Changing to a Low-Polyphenol Diet Alters Vascular Biomarkers in Healthy Men after Only Two Weeks

Sara Hurtado-Barroso, Paola Quifer-Rada, José Fernando Rinaldi de Alvarenga, Silvia Pérez-Fernández, Anna Tresserra-Rimbau, Rosa M Lamuela-Raventos, Sara Hurtado-Barroso, Paola Quifer-Rada, José Fernando Rinaldi de Alvarenga, Silvia Pérez-Fernández, Anna Tresserra-Rimbau, Rosa M Lamuela-Raventos

Abstract

Bioactive dietary compounds play a critical role in health maintenance. The relation between bioactive compound intake and cardiovascular health-related biomarkers has been demonstrated in several studies, although mainly with participants who have altered biochemical parameters (high blood pressure, high cholesterol, metabolic syndrome, etc.). The aim of this study was to evaluate if adopting a diet low in polyphenol-rich food for two weeks would affect vascular biomarkers in healthy men. In a crossover study, 22 healthy men were randomly assigned to their usual diet (UD), consuming healthy food rich in polyphenols, or to a low antioxidant diet (LAD), with less than two servings of fruit and vegetables per day and avoiding the intake of cocoa products, coffee and tea. As a marker of compliance, total polyphenols in urine were significantly lower after the LAD than after the UD (79 ± 43 vs. 123 ± 58 mg GAE/g creatinine). Nitric oxide levels were also reduced (52 ± 28 in LAD vs. 80 ± 34 µM in UD), although no significant changes in cellular adhesion molecules and eicosanoids were observed; however, an increasing ratio between thromboxane A₂ (TXA₂) and prostaglandin I₂ (PGI₂) was reached (p = 0.048). Thus, a slight dietary modification, reducing the consumption of polyphenol-rich food, may affect vascular biomarkers even in healthy individuals.

Keywords: Mediterranean diet; adhesion molecules; bioactive compounds; eicosanoids; low antioxidant diet; nitric oxide; vascular biomarkers.

Conflict of interest statement

Lamuela-Raventós reports receiving lecture fees from Cerveceros de España; and receiving lecture fees and travel support from Adventia. Nevertheless, these foundations were not involved in the study design, the collection, analysis and interpretation of data, the writing of the manuscript or the decision to submit the manuscript for publication. The other authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow diagram showing the participation of volunteers in each phase of the trial. The usual diet (UD) is shown on the left side of the graph and the low antioxidant diet (LAD) on the right side.
Figure 2
Figure 2
General scheme of the crossover trial with two intervention periods.
Figure 3
Figure 3
Comparison of total polyphenol excretion (TPE) in urine after each intervention. Data shown are mean ± SEM. * Significant differences with p < 0.05.
Figure 4
Figure 4
(A) NO (B) ICAM-1 (C) VCAM-1 (D) PGI2 (E) TXA2 and (F) ratio TXA2/PGI2 between both interventions. Data shown are mean ± SEM. The UD is in black and the LAD is in gray; * significant differences with p < 0.05.
Figure 5
Figure 5
Correlation of Mediterranean diet adherence with TPE (A) and NO (B).

