Therapy for Cancer: Strategy of Combining Anti-Angiogenic and Target Therapies

Valentina Comunanza, Federico Bussolino, Valentina Comunanza, Federico Bussolino

Abstract

The concept that blood supply is required and necessary for cancer growth and spreading is intuitive and was firstly formalized by Judah Folkman in 1971, when he demonstrated that cancer cells release molecules able to promote the proliferation of endothelial cells and the formation of new vessels. This seminal result has initiated one of the most fascinating story of the medicine, which is offering a window of opportunity for cancer treatment based on the use of molecules inhibiting tumor angiogenesis and in particular vascular-endothelial growth factor (VEGF), which is the master gene in vasculature formation and is the commonest target of anti-angiogenic regimens. However, the clinical results are far from the remarkable successes obtained in pre-clinical models. The reasons of this discrepancy have been partially understood and well addressed in many reviews (Bergers and Hanahan, 2008; Bottsford-Miller et al., 2012; El-Kenawi and El-Remessy, 2013; Wang et al., 2015; Jayson et al., 2016). At present anti-angiogenic regimens are not used as single treatments but associated with standard chemotherapies. Based on emerging knowledge of the biology of VEGF, here we sustain the hypothesis of the efficacy of a dual approach based on targeting pro-angiogenic pathways and other druggable targets such as mutated oncogenes or the immune system.

Keywords: VEGF; angiogenesis; cancer; resistance; target therapy.

Figures

Figure 1
Figure 1
Main molecular targets of anti-angiogenic drugs approved for patients treatment.
Figure 2
Figure 2
Signaling molecules and immune checkpoint blocked by targeted therapy.

References

    1. Abbosh C., Birkbak N. J., Wilson G. A., Jamal-Hanjani M., Constantin T., Salari R., et al. . (2017). Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 545, 446–451. 10.1038/nature22364
    1. Abramsson A., Lindblom P., Betsholtz C. (2003). Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J. Clin. Invest. 112, 1142–1151. 10.1172/JCI200318549
    1. Aguilera K. Y., Rivera L. B., Hur H., Carbon J. G., Toombs J. E., Goldstein C. D., et al. . (2014). Collagen signaling enhances tumor progression after anti-VEGF therapy in a murine model of pancreatic ductal adenocarcinoma. Cancer Res. 74, 1032–1044. 10.1158/0008-5472.CAN-13-2800
    1. Akbari A., Amanpour S., Muhammadnejad S., Ghahremani M. H., Ghaffari S. H., Dehpour A. R., et al. . (2014). Evaluation of antitumor activity of a TGF-beta receptor I inhibitor (SD-208) on human colon adenocarcinoma. DARU J. Pharm. Sci. 22:47. 10.1186/2008-2231-22-47
    1. Allen E., Jabouille A., Rivera L. B., Lodewijckx I., Missiaen R., Steri V., et al. . (2017). Combined antiangiogenic and anti–PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl. Med. 9:eaak9679. 10.1126/scitranslmed.aak9679
    1. Allen E., Walters I. B., Hanahan D. (2011). Brivanib, a dual FGF/VEGF inhibitor, is active both first and second line against mouse pancreatic neuroendocrine tumors developing adaptive/evasive resistance to VEGF inhibition. Clin. Cancer Res. 17, 5299–5310. 10.1158/1078-0432.CCR-10-2847
    1. Arbiser J. L. (2004). Molecular regulation of angiogenesis and tumorigenesis by signal transduction pathways: evidence of predictable and reproducible patterns of synergy in diverse neoplasms. Semin. Cancer Biol. 14, 81–91. 10.1016/j.semcancer.2003.09.013
    1. Batchelor T. T., Duda D. G., di Tomaso E., Ancukiewicz M., Plotkin S. R., Gerstner E., et al. . (2010). Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J. Clin. Oncol. 28, 2817–2823. 10.1200/JCO.2009.26.3988
    1. Batchelor T. T., Gerstner E. R., Emblem K. E., Duda D. G., Kalpathy-Cramer J., Snuderl M., et al. . (2013). Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proc. Natl. Acad. Sci. U.S.A. 110, 19059–19064. 10.1073/pnas.1318022110
    1. Bear H. D., Tang G., Rastogi P., Geyer C. E., Robidoux A., Atkins J. N., et al. . (2012). Bevacizumab added to neoadjuvant chemotherapy for breast cancer. N. Engl. J. Med. 366, 310–320. 10.1056/NEJMoa1111097
    1. Bergers G., Hanahan D. (2008). Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer 8, 592–603. 10.1038/nrc2442
    1. Bergers G., Song S., Meyer-Morse N., Bergsland E., Hanahan D. (2003). Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J. Clin. Invest. 111, 1287–1295. 10.1172/JCI200317929
    1. Bertolini F., Shaked Y., Mancuso P., Kerbel R. S. (2006). The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat. Rev. Cancer 6, 835–845. 10.1038/nrc1971
    1. Boige V., Malka D., Bourredjem A., Dromain C., Baey C., Jacques N., et al. . (2012). Efficacy, Safety, and Biomarkers of Single-Agent Bevacizumab Therapy in Patients with Advanced Hepatocellular Carcinoma. Oncology 17, 1063–1072. 10.1634/theoncologist.2011-0465
    1. Bottos A., Martini M., Di Nicolantonio F., Comunanza V., Maione F., Minassi A., et al. . (2012). Targeting oncogenic serine/threonine-protein kinase BRAF in cancer cells inhibits angiogenesis and abrogates hypoxia. Proc. Natl. Acad. Sci. U.S.A. 109, E353–E359. 10.1073/pnas.1105026109
    1. Bottsford-Miller J. N., Coleman R. L., Sood A. K. (2012). Resistance and escape from antiangiogenesis therapy: clinical implications and future strategies. J. Clin. Oncol. 30, 4026–4034. 10.1200/JCO.2012.41.9242
    1. Bridgeman V. L., Vermeulen P. B., Foo S., Bilecz A., Daley F., Kostaras E., et al. . (2017). Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models. J. Pathol. 241, 362–374. 10.1002/path.4845
    1. Bridgeman V. L., Wan E., Foo S., Nathan M. R., Welti J. C., Frentzas S., et al. . (2016). Preclinical evidence that trametinib enhances the response to antiangiogenic tyrosine kinase inhibitors in renal cell carcinoma. Mol. Cancer Ther. 15, 172–183. 10.1158/1535-7163.MCT-15-0170
