Lung volume recruitment in multiple sclerosis

Nadim Srour, Carole LeBlanc, Judy King, Douglas A McKim, Nadim Srour, Carole LeBlanc, Judy King, Douglas A McKim

Abstract

Introduction: Pulmonary function abnormalities have been described in multiple sclerosis including reductions in forced vital capacity (FVC) and cough but the time course of this impairment is unknown. Peak cough flow (PCF) is an important parameter for patients with respiratory muscle weakness and a reduced PCF has a direct impact on airway clearance and may therefore increase the risk of respiratory tract infections. Lung volume recruitment is a technique that improves PCF by inflating the lungs to their maximal insufflation capacity.

Objectives: Our goals were to describe the rate of decline of pulmonary function and PCF in patients with multiple sclerosis and describe the use of lung volume recruitment in this population.

Methods: We reviewed all patients with multiple sclerosis referred to a respiratory neuromuscular rehabilitation clinic from February 1999 until December 2010. Lung volume recruitment was attempted in patients with FVC <80% predicted. Regular twice daily lung volume recruitment was prescribed if it resulted in a significant improvement in the laboratory.

Results: There were 79 patients included, 35 of whom were seen more than once. A baseline FVC <80% predicted was present in 82% of patients and 80% of patients had a PCF insufficient for airway clearance. There was a significant decline in FVC (122.6 mL/y, 95% CI 54.9-190.3) and PCF (192 mL/s/y, 95% 72-311) over a median follow-up time of 13.4 months. Lung volume recruitment was associated with a slower decline in FVC (p<0.0001) and PCF (p = 0.042).

Conclusion: Pulmonary function and cough decline significantly over time in selected patients with multiple sclerosis and lung volume recruitment is associated with a slower rate of decline in lung function and peak cough flow. Given design limitations, additional studies are needed to assess the role of lung volume recruitment in patients with multiple sclerosis.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Comparative time course of average…
Figure 1. Comparative time course of average FVC, MIC, PCF and PCFLVR.
Only observations where all variables were present were included. FVC, PCF and PCFLVR declined significantly at an average rate of 89.9 mL/y, 154 mL/s/y and 89.1 mL/s/y respectively. The MIC did not decline significantly with an average rate of decline of 50.6 mL/y.

References

    1. Gosselink R, Kovacs L, Decramer M (1999) Respiratory muscle involvement in multiple sclerosis. European Respiratory Journal 13: 449–454.
    1. Bach JR, Kang SW (2000) Disorders of ventilation: weakness, stiffness, and mobilization. Chest 117: 301–303.
    1. Edwards YS (2001) Stretch stimulation: its effects on alveolar type II cell function in the lung. Comp Biochem Physiol A Mol Integr Physiol 129: 245–260.
    1. Buyse B, Demedts M, Meekers J, Vandegaer L, Rochette F, et al. (1997) Respiratory dysfunction in multiple sclerosis: a prospective analysis of 60 patients. European Respiratory Journal 10: 139–145.
    1. Mutluay FK, Gurses HN, Saip S (2005) Effects of multiple sclerosis on respiratory functions. Clinical Rehabilitation 19: 426–432.
    1. Smeltzer SC, Skurnick JH, Troiano R, Cook SD, Duran W, et al. (1992) Respiratory function in multiple sclerosis. Utility of clinical assessment of respiratory muscle function. Chest 101: 479–484.
    1. Smeltzer SC, Utell MJ, Rudick RA, Herndon RM (1988) Pulmonary function and dysfunction in multiple sclerosis. Archives of Neurology 45: 1245–1249.
    1. Altintas A, Demir T, Ikitimur HD, Yildirim N (2007) Pulmonary function in multiple sclerosis without any respiratory complaints. Clinical Neurology & Neurosurgery 109: 242–246.
    1. Foglio K, Clini E, Facchetti D, Vitacca M, Marangoni S, et al. (1994) Respiratory muscle function and exercise capacity in multiple sclerosis. European Respiratory Journal 7: 23–28.
    1. Gauld LM (2009) Airway clearance in neuromuscular weakness. Dev Med Child Neurol 51: 350–355.
    1. Chiara T, Martin AD, Davenport PW, Bolser DC (2006) Expiratory muscle strength training in persons with multiple sclerosis having mild to moderate disability: effect on maximal expiratory pressure, pulmonary function, and maximal voluntary cough. Arch Phys Med Rehabil 87: 468–473.
    1. Aiello M, Rampello A, Granella F, Maestrelli M, Tzani P, et al. (2008) Cough efficacy is related to the disability status in patients with multiple sclerosis. Respiration 76: 311–316.
    1. King M, Brock G, Lundell C (1985) Clearance of mucus by simulated cough. J Appl Physiol 58: 1776–1782.
    1. Bach JR, Saporito LR (1996) Criteria for extubation and tracheostomy tube removal for patients with ventilatory failure. A different approach to weaning. Chest 110: 1566–1571.
    1. Bach JR, Goncalves MR, Hamdani I, Winck JC (2010) Extubation of patients with neuromuscular weakness: a new management paradigm. Chest 137: 1033–1039.
    1. Bach JR, Ishikawa Y, Kim H (1997) Prevention of pulmonary morbidity for patients with Duchenne muscular dystrophy. Chest 112: 1024–1028.
    1. Sancho J, Servera E, Diaz J, Marin J (2007) Predictors of ineffective cough during a chest infection in patients with stable amyotrophic lateral sclerosis. Am J Respir Crit Care Med 175: 1266–1271.
    1. Finder JD, Birnkrant D, Carl J, Farber HJ, Gozal D, et al. (2004) Respiratory care of the patient with Duchenne muscular dystrophy: ATS consensus statement. Am J Respir Crit Care Med 170: 456–465.
    1. McKim DA, Road J, Avendano M, Abdool S, Cote F, et al. (2011) Home mechanical ventilation: a Canadian Thoracic Society clinical practice guideline. Can Respir J 18: 197–215.
    1. Kang SW, Bach JR (2000) Maximum insufflation capacity. Chest 118: 61–65.
    1. McKim DA, Katz SL, Barrowman N, Ni A, Leblanc C (2012) Lung Volume Recruitment Slows Pulmonary Function Decline in Duchenne Muscular Dystrophy. Arch Phys Med Rehabil.
    1. Hankinson JL, Odencrantz JR, Fedan KB (1999) Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med 159: 179–187.
    1. Black LF, Hyatt RE (1969) Maximal respiratory pressures: normal values and relationship to age and sex. American Review of Respiratory Disease 99: 696–702.
    1. Bach JR, Bianchi C, Vidigal-Lopes M, Turi S, Felisari G (2007) Lung inflation by glossopharyngeal breathing and “air stacking” in Duchenne muscular dystrophy. Am J Phys Med Rehabil 86: 295–300.
    1. Misuri G, Lanini B, Gigliotti F, Iandelli I, Pizzi A, et al. (2000) Mechanism of CO(2) retention in patients with neuromuscular disease. Chest 117: 447–453.
    1. Fry DK, Pfalzer LA, Chokshi AR, Wagner MT, Jackson ES (2007) Randomized control trial of effects of a 10-week inspiratory muscle training program on measures of pulmonary function in persons with multiple sclerosis. Journal of Neurologic Physical Therapy 31: 162–172.

Source: PubMed

3
Subskrybuj