The effects of video game therapy on balance and attention in chronic ambulatory traumatic brain injury: an exploratory study

Sofia Straudi, Giacomo Severini, Amira Sabbagh Charabati, Claudia Pavarelli, Giulia Gamberini, Anna Scotti, Nino Basaglia, Sofia Straudi, Giacomo Severini, Amira Sabbagh Charabati, Claudia Pavarelli, Giulia Gamberini, Anna Scotti, Nino Basaglia

Abstract

Background: Patients with traumatic brain injury often have balance and attentive disorders. Video game therapy (VGT) has been proposed as a new intervention to improve mobility and attention through a reward-learning approach. In this pilot randomized, controlled trial, we tested the effects of VGT, compared with a balance platform therapy (BPT), on balance, mobility and selective attention in chronic traumatic brain injury patients.

Methods: We enrolled chronic traumatic brain injury patients (n = 21) that randomly received VGT or BPT for 3 sessions per week for 6 weeks. The clinical outcome measures included: i) the Community Balance & Mobility Scale (CB&M); ii) the Unified Balance Scale (UBS); iii) the Timed Up and Go test (TUG); iv) static balance and v) selective visual attention evaluation (Go/Nogo task).

Results: Both groups improved in CB&M scores, but only the VGT group increased on the UBS and TUG with a between-group significance (p < 0.05). Selective attention improved significantly in the VGT group (p < 0.01).

Conclusions: Video game therapy is an option for the management of chronic traumatic brain injury patients to ameliorate balance and attention deficits.

Trial registration: NCT01883830 , April 5 2013.

Keywords: Attention deficit; Balance; Gaming; Mobility; Traumatic brain injury.