    1. Brown J. L., Cao Z. A., Pinzon-Ortiz M., Kendrew J., Reimer C., Wen S., et al. . (2010). A Human Monoclonal Anti-ANG2 antibody leads to broad antitumor activity in combination with VEGF inhibitors and chemotherapy agents in preclinical models. Mol. Cancer Ther. 9, 145–156. 10.1158/1535-7163.MCT-09-0554
    1. Brufsky A. M., Hurvitz S., Perez E., Swamy R., Valero V., O'Neill V., et al. . (2011). RIBBON-2: a randomized, double-blind, placebo-controlled, phase III trial evaluating the efficacy and safety of bevacizumab in combination with chemotherapy for second-line treatment of human epidermal growth factor receptor. J. Clin. Oncol. 29, 4286–4293. 10.1200/JCO.2010.34.1255
    1. Bussolino F., Mantovani A., Persico G. (1997). Molecular mechanisms of blood vessel formation. Trends Biochem. Sci. 22, 251–256. 10.1016/S0968-0004(97)01074-8
    1. Bussolino F., Wang J. M., Defilippi P., Turrini F., Sanavio F., Edgell C. J., et al. . (1989). Granulocyte- and granulocyte- macrophage-colony stimulating factors induce human endothelial cells to migrate and proliferate. Nature 337, 471–473. 10.1038/337471a0
    1. Callahan M. K., Postow M. A., Wolchok J. D. (2016). Targeting T cell co-receptors for cancer therapy. Immunity 44, 1069–1078. 10.1016/j.immuni.2016.04.023
    1. Cameron D., Brown J., Dent R., Jackisch C., Mackey J., Pivot X., et al. . (2013). Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): primary results of a randomised, phase 3 trial. Lancet Oncol. 14, 933–942. 10.1016/S1470-2045(13)70335-8
    1. Carmeliet P., Jain R. K. (2000). Angiogenesis in cancer and other diseases. Nature 407, 249–257. 10.1038/35025220
    1. Carmeliet P., Jain R. K. (2011). Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug Discov. 10, 417–427. 10.1038/nrd3455
    1. Carrato A., Swieboda-Sadlej A., Staszewska-Skurczynska M., Lim R., Roman L., Shparyk Y., et al. (2013). Fluorouracil, leucovorin, and irinotecan plus either sunitinib or placebo in metastatic colorectal cancer: a randomized, phase III trial. J. Clin. Oncol. 31, 1341–1347. 10.1200/JCO.2012.45.1930
    1. Casanovas O., Hicklin D. J., Bergers G., Hanahan D. (2005). Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8, 299–309. 10.1016/j.ccr.2005.09.005
    1. Cascone T., Xu L., Lin H. Y., Liu W., Tran H. T., Liu Y., et al. . (2017). The HGF/c-MET pathway is a driver and biomarker of VEGFR-inhibitor resistance and vascular remodeling in non-small cell lung cancer. Clin. Cancer Res. Clincanres. 23, 5489–5501. 10.1158/1078-0432.CCR-16-3216
    1. Chae S. S., Kamoun W. S., Farrar C. T., Kirkpatrick N. D., Niemeyer E., de Graaf A. M., et al. . (2010). Angiopoietin-2 interferes with anti-VEGFR2-induced vessel normalization and survival benefit in mice bearing gliomas. Clin. Cancer Res. 16, 3618–3627. 10.1158/1078-0432.CCR-09-3073
    1. Chae Y. K., Ranganath K., Hammerman P. S., Vaklavas C., Mohindra N., Kalya A., et al. . (2017). Inhibition of the fibroblast growth factor receptor (FGFR) pathway: the current landscape and barriers to clinical application. Oncotarget 8, 16052–16074. 10.18632/oncotarget.14109
    1. Chen P. L., Roh W., Reuben A., Cooper Z. A., Spencer C. N., Prieto P. A., et al. . (2016). Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 6, 827–837. 10.1158/-15-1545
    1. Chen Y., Huang Y., Reiberger T., Duyverman A. M., Huang P., Samuel R., et al. . (2014). Differential effects of sorafenib on liver versus tumor fibrosis mediated by stromal-derived factor 1 alpha/C-X-C receptor type 4 axis and myeloid differentiation antigen-positive myeloid cell infiltration in mice. Hepatology 59, 1435–1447. 10.1002/hep.26790
    1. Chen Y., Ramjiawan R. R., Reiberger T., Ng M. R., Hato T., Huang Y., et al. . (2015). CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology 61, 1591–1602. 10.1002/hep.27665
    1. Chung A. S., Wu X., Zhuang G., Ngu H., Kasman I., Zhang J., et al. . (2013). An interleukin-17–mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat. Med. 19, 1114–1123. 10.1038/nm.3291
    1. Ciardiello F., Bianco R., Caputo R., Caputo R., Damiano V., Troiani T., et al. . (2004). Antitumor activity of ZD6474, a vascular endothelial growth factor receptor tyrosine kinase inhibitor, in human cancer cells with acquired resistance to antiepidermal growth factor receptor therapy. Clin. Cancer Res. 10, 784–793. 10.1158/1078-0432.CCR-1100-03
    1. Ciardiello F., Caputo R., Bianco R., Damiano V., Fontanini G., Cuccato S., et al. . (2001). Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin. Cancer Res. 7, 1459–1465.
    1. Ciardiello F., Tortora G. (2008). EGFR antagonists in cancer treatment. N. Engl. J. Med. 358, 1160–1174. 10.1056/NEJMra0707704
    1. Ciombor K. K., Berlin J., Chan E. (2013). Aflibercept. Clin. Cancer Res. 19, 1920–1925. 10.1158/1078-0432.CCR-12-2911
    1. Comunanza V., Corà D., Orso F., Consonni F. M., Middonti E., Di Nicolantonio F., et al. (2017). VEGF blockade enhances the antitumor effect of BRAFV 600E inhibition. EMBO Mol. Med. 9, 219–237. 10.15252/emmm.201505774
    1. Crawford Y., Kasman I., Yu L., Zhong C., Wu X., Modrusan Z., et al. . (2009). PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15, 21–34. 10.1016/j.ccr.2008.12.004
    1. Cristofanilli M., Johnston S. R., Manikhas A., Gomez H. L., Gladkov O., Shao Z., et al. . (2013). A randomized phase II study of lapatinib + pazopanib versus lapatinib in patients with HER2+ inflammatory breast cancer. Breast Cancer Res. Treat. 137, 471–482. 10.1007/s10549-012-2369-x
    1. Cunningham D., Lang I., Marcuello E., Lorusso V., Ocvirk J., Shin D. B., et al. . (2013). Bevacizumab plus capecitabine versus capecitabine alone in elderly patients with previously untreated metastatic colorectal cancer (AVEX): An open-label, randomised phase 3 trial. Lancet Oncol. 14, 1077–1085. 10.1016/S1470-2045(13)70154-2
