/japplphysiol.00932.2005.
    1. Thompson P. D., Arena R., Riebe D., Pescatello L. S. ACSM's new preparticipation health screening recommendations from ACSM's guidelines for exercise testing and prescription, ninth edition. Current Sports Medicine Reports. 2013;12(4):215–217.
    1. Kirk R. E. Practical significance: a concept whose time has come. Educational and Psychological Measurement. 1996;56(5):746–759. doi: 10.1177/0013164496056005002.
    1. Willoughby T. N., Thomas M. P. L., Schmale M. S., Copeland J. L., Hazell T. J. Four weeks of running sprint interval training improves cardiorespiratory fitness in young and middle-aged adults. Journal of Sports Sciences. 2016;34(13):1207–1214. doi: 10.1080/02640414.2015.1102316.
    1. Burgomaster K. A., Howarth K. R., Phillips S. M., et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. The Journal of Physiology. 2008;586(1):151–160. doi: 10.1113/jphysiol.2007.142109.
    1. Bailey S. J., Wilkerson D. P., DiMenna F. J., Jones A. M. Influence of repeated sprint training on pulmonary O2 uptake and muscle deoxygenation kinetics in humans. Journal of Applied Physiology. 2009;106(6):1875–1887. doi: 10.1152/japplphysiol.00144.2009.
    1. Trilk J. L., Singhal A., Bigelman K. A., Cureton K. J. Effect of sprint interval training on circulatory function during exercise in sedentary, overweight/obese women. European Journal of Applied Physiology. 2011;111(8):1591–1597. doi: 10.1007/s00421-010-1777-z.
    1. Wosje K. S., Knipstein B. L., Kalkwarf H. J. Measurement error of DXA: interpretation of fat and lean mass changes in obese and non-obese children. Journal of Clinical Densitometry. 2006;9(3):335–340. doi: 10.1016/j.jocd.2006.03.016.
    1. Cordero-MacIntyre Z. R., Peters W., Libanati C. R., et al. Reproducibility of DXA in obese women. Journal of Clinical Densitometry. 2002;5(1):35–44. doi: 10.1385/JCD:5:1:035.
    1. Almenning I., Rieber-Mohn A., Lundgren K. M., Shetelig Løvvik T., Garnæs K. K., Moholdt T. Effects of high intensity interval training and strength training on metabolic, cardiovascular and hormonal outcomes in women with polycystic ovary syndrome: a pilot study. PLoS ONE. 2015;10(9) doi: 10.1371/journal.pone.0138793.e0138793
    1. Kraemer R. R., Chu H., Daniel Castracane V. Leptin and exercise. Experimental Biology and Medicine. 2002;227(9):701–708.
    1. Florkowski C. M., Collier G. R., Zimmet P. Z., Livesey J. H., Espiner E. A., Donald R. A. Low-dose growth hormone replacement lowers plasma leptin and fat stores without affecting body mass index in adults with growth hormone deficiency. Clinical Endocrinology. 1996;45(6):769–773. doi: 10.1046/j.1365-2265.1996.830895.x.
    1. Nybo L., Sundstrup E., Jakobsen M. D., et al. High-intensity training versus traditional exercise interventions for promoting health. Medicine and Science in Sports and Exercise. 2010;42(10):1951–1958. doi: 10.1249/MSS.0b013e3181d99203.
    1. Skelly L. E., Andrews P. C., Gillen J. B., Martin B. J., Percival M. E., Gibala M. J. High-intensity interval exercise induces 24-h energy expenditure similar to traditional endurance exercise despite reduced time commitment. Applied Physiology, Nutrition and Metabolism. 2014;39(7):845–848. doi: 10.1139/apnm-2013-0562.
    1. Hazell T. J., MacPherson R. E. K., Gravelle B. M. R., Lemon P. W. R. 10 or 30-s sprint interval training bouts enhance both aerobic and anaerobic performance. European Journal of Applied Physiology. 2010;110(1):153–160. doi: 10.1007/s00421-010-1474-y.
    1. Nie J. L., Kong Z. W., Baker J. S., Tong T. K., Lei S. H., Shi Q. D. Acute changes in glycemic homeostasis in response to brief high-intensity intermittent exercise in obese adults. Journal of Exercise Science & Fitness. 2012;10(2):97–100. doi: 10.1016/j.jesf.2012.10.007.
    1. Francois M. E., Baldi J. C., Manning P. J., et al. 'Exercise snacks' before meals: a novel strategy to improve glycaemic control in individuals with insulin resistance. Diabetologia. 2014;57(7):1437–1445. doi: 10.1007/s00125-014-3244-6.
    1. Babraj J. A., Vollaard N. B. J., Keast C., Guppy F. M., Cottrell G., Timmons J. A. Extremely short duration high intensity interval training substantially improves insulin action in young healthy males. BMC Endocrine Disorders. 2009;9, article 3 doi: 10.1186/1472-6823-9-3.
    1. Kim K. H., Kim S. H., Min Y.-K., Yang H.-M., Lee J.-B., Lee M.-S. Acute exercise induces FGF21 expression in mice and in healthy humans. PLoS ONE. 2013;8(5) doi: 10.1371/journal.pone.0063517.e63517
    1. Reinehr T., Woelfle J., Wunsch R., Roth C. L. Fibroblast growth factor 21 (FGF-21) and its relation to obesity, metabolic syndrome, and nonalcoholic fatty liver in children: a longitudinal analysis. The Journal of Clinical Endocrinology & Metabolism. 2012;97(6):2143–2150. doi: 10.1210/jc.2012-1221.
    1. Petri I., Dumbell R., Scherbarth F., Steinlechner S., Barrett P. Effect of exercise on photoperiod-regulated hypothalamic gene expression and peripheral hormones in the seasonal Dwarf Hamster Phodopus sungorus. PLoS ONE. 2014;9(3) doi: 10.1371/journal.pone.0090253.e90253
    1. McMurray R. G., Hackney A. C. Interactions of metabolic hormones, adipose tissue and exercise. Sports Medicine. 2005;35(5):393–412. doi: 10.2165/00007256-200535050-00003.
    1. Sasaki H., Morishima T., Hasegawa Y., et al. 4 Weeks of high-intensity interval training does not alter the exercise-induced growth hormone response in sedentary men. SpringerPlus. 2014;3, article 336 doi: 10.1186/2193-1801-3-336.
    1. Stokes K. A., Nevill M. E., Cherry P. W., Lakomy H. K. A., Hall G. M. Effect of 6 weeks of sprint training on growth hormone responses to sprinting. European Journal of Applied Physiology. 2004;92(1-2):26–32. doi: 10.1007/s00421-003-1038-5.
    1. Yanovski J. A., Yanovski S. Z., Sovik K. N., Nguyen T. T., O'Neil P. M., Sebring N. G. A prospective study of holiday weight gain. The New England Journal of Medicine. 2000;342(12):861–867. doi: 10.1056/nejm200003233421206.
    1. Longland T. M., Oikawa S. Y., Mitchell C. J., Devries M. C., Phillips S. M. Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: a randomized trial. American Journal of Clinical Nutrition. 2016;103(3):738–746. doi: 10.3945/ajcn.115.119339.

Source: PubMed

3
Subskrybuj