References

    1. Del Rio D., Rodriguez-Mateos A., Spencer J.P.E., Tognolini M., Borges G., Crozier A. Dietary (Poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013;18:1818–1892. doi: 10.1089/ars.2012.4581.
    1. Neveu V., Perez-Jiménez J., Vos F., Crespy V., du Chaffaut L., Mennen L., Knox C., Eisner R., Cruz J., Wishart D., et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database. 2010;2010:bap024. doi: 10.1093/database/bap024.
    1. Murillo A.G., Fernandez M.L. The relevance of dietary polyphenols in cardiovascular protection. Curr. Pharm. Des. 2017;23:2444–2452. doi: 10.2174/1381612823666170329144307.
    1. Tressera-Rimbau A., Arranz S., Eder M., Vallverdú-Queralt A. Dietary polyphenols in the prevention of stroke. Oxid. Med. Cell. Longev. 2017;2017:7467962. doi: 10.1155/2017/7467962.
    1. Williamson G. The role of polyphenols in modern nutrition. Nutr. Bull. 2017;42:226–235. doi: 10.1111/nbu.12278.
    1. Medina-Remón A., Casas R., Tressserra-Rimbau A., Ros E., Martínez-González M.A., Fitó M., Corella D., Salas-Salvadó J., Lamuela-Raventos R.M., Estruch R., et al. Polyphenol intake from a Mediterranean diet decreases inflammatory biomarkers related to atherosclerosis: A substudy of the PREDIMED trial. Br. J. Clin. Pharmacol. 2017;83:114–128. doi: 10.1111/bcp.12986.
    1. Croft K.D. Dietary polyphenols: Antioxidants or not? Arch. Biochem. Biophys. 2016;595:120–124. doi: 10.1016/j.abb.2015.11.014.
    1. Medina-Remón A., Tresserra-Rimbau A., Pons A., Tur J.A., Martorell M., Ros E., Buil-Cosiales P., Sacanella E., Covas M.I., Corella D., et al. Effects of total dietary polyphenols on plasma nitric oxide and blood pressure in a high cardiovascular risk cohort. The PREDIMED randomized trial. Nutr. Metab. Cardiovasc. Dis. 2015;25:60–67. doi: 10.1016/j.numecd.2014.09.001.
    1. Forte M., Conti V., Damato A., Ambrosio M., Puca A.A., Sciarretta S., Frati G., Vecchione C., Carrizzo A. Targeting nitric oxide with natural derived compounds as a therapeutic strategy in vascular diseases. Oxid. Med. Cell. Longev. 2016;2016:7364138. doi: 10.1155/2016/7364138.
    1. Oak M.-H., Auger C., Belcastro E., Park S.-H., Lee H.-H., Schini-Kerth V.B. Potential mechanisms underlying cardiovascular protection by polyphenols: Role of the endothelium. Free Radic. Biol. Med. 2018 doi: 10.1016/j.freeradbiomed.2018.03.018.
    1. Yamagata K., Tagami M., Yamori Y. Dietary polyphenols regulate endothelial function and prevent cardiovascular disease. Nutrition. 2015;31:28–37. doi: 10.1016/j.nut.2014.04.011.
    1. Vanhoutte P.M., Shimokawa H., Feletou M., Tang E.H.C. Endothelial dysfunction and vascular disease-a 30th anniversary update. Acta Physiol. 2017;219:22–96. doi: 10.1111/apha.12646.
    1. Zhao Y., Vanhoutte P.M., Leung S.W.S. Vascular nitric oxide: Beyond eNOS. J. Pharmacol. Sci. 2015;129:83–94. doi: 10.1016/j.jphs.2015.09.002.
    1. Vita J.A., Keaney J.F. Endothelial function: A barometer for cardiovascular risk? Circulation. 2002;106:640–642. doi: 10.1161/01.CIR.0000028581.07992.56.
    1. Herman A.G., Moncada S. Therapeutic potential of nitric oxide donors in the prevention and treatment of atherosclerosis. Eur. Heart J. 2005;26:1945–1955. doi: 10.1093/eurheartj/ehi333.
    1. Tachibana H., Koga K., Fujimura Y., Yamada K. A receptor for green tea polyphenol EGCG. Nat. Struct. Mol. Biol. 2004;11:380–381. doi: 10.1038/nsmb743.
    1. Schramm D.D., Collins H.E., German J.B. Flavonoid transport by mammalian endothelial cells. J. Nutr. Biochem. 1999;10:193–197. doi: 10.1016/S0955-2863(98)00104-1.
    1. Jin X., Yi L., Chen M., Chen C., Chang H., Zhang T., Wang L., Zhu J., Zhang Q., Mi M. Correction: Delphinidin-3-Glucoside protects against oxidized low-density lipoprotein-induced mitochondrial dysfunction in vascular endothelial cells via the sodium-dependent glucose transporter SGLT1. PLoS ONE. 2014;9 doi: 10.1371/annotation/774b483b-cba3-46ce-a922-09d7f05487b0.
    1. Kim J.H., Auger C., Kurita I., Anselm E., Rivoarilala L.O., Lee H.J., Lee K.W., Schini-Kerth V.B. Aronia melanocarpa juice, a rich source of polyphenols, induces endothelium-dependent relaxations in porcine coronary arteries via the redox-sensitive activation of endothelial nitric oxide synthase. Nitric Oxide. 2013;35:54–64. doi: 10.1016/j.niox.2013.08.002.