    1. Daly C., Eichten A., Castanaro C., Pasnikowski E., Adler A., Lalani A. S., et al. . (2013). Angiopoietin-2 functions as a Tie2 agonist in tumor models, where it limits the effects of VEGF inhibition. Cancer Res. 73, 108–118. 10.1158/0008-5472.CAN-12-2064
    1. de Gramont A., Van Cutsem E., Schmoll H. J., Tabernero J., Clarke S., Moore M. J., et al. . (2012). Bevacizumab plus oxaliplatin-based chemotherapy as adjuvant treatment for colon cancer (AVANT): a phase 3 randomised controlled trial. Lancet Oncol. 13, 1225–1233. 10.1016/S1470-2045(12)70509-0
    1. Degrauwe N., Sosa J. A., Roman S., Deshpande H. A. (2012). Vandetanib for the treatment of metastatic medullary Thyroid Cancer. Clin. Med. Insights. Oncol. 6, 243–252. 10.4137/CMO.S7999
    1. Dellapasqua S., Bertolini F., Bagnardi V., Campagnoli E., Scarano E., Torrisi R., et al. . (2008). Metronomic Cyclophosphamide and Capecitabine Combined with Bevacizumab in Advanced Breast Cancer. J. Clin. Oncol. 26, 4899–4905. 10.1200/JCO.2008.17.4789
    1. Demetri G. D., Reichardt P., Kang Y. K., Blay J. Y., Rutkowski P., Gelderblom H., et al. . (2013). Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381, 295–302. 10.1016/S0140-6736(12)61857-1
    1. Donnem T., Hu J., Ferguson M., Adighibe O., Snell C., Harris A. L., et al. . (2013). Vessel co-option in primary human tumors and metastases: an obstacle to effective anti-angiogenic treatment? Cancer Med. 2, 427–436. 10.1002/cam4.105
    1. Earl H. M., Hiller L., Dunn J. A., Blenkinsop C., Grybowicz L., Vallier A. L., et al. . (2015). Efficacy of neoadjuvant bevacizumab added to docetaxel followed by fluorouracil, epirubicin, and cyclophosphamide, for women with HER2-negative early breast cancer (ARTemis): an open-label, randomised, phase 3 trial. Lancet Oncol. 16, 656–666. 10.1016/S1470-2045(15)70137-3
    1. Ebos J. M., Kerbel R. S. (2011). Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat. Rev. Clin. Oncol. 8, 210–221. 10.1038/nrclinonc.2011.21
    1. Ebos J. M. L., Lee C. R., Cruz-Munoz W., Bjarnason G. A., Christensen J. G., Kerbel R. S. (2009). Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15, 232–239. 10.1016/j.ccr.2009.01.021
    1. El-Kenawi A. E., El-Remessy A. B. (2013). Angiogenesis inhibitors in cancer therapy: mechanistic perspective on classification and treatment rationales. Br. J. Pharmacol. 170, 712–729. 10.1111/bph.12344
    1. Emblem K. E., Mouridsen K., Bjornerud A., Farrar C. T., Jennings D., Borra R. J., et al. . (2013). Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy. Nat. Med. 19, 1178–1183. 10.1038/nm.3289
    1. Fais S., Venturi G., Gatenby B. (2014). Microenvironmental acidosis in carcinogenesis and metastases: new strategies in prevention and therapy. Cancer Metastasis Rev. 33, 1095–1108. 10.1007/s10555-014-9531-3
    1. Fala L. (2015). Lenvima (Lenvatinib), a multireceptor tyrosine kinase inhibitor, approved by the FDA for the treatment of patients with differentiated Thyroid Cancer. Am. Heal. Drug Benefits 8, 176–179.
    1. Fan L. C., Teng H. W., Shiau C. W., Tai W. T., Hung M. H., Yang S. H., et al. . (2016). Regorafenib (Stivarga) pharmacologically targets epithelial- mesenchymal transition in colorectal cancer. Oncotarget 7, 64136–64147. 10.18632/oncotarget.11636
    1. Ferrara N. (2002). VEGF and the quest for tumour angiogenesis factors. Nat. Rev. Cancer 2, 795–803. 10.1038/nrc909
    1. Ferrara N., Kerbel R. S. (2005). Angiogenesis as a therapeutic target. Nature 438, 967–974. 10.1038/nature04483
    1. Ferrara N., Hillan K. J., Gerber H.-P., Novotny W. (2004). Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Discov. 3, 391–400. 10.1038/nrd1381
    1. Fischer C., Jonckx B., Mazzone M., Zacchigna S., Loges S., Pattarini L., et al. . (2007). Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131, 463–475. 10.1016/j.cell.2007.08.038
    1. Folkman J. (1971). Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186. 10.1056/NEJM197111182852108
    1. Folkman J. (2006). Angiogenesis. Annu. Rev. Med. 57, 1–18. 10.1146/annurev.med.57.121304.131306
    1. Frentzas S., Simoneau E., Bridgeman V. L., Vermeulen P. B., Foo S., Kostaras E., et al. . (2016). Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat. Med. 22, 1294–1302. 10.1038/nm.4197
    1. Friedman H. S., Prados M. D., Wen P. Y., Mikkelsen T., Schiff D., Abrey L. E., et al. . (2009). Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol. 27, 4733–4740. 10.1200/JCO.2008.19.8721
    1. Fuchs C. S., Tomasek J., Yong C. J., Dumitru F., Passalacqua R., Goswami C., et al. . (2014). Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 383, 31–39. 10.1016/S0140-6736(13)61719-5
    1. Gabrilovich D., Ishida T., Oyama T., Ran S., Kravtsov V., Nadaf S., et al. . (1998). Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92, 4150–4166.
    1. Gianni L., Romieu G. H., Lichinitser M., Serrano S. V., Mansutti M., Pivot X., et al. . (2013). AVEREL: a randomized phase III Trial evaluating bevacizumab in combination with docetaxel and trastuzumab as first-line therapy for HER2-positive locally recurrent/metastatic breast cancer. J. Clin. Oncol. 31, 1719–1725. 10.1200/JCO.2012.44.7912
    1. Giantonio B. J., Catalano P. J., Meropol N. J., O'Dwyer P. J., Mitchell E. P., Alberts S. R., et al. . (2007). Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J. Clin. Oncol. 25, 1539–1544. 10.1200/JCO.2006.09.6305
    1. Goede V., Coutelle O., Neuneier J., Reinacher-Schick A., Schnell R., Koslowsky T. C., et al. . (2010). Identification of serum angiopoietin-2 as a biomarker for clinical outcome of colorectal cancer patients treated with bevacizumab-containing therapy. Br. J. Cancer 103, 1407–1414. 10.1038/sj.bjc.6605925
    1. Goel S., Duda D. G., Xu L., Munn L. L., Boucher Y., Fukumura D., et al. . (2011). Normalization of the vasculature for treatment of cancer and other diseases. Physiol. Rev. 91, 1071–1121. 10.1152/physrev.00038.2010
    1. Grothey A., Van Cutsem E., Sobrero A., Siena S., Falcone A., Ychou M., et al. . (2013). Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381, 303–312. 10.1016/S0140-6736(12)61900-X
    1. Guerrero P. A., McCarty J. H. (2017). TGF-β activation and signaling in angiogenesis, in Physiologic and Pathologic Angiogenesis - Signaling Mechanisms and Targeted Therapy, eds Simionescu D., Simionescu A. (Rijeka: InTech; ). 10.5772/66405
    1. Gupta S., Spiess P. E. (2013). The prospects of pazopanib in advanced renal cell carcinoma. Ther. Adv. Urol. 5, 223–232. 10.1177/1756287213495099
    1. Hanahan D., Folkman J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364. 10.1016/S0092-8674(00)80108-7
    1. Hashizume H., Falcón B. L., Kuroda T., Baluk P., Coxon A., Yu D., et al. . (2010). Complementary actions of inhibitors of angiopoietin-2 and VEGF on tumor angiogenesis and growth. Cancer Res. 70, 2213–2223. 10.1158/0008-5472.CAN-09-1977
    1. Hecht J. R., Mitchell E., Chidiac T., Scroggin C., Hagenstad C., Spigel D., et al. . (2009). A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J. Clin. Oncol. 27, 672–680. 10.1200/JCO.2008.19.8135
    1. Hodi F. S., Lawrence D., Lezcano C., Wu X., Zhou J., Sasada T., et al. . (2014). Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol. Res. 2, 632–642. 10.1158/2326-6066.CIR-14-0053
    1. Holash J., Davis S., Papadopoulos N., Croll S. D., Ho L., Russell M., et al. . (2002). VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc. Natl. Acad. Sci. U.S.A. 99, 11393–11398. 10.1073/pnas.172398299
    1. Holash J., Maisonpierre P. C., Compton D., Boland P., Alexander C. R., Zagzag D., et al. . (1999). Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284, 1994–1998. 10.1126/science.284.5422.1994
    1. Hu W., Lu C., Dong H. H., Huang J., Shen D. Y., Stone R. L., et al. . (2011). Biological roles of the delta family notch ligand Dll4 in tumor and endothelial cells in ovarian cancer. Cancer Res. 71, 6030–6039. 10.1158/0008-5472.CAN-10-2719
    1. Hu Y. L., DeLay M., Jahangiri A., Molinaro A. M., Rose S. D., Carbonell W. S., et al. . (2012). Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res. 72, 1773–1783. 10.1158/0008-5472.CAN-11-3831
    1. Huang D., Ding Y., Zhou M., Rini B. I., Petillo D., Qian C. N., et al. . (2010). Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Res. 70, 1063–1071. 10.1158/0008-5472.CAN-09-3965
    1. Huang J., Hu W., Hu L., Previs R. A., Dalton H. J., Yang X. Y., et al. . (2016). Dll4 Inhibition plus Aflibercept Markedly Reduces Ovarian Tumor Growth. Mol. Cancer Ther. 15, 1344–1352. 10.1158/1535-7163.MCT-15-0144
    1. Huang Y., Chen X., Dikov M. M., Novitskiy S. V., Mosse C. A., Yang L., et al. . (2007). Distinct roles of VEGFR-1 and VEGFR-2 in the aberrant hematopoiesis associated with elevated levels of VEGF. Blood 110, 624–631. 10.1182/blood-2007-01-065714
    1. Huang Y., Goel S., Duda D. G., Fukumura D., Jain R. K. (2013). Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Res. 73, 2943–2948. 10.1158/0008-5472.CAN-12-4354
    1. Huang Y., Yuan J., Righi E., Kamoun W. S., Ancukiewicz M., Nezivar J., et al. . (2012). Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc. Natl. Acad. Sci. U.S.A. 109, 17561–17566. 10.1073/pnas.1215397109
    1. Hurwitz H., Fehrenbacher L., Novotny W., Cartwright T., Hainsworth J., Heim W., et al. . (2004). Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342. 10.1056/NEJMoa032691
    1. Ingram D. A., Caplice N. M., Yoder M. C. (2005). Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood 106:1525 LP-1531. 10.1182/blood-2005-04-1509
    1. Izumi Y., Xu L., di Tomaso E., Fukumura D., Jain R. K. (2002). Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature 416, 279–280. 10.1038/416279b
    1. Jain R. K. (2005). Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62. 10.1126/science.1104819
    1. Jain R. K. (2014). Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26, 605–622. 10.1016/j.ccell.2014.10.006
    1. Jain R. K., Duda D. G., Clark J. W., Loeffler J. S. (2006). Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat. Clin. Pract. Oncol. 3, 24–40. 10.1038/ncponc0403
    1. Jain R. K., Duda D. G., Willett C. G., Sahani D. V., Zhu A. X., Loeffler J. S., et al. . (2009). Biomarkers of response and resistance to antiangiogenic therapy. Nat. Rev. Clin. Oncol. 6, 327–338. 10.1038/nrclinonc.2009.63
    1. Jakobsson L., Bentley K., Gerhardt H. (2009). VEGFRs and Notch: a dynamic collaboration in vascular patterning. Biochem. Soc. Trans. 37, 1233–1236. 10.1042/BST0371233
    1. Jamal-Hanjani M., Wilson G. A., McGranahan N., Birkbak N. J., Watkins T. B. K., Veeriah S., et al. . (2017). Tracking the evolution of non–small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121. 10.1056/NEJMoa1616288
    1. Jayson G. C., Kerbel R., Ellis L. M., Harris A. L. (2016). Antiangiogenic therapy in oncology: current status and future directions. Lancet 388, 518–529. 10.1016/S0140-6736(15)01088-0
    1. Jeong H. S., Jones D., Liao S., Wattson D. A., Cui C. H., Duda D. G., et al. . (2015). Investigation of the lack of angiogenesis in the formation of lymph node metastases. J. Natl. Cancer Inst. 107:djv155. 10.1093/jnci/djv155
    1. Jung K., Heishi T., Khan O. F., Kowalski P. S., Incio J., Rahbari N. N., et al. . (2017). Ly6Clo monocytes drive immunosuppression and confer resistance to anti-VEGFR2 cancer therapy. J. Clin. Invest. 127, 3039–3051. 10.1172/JCI93182
    1. Kamoun W. S., Ley C. D., Farrar C. T., Duyverman A. M., Lahdenranta J., Lacorre D. A., et al. . (2009). Edema control by cediranib, a vascular endothelial growth factor receptor–targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. J. Clin. Oncol. 27, 2542–2552. 10.1200/JCO.2008.19.9356
    1. Kerbel R. (2008). Tumor angiogenesis. N. Engl. J. Med. 358, 2039–2049. 10.1056/NEJMra0706596
    1. Kerbel R. S. (2015). A decade of experience in developing preclinical models of advanced- or early-stage spontaneous metastasis to study antiangiogenic drugs, metronomic chemotherapy, and the tumor microenvironment. Cancer J. 21, 274–283. 10.1097/PPO.0000000000000134