    1. Kim J., Formoso G., Li Y., Potenza M.A., Marasciulo F.L., Montagnani M., Quon M.J. Epigallocatechin Gallate, a Green Tea Polyphenol, Mediates NO-dependent Vasodilation Using Signaling Pathways in Vascular Endothelium Requiring Reactive Oxygen Species and Fyn. J. Biol. Chem. 2007;282:13736–13745. doi: 10.1074/jbc.M609725200.
    1. Barona J., Aristizabal J.C., Blesso C.N., Volek J.S., Fernandez M.L. Grape polyphenols reduce blood pressure and increase flow-mediated vasodilation in men with metabolic syndrome. J. Nutr. 2012;142:1626–1632. doi: 10.3945/jn.112.162743.
    1. Kawano H., Motoyama T., Kugiyama K., Hirashima O., Ohgushi M., Yoshimura M., Ogawa H., Okumura K., Yasue H. Menstrual cyclic variation of endothelium-dependent vasodilation of the brachial artery: Possible role of estrogen and nitric oxide. Proc. Assoc. Am. Physicians. 1996;108:473–480.
    1. Whitcomb B.W., Mumford S.L., Perkins N.J., Wactawski-Wende J., Bertone-Johnson E.R., Lynch K.E., Schisterman E.F. Urinary cytokine and chemokine profiles across the menstrual cycle in healthy reproductive-aged women. Fertil. Steril. 2014;101:1383–1391. doi: 10.1016/j.fertnstert.2014.01.027.
    1. Schröder H., Fitó M., Estruch R., Martínez-González M.A., Corella D., Salas-Salvadó J., Lamuela-Raventós R., Ros E., Salaverría I., Fiol M., et al. A short screener is valid for assessing mediterranean diet adherence among older spanish men and women. J. Nutr. 2011;141:1140–1145. doi: 10.3945/jn.110.135566.
    1. Elosua R., Marrugat J., Molina L., Pons S., Pujol E. Validation of the minnesota leisure time physical activity questionnaire in spanish men. The MARATHOM Investigators. Am. J. Epidemiol. 1994;139:1197–1209. doi: 10.1093/oxfordjournals.aje.a116966.
    1. Medina-Remón A., Barrionuevo-González A., Zamora-Ros R., Andres-Lacueva C., Estruch R., Martínez-González M.-Á., Diez-Espino J., Lamuela-Raventos R.M. Rapid Folin–Ciocalteu method using microtiter 96-well plate cartridges for solid phase extraction to assess urinary total phenolic compounds, as a biomarker of total polyphenols intake. Anal. Chim. Acta. 2009;634:54–60. doi: 10.1016/j.aca.2008.12.012.
    1. rmcorr: Repeated Measures Correlation. [(accessed on 13 November 2018)]; Available online: .
    1. The R Project for Statistical Computing. [(accessed on 13 November 2018)]; Available online:
    1. Schroeter H., Heiss C., Balzer J., Kleinbongard P., Keen C.L., Hollenberg N.K., Sies H., Kwik-Uribe C., Schmitz H.H., Kelm M. (−)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc. Natl. Acad. Sci. USA. 2006;103:1024–1029. doi: 10.1073/pnas.0510168103.
    1. Storniolo C.E., Casillas R., Bulló M., Castañer O., Ros E., Sáez G.T., Toledo E., Estruch R., Ruiz-Gutiérrez V., Fitó M., et al. A Mediterranean diet supplemented with extra virgin olive oil or nuts improves endothelial markers involved in blood pressure control in hypertensive women. Eur. J. Nutr. 2017;56:89–97. doi: 10.1007/s00394-015-1060-5.
    1. Sanguigni V., Manco M., Sorge R., Gnessi L., Francomano D. Natural antioxidant ice cream acutely reduces oxidative stress and improves vascular function and physical performance in healthy individuals. Nutrition. 2017;33:225–233. doi: 10.1016/j.nut.2016.07.008.
    1. Hollands W.J., Hart D.J., Dainty J.R., Hasselwander O., Tiihonen K., Wood R., Kroon P.A. Bioavailability of epicatechin and effects on nitric oxide metabolites of an apple flavanol-rich extract supplemented beverage compared to a whole apple puree: A randomized, placebo-controlled, crossover trial. Mol. Nutr. Food Res. 2013;57:1209–1217. doi: 10.1002/mnfr.201200663.
    1. Hall W.L., Formanuik N.L., Harnpanich D., Cheung M., Talbot D., Chowienczyk P.J., Sanders T.A.B. A Meal Enriched with Soy Isoflavones Increases Nitric Oxide-Mediated Vasodilation in Healthy Postmenopausal Women. J. Nutr. 2008;138:1288–1292. doi: 10.1093/jn/138.7.1288.
    1. Ochiai R., Sugiura Y., Otsuka K., Katsuragi Y., Hashiguchi T. Coffee bean polyphenols ameliorate postprandial endothelial dysfunction in healthy male adults. Int. J. Food Sci. Nutr. 2015;66:350–354. doi: 10.3109/09637486.2015.1007453.
    1. Taubert D., Roesen R., Lehmann C., Jung N., Schömig E. Effects of low habitual cocoa intake on blood pressure and bioactive nitric oxide. JAMA. 2007;298:49. doi: 10.1001/jama.298.1.49.
    1. Chiva-Blanch G., Urpi-Sarda M., Ros E., Arranz S., Valderas-Martinez P., Casas R., Sacanella E., Llorach R., Lamuela-Raventos R.M., Andres-Lacueva C., et al. Dealcoholized red wine decreases systolic and diastolic blood pressure and increases plasma nitric oxide: Short communication. Circ. Res. 2012;111:1065–1068. doi: 10.1161/CIRCRESAHA.112.275636.
    1. Boon E.A.J., Croft K.D., Shinde S., Hodgson J.M., Ward N.C. The acute effect of coffee on endothelial function and glucose metabolism following a glucose load in healthy human volunteers. Food Funct. 2017;8:3366–3373. doi: 10.1039/C7FO00926G.
    1. Riso P., Klimis-Zacas D., Del Bo’ C., Martini D., Campolo J., Vendrame S., Møller P., Loft S., De Maria R., Porrini M. Effect of a wild blueberry (Vaccinium angustifolium) drink intervention on markers of oxidative stress, inflammation and endothelial function in humans with cardiovascular risk factors. Eur. J. Nutr. 2013;52:949–961. doi: 10.1007/s00394-012-0402-9.
    1. Asgary S., Sahebkar A., Afshani M.R., Keshvari M., Haghjooyjavanmard S., Rafieian-Kopaei M. Clinical evaluation of blood pressure lowering, endothelial function improving, hypolipidemic and anti-inflammatory effects of pomegranate juice in hypertensive subjects. Phyther. Res. 2014;28:193–199. doi: 10.1002/ptr.4977.
    1. Casas R., Sacanella E., Urpí-Sardà M., Chiva-Blanch G., Ros E., Martínez-González M.-A., Covas M.-I., Rosa Ma Lamuela-Raventos R.M., Salas-Salvadó J., Fiol M., et al. The effects of the mediterranean diet on biomarkers of vascular wall inflammation and plaque vulnerability in subjects with high risk for cardiovascular disease. A randomized trial. PLoS ONE. 2014;9:e100084. doi: 10.1371/journal.pone.0100084.
    1. Coimbra S.R., Lage S.H., Brandizzi L., Yoshida V., da Luz P.L. The action of red wine and purple grape juice on vascular reactivity is independent of plasma lipids in hypercholesterolemic patients. Brazilian J. Med. Biol. Res. 2005;38:1339–1347. doi: 10.1590/S0100-879X2005000900008.
    1. Park E., Edirisinghe I., Choy Y.Y., Waterhouse A., Burton-Freeman B. Effects of grape seed extract beverage on blood pressure and metabolic indices in individuals with pre-hypertension: A randomised, double-blinded, two-arm, parallel, placebo-controlled trial. Br. J. Nutr. 2016;115:226–238. doi: 10.1017/S0007114515004328.
    1. Dohadwala M.M., Holbrook M., Hamburg N.M., Shenouda S.M., Chung W.B., Titas M., Kluge M.A., Wang N., Palmisano J., Milbury P.E., et al. Effects of cranberry juice consumption on vascular function in patients with coronary artery disease. Am. J. Clin. Nutr. 2011;93:934–940. doi: 10.3945/ajcn.110.004242.
    1. Yahfoufi N., Alsadi N., Jambi M., Matar C., Yahfoufi N., Alsadi N., Jambi M., Matar C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients. 2018;10:1618. doi: 10.3390/nu10111618.
    1. Pignatelli P., Pastori D., Farcomeni A., Nocella C., Bartimoccia S., Vicario T., Bucci T., Carnevale R., Violi F. Mediterranean diet reduces thromboxane A2 production in atrial fibrillation patients. Clin. Nutr. 2015;34:899–903. doi: 10.1016/j.clnu.2014.09.011.
    1. Bogani P., Galli C., Villa M., Visioli F. Postprandial anti-inflammatory and antioxidant effects of extra virgin olive oil. Atherosclerosis. 2007;190:181–186. doi: 10.1016/j.atherosclerosis.2006.01.011.
    1. Carnevale R., Lofredo L., Pignatelli P., Nocella C., Bartimoccia S., Di Santo S., Martino F., Catasca E., Perri L., Violi F. Dark chocolate inhibits platelet isoprostanes via NOX2 down-regulation in smokers. J. Thromb. Haemost. 2012;10:125–132. doi: 10.1111/j.1538-7836.2011.04558.x.
    1. Wan Y., Vinson J.A., Etherton T.D., Proch J., Lazarus S.A., Kris-Etherton P.M. Effects of cocoa powder and dark chocolate on LDL oxidative susceptibility and prostaglandin concentrations in humans. Am. J. Clin. Nutr. 2001;74:596–602. doi: 10.1093/ajcn/74.5.596.
    1. García-Flores L.A., Medina S., Gómez C., Wheelock C.E., Cejuela R., Martínez-Sanz J.M., Oger C., Galano J.-M., Durand T., Hernández-Sáez Á., et al. Aronia-citrus juice (polyphenol-rich juice) intake and elite triathlon training: A lipidomic approach using representative oxylipins in urine. Food Funct. 2018;9:463–475. doi: 10.1039/C7FO01409K.

Source: PubMed

3
Subskrybuj