    1. Kienast Y., Klein C., Scheuer W., Raemsch R., Lorenzon E., Bernicke D., et al. . (2013). Ang-2-VEGF-A crossmab, a novel bispecific human IgG1 antibody Blocking VEGF-A and Ang-2 functions simultaneously, mediates potent antitumor, antiangiogenic, and antimetastatic efficacy. Clin. Cancer Res. 19, 6730–6740. 10.1158/1078-0432.CCR-13-0081
    1. Kirschmann D. A., Seftor E. A., Hardy K. M., Seftor R. E., Hendrix M. J. (2012). Molecular pathways: vasculogenic mimicry in tumor cells: diagnostic and therapeutic implications. Clin. Cancer Res. 18, 2726–2732. 10.1158/1078-0432.CCR-11-3237
    1. Kloepper J., Riedemann L., Amoozgar Z., Seano G., Susek K., Yu V., et al. . (2016). Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc. Natl. Acad. Sci. U.S.A. 113, 4476–4481. 10.1073/pnas.1525360113
    1. Koh Y. J., Kim H. Z., Hwang S. I., Lee J. E., Oh N., Jung K., et al. . (2010). Double antiangiogenic protein, DAAP, targeting VEGF-A and angiopoietins in tumor angiogenesis, metastasis, and vascular leakage. Cancer Cell 18, 171–184. 10.1016/j.ccr.2010.07.001
    1. Konecny G. E., Meng Y. G., Untch M., Wang H.-J., Bauerfeind I., Epstein M., et al. . (2004). Association between HER-2/neu and vascular endothelial growth factor expression predicts clinical outcome in primary breast cancer patients. Clin. Cancer Res. 10, 1706–1716. 10.1158/1078-0432.CCR-0951-3
    1. Konishi T., Huang C. L., Adachi M., Taki T., Inufusa H., Kodama K., et al. . (2000). The K-ras gene regulates vascular endothelial growth factor gene expression in non-small cell lung cancers. Int. J.Oncol. 16, 501–511. 10.3892/ijo.16.3.501
    1. Kopetz S., Hoff P. M., Morris J. S., Wolff R. A., Eng C., Glover K. Y., et al. . (2010). Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. J. Clin. Oncol. 28, 453–459. 10.1200/JCO.2009.24.8252
    1. Kopp H. G., Ramos C. A., Rafii S. (2006). Contribution of endothelial progenitors and proangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue. Curr. Opin. Hematol. 13, 175–181. 10.1097/01.moh.0000219664.26528.da
    1. Kuczynski E. A., Yin M., Bar-Zion A., Lee C. R., Butz H., Man S., et al. (2016). Co-option of liver vessels and not sprouting angiogenesis drives acquired sorafenib resistance in hepatocellular carcinoma. J. Natl. Cancer Inst. 108:djw030 10.1093/jnci/djw030
    1. Kwilas A. R., Donahue R. N., Tsang K. Y., Hodge J. W. (2015). Immune consequences of tyrosine kinase inhibitors that synergize with cancer immunotherapy. Cancer Cell Microenviron. 2, 1–11. 10.14800/ccm.677
    1. Lambrechts D., Claes B., Delmar P., Reumers J., Mazzone M., Yesilyurt B. T., et al. . (2012). VEGF pathway genetic variants as biomarkers of treatment outcome with bevacizumab: an analysis of data from the AViTA and AVOREN randomised trials. Lancet Oncol. 13, 724–733. 10.1016/S1470-2045(12)70231-0
    1. Lambrechts D., Lenz H.-J., de Haas S., Carmeliet P., Scherer S. J. (2013). Markers of response for the antiangiogenic agent bevacizumab. J. Clin. Oncol. 31, 1219–1230. 10.1200/JCO.2012.46.2762
    1. Lazzari C., Karachaliou N., Gregorc V., Bulotta A., Gonzalez-Cao M., Verlicchi A., et al. . (2017). Second-line therapy of squamous non-small cell lung cancer: an evolving landscape. Expert Rev. Respir. Med. 11, 469–479. 10.1080/17476348.2017.1326822
    1. Li D., Xie K., Ding G., Li J., Chen K., Li H., et al. . (2014). Tumor resistance to anti-VEGF therapy through up-regulation of VEGF-C expression. Cancer Lett. 346, 45–52. 10.1016/j.canlet.2013.12.004
    1. Li J. L., Sainson R. C. A., Oon C. E., Turley H., Leek R., Sheldon H., et al. . (2011). DLL4-Notch signaling mediates tumor resistance to anti-VEGF therapy in vivo. Cancer Res. 71, 6073–6083. 10.1158/0008-5472.CAN-11-1704
    1. Lim H. Y., Heo J., Choi H. J., Lin C.-Y., Yoon J.-H., Hsu C., et al. . (2014). A phase II study of the efficacy and safety of the combination therapy of the MEK inhibitor refametinib (BAY 86-9766) Plus Sorafenib for Asian Patients with Unresectable Hepatocellular Carcinoma. Clin. Cancer Res. 20, 5976–5985. 10.1158/1078-0432.CCR-13-3445
    1. Lin S., Gregory R. I. (2015). MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 15, 321–333. 10.1038/nrc3932
    1. Llovet J. M., Ricci S., Mazzaferro V., Hilgard P., Gane E., Blanc J. F., et al. . (2008). Sorafenib for advanced hepatocellular carcinoma. N. Engl. J. Med. 359, 378–390. 10.1056/NEJMoa0708857
    1. Loges S., Mazzone M., Hohensinner P., Carmeliet P. (2009). Silencing or fueling metastasis with VEGF inhibitors: antiangiogenesis revisited. Cancer Cell 15, 167–170. 10.1016/j.ccr.2009.02.007
    1. Lu K. V., Chang J. P., Parachoniak C. A., Pandika M. M., Aghi M. K., Meyronet D., et al. . (2012). VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell 22, 21–35. 10.1016/j.ccr.2012.05.037
    1. Lu-Emerson C., Snuderl M., Kirkpatrick N. D., Goveia J., Davidson C., Huang Y., et al. . (2013). Increase in tumor-associated macrophages after antiangiogenic therapy is associated with poor survival among patients with recurrent glioblastoma. Neuro. Oncol. 15, 1079–1087. 10.1093/neuonc/not082
    1. Lyden D., Hattori K., Dias S., Costa C., Blaikie P., Butros L., et al. . (2001). Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med. 7, 1194–1201. 10.1038/nm1101-1194
    1. Mahoney K. M., Rennert P. D., Freeman G. J. (2015). Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 14, 561–584. 10.1038/nrd4591
    1. Maione F., Capano S., Regano D., Zentilin L., Giacca M., Casanovas O., et al. . (2012). Semaphorin 3A overcomes cancer hypoxia and metastatic dissemination induced by antiangiogenic treatment in mice. J. Clin. Invest. 122, 1832–1848. 10.1172/JCI58976
    1. Makhoul I., Todorova V. K., Siegel E. R., Erickson S. W., Dhakal I., Raj V. R., et al. . (2017). Germline Genetic Variants in TEK, ANGPT1, ANGPT2, MMP9, FGF2 and VEGFA are associated with pathologic complete response to Bevacizumab in Breast Cancer Patients. PLoS ONE 12:e0168550. 10.1371/journal.pone.0168550
    1. Mancuso P., Colleoni M., Calleri A., Orlando L., Maisonneuve P., Pruneri G., et al. . (2006). Circulating endothelial-cell kinetics and viability predict survival in breast cancer patients receiving metronomic chemotherapy. Blood 108, 452–459. 10.1182/blood-2005-11-4570
    1. Mantovani A., Allavena P. (2015). The interaction of anticancer therapies with tumor-associated macrophages. J. Exp. Med. 212, 435–445. 10.1084/jem.20150295
    1. Martinelli E., Troiani T., Morgillo F., Rodolico G., Vitagliano D., Morelli M. P., et al. . (2010). Synergistic antitumor activity of sorafenib in combination with epidermal growth factor receptor inhibitors in colorectal and lung cancer cells. Clin. Cancer Res. 16, 4990–5001. 10.1158/1078-0432.CCR-10-0923
    1. Masuda C., Yanagisawa M., Yorozu K., Kurasawa M., Furugaki K., Ishikura N., et al. . (2017). Bevacizumab counteracts VEGF-dependent resistance to erlotinib in an EGFR-mutated NSCLC xenograft model. Int. J. Oncol. 51, 425–434. 10.3892/ijo.2017.4036
    1. Matsuo Y., Campbell P. M., Brekken R. A., Sung B., Ouellette M. M., Fleming J. B., et al. . (2009). K-Ras promotes angiogenesis mediated by immortalized human pancreatic epithelial cells through mitogen-activated protein kinase signaling pathways. Mol. Cancer Res. 7, 799–808. 10.1158/1541-7786.MCR-08-0577
    1. Mazzocca A., Fransvea E., Lavezzari G., Antonaci S., Giannelli G. (2009). Inhibition of transforming growth factor β receptor I kinase blocks hepatocellular carcinoma growth through neo-angiogenesis regulation. Hepatology 50, 1140–1151. 10.1002/hep.23118
    1. Meyerhardt J. A., Ancukiewicz M., Abrams T. A., Schrag D., Enzinger P. C., Chan J. A., et al. . (2012). Phase I Study of Cetuximab, Irinotecan, and Vandetanib (ZD6474) as therapy for patients with previously treated metastastic colorectal cancer. PLoS ONE 7:e38231. 10.1371/journal.pone.0038231
    1. Miles D. W., Chan A., Dirix L. Y., Cortés J., Pivot X., Tomczak P., et al. . (2010). Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J. Clin. Oncol. 28, 3239–3247. 10.1200/JCO.2008.21.6457
    1. Miller K., Wang M., Gralow J., Dickler M., Cobleigh M., Perez E. A., et al. . (2007). Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 357, 2666–2676. 10.1056/NEJMoa072113
    1. Mitsuhashi A., Goto H., Saijo A., Trung V. T., Aono Y., Ogino H., et al. . (2015). Fibrocyte-like cells mediate acquired resistance to anti-angiogenic therapy with bevacizumab. Nat. Commun. 6:8792. 10.1038/ncomms9792
    1. Miura H., Miyazaki T., Kuroda M., Oka T., Machinami R., Kodama T., et al. . (1997). Increased expression of vascular endothelial growth factor in human hepatocellular carcinoma. J. Hepatol. 27, 854–861. 10.1016/S0168-8278(97)80323-6
    1. Mizukami Y., Jo W.-S., Duerr E.-M., Gala M., Li J., Zhang X., et al. . (2005). Induction of interleukin-8 preserves the angiogenic response in HIF-1α-deficient colon cancer cells. Nat. Med. 11, 992–997. 10.1038/nm1294
    1. Monk B. J., Poveda A., Vergote I., Raspagliesi F., Fujiwara K., Bae D. S., et al. . (2014). Anti-angiopoietin therapy with trebananib for recurrent ovarian cancer (TRINOVA-1): a randomised, multicentre, double-blind, placebo-controlled phase 3 trial. Lancet Oncol. 15, 799–808. 10.1016/S1470-2045(14)70244-X
    1. Morotti M., Dass P. H., Harris A. L., Lord S. (2017). Pharmacodynamic and pharmacokinetic markers for anti-angiogenic cancer therapy: implications for dosing and selection of patients. Eur. J. Drug Metab. Pharmacokinet. [Epub ahead of print]. 10.1007/s13318-017-0442-x
    1. Motz G. T., Santoro S. P., Wang L.-P., Garrabrant T., Lastra R. R., Hagemann I. S., et al. . (2014). Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat. Med. 20, 607–615. 10.1038/nm.3541
    1. Nagy J. A., Feng D., Vasile E., Wong W. H., Shih S.-C., Dvorak A. M., et al. . (2006). Permeability properties of tumor surrogate blood vessels induced by VEGF-A. Lab. Investig. 86, 767–780. 10.1038/labinvest.3700436
    1. Napolitano S., Martini G., Rinaldi B., Martinelli E., Donniacuo M., Berrino L., et al. . (2015). Primary and acquired resistance of colorectal cancer to anti-EGFR monoclonal antibody can be overcome by combined treatment of regorafenib with cetuximab. Clin. Cancer Res. 21, 2975–2983. 10.1158/1078-0432.CCR-15-0020
    1. Naumov G. N., Nilsson M. B., Cascone T., Briggs A., Straume O., Akslen L. A., et al. . (2009). Combined vascular endothelial growth factor receptor and Epidermal Growth Factor Receptor (EGFR) blockade inhibits tumor growth in xenograft models of EGFR inhibitor resistance. Clin. Cancer Res. 15, 3484–3494. 10.1158/1078-0432.CCR-08-2904
    1. Neuzillet C., Tijeras-Raballand A., Cohen R., Cros J., Faivre S., Raymond E., et al. . (2015). Targeting the TGFβ pathway for cancer therapy. Pharmacol. Ther. 147, 22–31. 10.1016/j.pharmthera.2014.11.001
    1. O'Connor J. P., Jackson A., Parker G. J., Roberts C., Jayson G. C. (2012). Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies. Nat. Rev. Clin. Oncol. 9, 167–177. 10.1038/nrclinonc.2012.2
    1. Ohm J. E. (2003). VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 101, 4878–4886. 10.1182/blood-2002-07-1956
    1. Okada F., Rak J. W., Croix B. S., Lieubeau B., Kaya M., Roncari L., et al. (1998). Impact of oncogenes in tumor angiogenesis: mutant K-ras up-regulation of vascular endothelial growth factor/vascular permeability factor is necessary, but not sufficient for tumorigenicity of human colorectal carcinoma cells. Proc. Natl. Acad. Sci. U.S.A. 95, 3609–3614. 10.1073/pnas.95.7.3609
    1. Okuda T., Tasaki T., Nakata S., Yamashita K., Yoshioka H., Izumoto S., et al. . (2017). Efficacy of Combination Therapy with MET and VEGF Inhibitors for MET-overexpressing Glioblastoma. Anticancer Res. 37, 3871–3876.
    1. Osada T., Chong G., Tansik R., Hong T., Spector N., Kumar R., et al. . (2008). The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol. Immunother. 57, 1115–1124. 10.1007/s00262-007-0441-x
    1. Ott P. A., Hodi F. S., Buchbinder E. I. (2015). Inhibition of immune checkpoints and vascular endothelial growth factor as combination therapy for metastatic melanoma: an overview of rationale, preclinical evidence, and initial clinical data. Front. Oncol. 5:202. 10.3389/fonc.2015.00202
    1. Pàez-Ribes M., Allen E., Hudock J., Takeda T., Okuyama H., Viñals F., et al. (2009). Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15, 220–231. 10.1016/j.ccr.2009.01.027
    1. Peterson T. E., Kirkpatrick N. D., Huang Y., Farrar C. T., Marijt K. A., Kloepper J., et al. . (2016). Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages. Proc. Natl. Acad. Sci. U.S.A. 113, 4470–4475. 10.1073/pnas.1525349113
    1. Qayum N., Muschel R. J., Im J. H., Balathasan L., Koch C. J., Patel S., et al. . (2009). Tumor vascular changes mediated by inhibition of oncogenic signaling. Cancer Res. 69, 6347–6354. 10.1158/0008-5472.CAN-09-0657
    1. Rahbari N. N., Kedrin D., Incio J., Liu H., Ho W. W., Nia H. T., et al. . (2016). Anti-VEGF therapy induces ECM remodeling and mechanical barriers to therapy in colorectal cancer liver metastases. Sci. Transl. Med. 8:360ra135. 10.1126/scitranslmed.aaf5219
    1. Rak J., Filmus J., Finkenzeller G., Grugel S., Marmé D., Kerbel R. S. (1995). Oncogenes as inducers of tumor angiogenesis. Cancer Metastasis. Rev. 14, 263–277. 10.1007/BF00690598
    1. Reck M., Kaiser R., Mellemgaard A., Douillard J.-Y., Orlov S., Krzakowski M., et al. . (2014). Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): a phase 3, double-blind, randomised controlled trial. Lancet Oncol. 15, 143–155. 10.1016/S1470-2045(13)70586-2
    1. Ricci F., Guffanti F., Damia G., Broggini M. (2017). Combination of paclitaxel, bevacizumab and MEK162 in second line treatment in platinum-relapsing patient derived ovarian cancer xenografts. Mol. Cancer 16:97. 10.1186/s12943-017-0662-3
    1. Robert N. J., Diéras V., Glaspy J., Brufsky A. M., Bondarenko I., Lipatov O. N., et al. (2011a). RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J. Clin. Oncol. 29, 1252–1260. 10.1200/JCO.2010.28.0982
    1. Robert N. J., Saleh M. N., Paul D., Generali D., Gressot L., Copur M. S., et al. . (2011b). Sunitinib plus paclitaxel versus bevacizumab plus paclitaxel for first-line treatment of patients with advanced breast cancer: a phase III, randomized, open-label trial. Clin. Breast Cancer 11, 82–92. 10.1016/j.clbc.2011.03.005
    1. Rosell R., Dafni U., Felip E., Curioni-Fontecedro A., Gautschi O., Peters S., et al. . (2017). Erlotinib and bevacizumab in patients with advanced non-small-cell lung cancer and activating EGFR mutations (BELIEF): an international, multicentre, single-arm, phase 2 trial. Lancet Respir. Med. 5, 435–444. 10.1016/S2213-2600(17)30129-7
    1. Rubenstein J. L., Kim J., Ozawa T., Zhang M., Westphal M., Deen D. F., et al. . (2000). Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia (New York, NY) 2, 306–314. 10.1038/sj.neo.7900102
    1. Rugo H. S. (2004). Bevacizumab in the Treatment of Breast Cancer: rationale and current data. Oncologist 9, 43–49. 10.1634/theoncologist.9-suppl_1-43
    1. Ryan D. P., Hong T. S., Bardeesy N. (2014). Pancreatic adenocarcinoma. N. Engl. J. Med. 35, 353–354. 10.1056/NEJMra1404198
    1. Samatar A. A., Poulikakos P. I. (2014). Targeting RAS–ERK signalling in cancer: promises and challenges. Nat. Rev. Drug Discov. 13, 928–942. 10.1038/nrd4281
    1. Scagliotti G. V., Gaafar R., Nowak A., Vogelzang N. J., Von Wangenheim U., Morsli N., et al. . (2016). P2.01: LUME-MeSO: Phase II/III Study of Nintedanib + Pemetrexed/Cisplatin in Patients With Malignant Pleural Mesothelioma. J. Thorac. Oncol. 11:S216. 10.1016/j.jtho.2016.08.075
    1. Schmittnaegel M., Rigamonti N., Kadioglu E., Cassará A., Wyser Rmili C., Kiialainen A., et al. . (2017). Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci. Transl. Med. 9:eaak9670. 10.1126/scitranslmed.aak9670
    1. Semela D., Piguet A. C., Kolev M., Schmitter K., Hlushchuk R., Djonov V., et al. . (2007). Vascular remodeling and antitumoral effects of mTOR inhibition in a rat model of hepatocellular carcinoma. J. Hepatol. 46, 840–848. 10.1016/j.jhep.2006.11.021
    1. Semenza G. L. (2009). Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29, 625–634. 10.1038/onc.2009.441
    1. Semenza G. L. (2014). Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu. Rev. Pathol. 9, 47–71. 10.1146/annurev-pathol-012513-104720
    1. Sennino B., Ishiguro-Oonuma T., Wei Y., Naylor R. M., Williamson C. W., Bhagwandin V., et al. . (2012). Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discov. 2, 270–287. 10.1158/-11-0240
    1. Seto T., Kato T., Nishio M., Goto K., Atagi S., Hosomi Y., et al. . (2014). Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (JO25567): an open-label, randomised, multicentre, phase 2 study. Lancet Oncol. 15, 1236–1244. 10.1016/S1470-2045(14)70381-X
    1. Shaked Y. (2006). Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 313, 1785–1787. 10.1126/science.1127592
    1. Sharma P., Allison J. P. (2017). Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161, 205–214. 10.1016/j.cell.2015.03.030
    1. Shojaei F., Lee J. H., Simmons B. H., Wong A., Esparza C. O., Plumlee P. A., et al. . (2010). HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Res. 70, 10090–10100. 10.1158/0008-5472.CAN-10-0489
    1. Shojaei F., Wu X., Malik A. K., Zhong C., Baldwin M. E., Schanz S., et al. . (2007a). Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat. Biotechnol. 25, 911–920. 10.1038/nbt1323
    1. Shojaei F., Wu X., Zhong C., Yu L., Liang X.-H., Yao J., et al. . (2007b). Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450, 825–831. 10.1038/nature06348
    1. Shrimali R. K., Yu Z., Theoret M. R., Chinnasamy D., Restifo N. P., Rosenberg S. A. (2010). Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res. 70, 6171–6180. 10.1158/0008-5472.CAN-10-0153
    1. Sikov W. M., Berry D. A., Perou C. M., Singh B., Cirrincione C. T., Tolaney S. M., et al. . (2015). Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage ii to iii triple-negative breast cancer: CALGB 40603 (Alliance). J. Clin. Oncol. 33, 13–21. 10.1200/JCO.2014.57.0572
    1. Singh H., Brave M., Beaver J. A., Cheng J., Tang S., Zahalka E., et al. . (2017). U.S. food and drug administration approval: cabozantinib for the treatment of advanced renal cell carcinoma. Clin. Cancer Res. 23, 330–335. 10.1158/1078-0432.CCR-16-1073
    1. Singh M., Couto S. S., Forrest W. F., Lima A., Cheng J. H., Molina R., et al. (2012). Anti-VEGF antibody therapy does not promote metastasis in genetically engineered mouse tumour models. J. Pathol. 227, 417–430. 10.1002/path.4053
    1. Sohn B. S., Park S. J., Kim J. E., Kim K. P., Hong Y. S., Suh C., et al. . (2014). Single-nucleotide polymorphisms in the vascular endothelial growth factor pathway and outcomes of patients treated with first-line cytotoxic chemotherapy combined with bevacizumab for advanced colorectal cancer. Oncology 87, 280–292. 10.1159/000365593
    1. Sorensen A. G., Emblem K. E., Polaskova P., Jennings D., Kim H., Ancukiewicz M., et al. . (2012). Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion. Cancer Res. 72, 402–407. 10.1158/0008-5472.CAN-11-2464
    1. Subbiah V., Khawaja M. R., Hong D. S., Amini B., Yungfang J., Liu H., et al. . (2017). First-in-human trial of multikinase VEGF inhibitor regorafenib and anti-EGFR antibody cetuximab in advanced cancer patients. JCI Insight 2:90380. 10.1172/jci.insight.90380
    1. Swanton C., Govindan R. (2016). Clinical implications of genomic discoveries in Lung Cancer. N. Engl. J. Med. 374, 1864–1873. 10.1056/NEJMra1504688
    1. Taverna G., Grizzi F., Colombo P., Graziotti P. (2013). Is angiogenesis a hallmark of prostate cancer? Front. Oncol. 3:15. 10.3389/fonc.2013.00015
    1. Teicher B. A. (1996). A systems approach to cancer therapy. (Antioncogenics + standard cytotoxics → mechanism(s) of interaction). Cancer Metast. Rev. 15, 247–272. 10.1007/BF00437479
    1. Terme M., Pernot S., Marcheteau E., Sandoval F., Benhamouda N., Colussi O., et al. . (2013). VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res. 73, 539–549. 10.1158/0008-5472.CAN-12-2325
    1. Thurston G., Noguera-Troise I., Yancopoulos G. D. (2007). The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nat. Rev. Cancer 7, 327–331. 10.1038/nrc2130
    1. Tol J., Koopman M., Cats A., Rodenburg C. J., Creemers G. J. M., Schrama J. G., et al. . (2009). Chemotherapy, Bevacizumab, and Cetuximab in Metastatic Colorectal Cancer. N. Engl. J. Med. 360, 563–572. 10.1056/NEJMoa0808268
    1. Tolaney S. M., Boucher Y., Duda D. G., Martin J. D., Seano G., Ancukiewicz M., et al. . (2015). Role of Vascular Density and Normalization in Response to Neoadjuvant Bevacizumab and Chemotherapy in Breast Cancer Patients. Proc. Natl. Acad. Sci. U.S.A. 112, 14325–14330. 10.1073/pnas.1518808112
    1. Torimura T., Iwamoto H., Nakamura T., Abe M., Ikezono Y., Wada F., et al. . (2016). Antiangiogenic and antitumor activities of aflibercept, a soluble VEGF receptor-1 and−2, in a mouse model of hepatocellular carcinoma. Neoplasia 18, 413–424. 10.1016/j.neo.2016.05.001
    1. Tyler T. (2012). Axitinib: newly approved for renal cell Carcinoma. J. Adv. Pract. Oncol. 3, 333–335.
    1. Van Cutsem E., de Haas S., Kang Y.-K., Ohtsu A., Tebbutt N. C., Ming Xu J., et al. . (2012b). Bevacizumab in combination with chemotherapy as first-line therapy in advanced Gastric Cancer: a biomarker evaluation from the AVAGAST randomized phase III trial. J. Clin. Oncol. 30, 2119–2127. 10.1200/JCO.2011.39.9824
    1. Van Cutsem E., Tabernero J., Lakomy R., Prenen H., Prausová J., Macarulla T., et al. . (2012a). Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J. Clin. Oncol. 30, 3499–3506. 10.1200/JCO.2012.42.8201
    1. Vasudev N. S., Reynolds A. R. (2014). Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis 17, 471–494. 10.1007/s10456-014-9420-y
    1. von Minckwitz G., Eidtmann H., Rezai M., Fasching P. A., Tesch H., Eggemann H., et al. . (2012). Neoadjuvant Chemotherapy and Bevacizumab for HER2-Negative Breast Cancer. N. Engl. J. Med. 366, 299–309. 10.1056/NEJMoa1111065
    1. Voron T., Colussi O., Marcheteau E., Pernot S., Nizard M., Pointet A.-L., et al. . (2015). VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J. Exp. Med. 212, 139–148. 10.1084/jem.20140559
    1. Vredenburgh J. J., Desjardins A., Herndon J. E., Marcello J., Reardon D. A., Quinn J. A., et al. . (2007). Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J. Clin. Oncol. 25, 4722–4729. 10.1200/JCO.2007.12.2440
    1. Wang Z., Chen J.-Q., Liu J., Tian L. (2016). Exosomes in tumor microenvironment: novel transporters and biomarkers. J. Transl. Med. 14:297. 10.1186/s12967-016-1056-9
    1. Wang Z., Dabrosin C., Yin X., Fuster M. M., Arreola A., Rathmell W. K., et al. . (2015). Broad targeting of angiogenesis for cancer prevention and therapy. Semin. Cancer Biol. 35, S224–S243. 10.1016/j.semcancer.2015.01.001
    1. Wicki A., Christofori G. (2008). The angiogenic switch in tumorigenesis, in Tumor Angiogenesis, eds Marmé D., Fusenig N. (Springer; Berlin; Heidelberg: ), 67–88. 10.1007/978-3-540-33177-3_4
    1. Wilhelm S. M., Carter C., Tang L. Y., Wilkie D., McNabola A., Rong H., et al. . (2004). BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64, 7099–7109. 10.1158/0008-5472.CAN-04-1443
    1. Wilhelm S. M., Dumas J., Adnane L., Lynch M., Carter C. A., Schütz G., et al. . (2011). Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int. J. Cancer 129, 245–255. 10.1002/ijc.25864
    1. Wilke H., Muro K., Van Cutsem E., Oh S.-C., Bodoky G., Shimada Y., et al. . (2014). Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol. 15, 1224–1235. 10.1016/S1470-2045(14)70420-6
    1. Xu J., Wang J., Xu B., Ge H., Zhou X., Fang J.-Y. (2013). Colorectal cancer cells refractory to Anti-VEGF Treatment are vulnerable to glycolytic blockade due to persistent impairment of Mitochondria. Mol. Cancer Ther. 12, 717–724. 10.1158/1535-7163.MCT-12-1016-T
    1. Yuan J., Zhou J., Dong Z., Tandon S., Kuk D., Panageas K. S., et al. . (2014). Pretreatment Serum VEGF Is Associated with Clinical Response and Overall Survival in Advanced Melanoma Patients Treated with Ipilimumab. Cancer Immunol. Res. 2:127LP-132. 10.1158/2326-6066.CIR-13-0163
    1. Zhang M., Kleber S., Röhrich M., Timke C., Han N., Tuettenberg J., et al. . (2011). Blockade of TGF-β signaling by the TGFβR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in Glioblastoma. Cancer Res. 71:7155LP-7167. 10.1158/0008-5472.CAN-11-1212
    1. Zhang W.-J., Li Y., Wei M.-N., Chen Y., Qiu J.-G., Jiang Q.-W., et al. . (2017). Synergistic antitumor activity of regorafenib and lapatinib in preclinical models of human colorectal cancer. Cancer Lett. 386, 100–109. 10.1016/j.canlet.2016.11.011
    1. Zhou Q., Guo P., Gallo J. M. (2008). Impact of angiogenesis inhibition by sunitinib on tumor distribution of temozolomide. Clin. Cancer Res. 19, 1557–1566. 10.1158/1078-0432.CCR-07-4544
    1. Zhu A. X., Ancukiewicz M., Supko J. G., Sahani D. V., Blaszkowsky L. S., Meyerhardt J. A., et al. . (2013). Efficacy, safety, pharmacokinetics, and biomarkers of cediranib monotherapy in advanced hepatocellular carcinoma: a phase II study. Clin. Cancer Res. 19, 1557–1566. 10.1158/1078-0432.CCR-12-3041
    1. Zhu A. X., Sahani D. V., Duda D. G., di Tomaso E., Ancukiewicz M., Catalano O. A., et al. . (2009). Efficacy, safety, and potential biomarkers of sunitinib monotherapy in advanced hepatocellular carcinoma: a phase II study. J. Clin. Oncol. 27, 3027–3035. 10.1200/JCO.2008.20.9908

Source: PubMed

3
Subskrybuj