Figures

Fig. 1
Fig. 1
The study CONSORT flow diagram

References

    1. Walker WC, Pickett TC. Motor impairment after severe traumatic brain injury: A longitudinal multicenter study. J Rehabil Res Dev. 2007;44:975–982. doi: 10.1682/JRRD.2006.12.0158.
    1. Marsh NV, Ludbrook MR, Gaffaney LC. Cognitive functioning following traumatic brain injury: A five-year follow-up. NeuroRehabilitation. 2016;38:71–78. doi: 10.3233/NRE-151297.
    1. Ponsford J, Kinsella G. Attentional deficits following closed head injury. J Clin Exp Neuropsychol. 1992;14:822–838. doi: 10.1080/01688639208402865.
    1. Ustinova KI, Chernikova LA, Dull A, Perkins J. Physical therapy for correcting postural and coordination deficits in patients with mild-to-moderate traumatic brain injury. Physiother Theory Pract. 2015;31:1–7. doi: 10.3109/09593985.2014.945674.
    1. Brown TH, Mount J, Rouland BL, Kautz KA, Barnes RM, Kim J. Body weight-supported treadmill training versus conventional gait training for people with chronic traumatic brain injury. J Head Trauma Rehabil. 2005;20:402–415. doi: 10.1097/00001199-200509000-00002.
    1. Esquenazi A, Lee S, Wikoff A, Packel A, Toczylowski T, Feeley J. A Comparison of Locomotor Therapy Interventions: Partial Body Weight-Supported Treadmill, Lokomat, and G-EO Training in People With Traumatic Brain Injury. 2017; Jan 16. pii: S1934–1482(17)30030–8. [Epub ahead of print].
    1. Pilkar R, Arzouni N, Ramanujam A, Chervin K, Nolan KJ. Postural responses after utilization of a computerized biofeedback based intervention aimed at improving static and dynamic balance in traumatic brain injury: a case study. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:25–28.
    1. Kleffelgaard I, Soberg HL, Bruusgaard KA, Tamber AL, Langhammer B. Vestibular Rehabilitation After Traumatic Brain Injury: Case Series. Phys Ther. 2016;96:839–849. doi: 10.2522/ptj.20150095.
    1. Martino Cinnera A, Bonnì S, Iosa M, Ponzo V, Fusco A, Caltagirone C, Koch G. Clinical effects of noninvasive cerebellar magnetic stimulation treatment combined with neuromotor rehabilitation in traumatic brain injury. A single case study. Funct Neurol. 2016;31:117–120.
    1. Bland DC, Zampieri C, Damiano DL. Effectiveness of physical therapy for improving gait and balance in individuals with traumatic brain injury: a systematic review. Brain Inj. 2011;25:664–679. doi: 10.3109/02699052.2011.576306.
    1. Rizzo AA. Virtual reality and disability: emergence and challenge. Disabil Rehabil. 2002;24:567–569. doi: 10.1080/09638280110111315.
    1. Laver KE, George S, Thomas S, Deutsch JE, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2015;12(2):CD008349.
    1. Lauber B, Keller M. Improving motor performance: selected aspects of augmented feedback in exercise and health. Eur J Sport Sci. 2014;14:36–43. doi: 10.1080/17461391.2012.725104.
    1. Wulf G. Attentional focus and motor learning: a review of 15 years. Int Rev Sport Exer Psychol. 2013;6:77–104. doi: 10.1080/1750984X.2012.723728.
    1. Tran DA, Pajaro-Blazquez M, Daneault JF, Gallegos JG, Pons J, Fregni F, Bonato P, Zafonte R. Combining dopaminergic facilitation with robot assisted upper limb therapy in stroke survivors: a focused review. Am J Phys Med Rehabil. 2016;95:459–474. doi: 10.1097/PHM.0000000000000438.
    1. Bucker B, Theeuwes J. Pavlovian reward learning underlies value driven attentional capture. Atten Percept Psychophys. 2017;79:415-28.
    1. Kiss M, Driver J, Eimer M: Reward priority of visual target singletons modulates event-related potential signatures of attentionalselection. Psychol Sci 2009, 20:245-251.
    1. Russell C, Malhotra PA. Harnessing motivation to alleviate neglect. Front Hum Neurosci. 2013;7:230. doi: 10.3389/fnhum.2013.00230.
    1. Dobkin BH. Behavioral self-management strategies for practice and exercise should be included in neurologic rehabilitation trials and care. Curr Opin Neurol. 2016;29:693–699. doi: 10.1097/WCO.0000000000000380.
    1. Pietrzak E, Pullman S, McGuire A. Using virtual reality and videogames for traumatic brain injury rehabilitation: a structured literature review. Games Health J. 2014;3:202–214. doi: 10.1089/g4h.2014.0013.
    1. Sveistrup H, McComas J, Thornton M, Marshall S, Finestone H, McCormick A, Babulic K, Mayhew A. Experimental studies of virtual reality-delivered compared to conventional exercise programs for rehabilitation. Cyberpsychol Behav. 2003;6:245–249. doi: 10.1089/109493103322011524.
    1. Thornton M, Marshall S, McComas J, Finestone H, McCormick A, Sveistrup H. Benefits of activity and virtual reality based balance exercise programmes for adults with traumatic brain injury: perceptions of participants and their caregivers. Brain Inj. 2005;19:989–1000. doi: 10.1080/02699050500109944.
    1. Cuthbert JP, Staniszewski K, Hays K, Gerber D, Natale A, O’Dell D. Virtual reality-based therapy for the treatment of balance deficits in patients receiving inpatient rehabilitation for traumatic brain injury. Brain Inj. 2014;28:181–188. doi: 10.3109/02699052.2013.860475.
    1. Ustinova KI, Perkins J, Leonard WA, Hausbeck CJ. Virtual reality game-based therapy for treatment of postural and co-ordination abnormalities secondary to TBI: a pilot study. Brain Inj. 2014;28:486–495. doi: 10.3109/02699052.2014.888593.
    1. Chisholm JD, Hickey C, Theeuwes J, Kingstone A. Reduced attentional capture in action videogame players. Atten Percept Psychophys. 2010;72:667–671. doi: 10.3758/APP.72.3.667.
    1. Green CS, Bavelier D. Learning, attentional control and action video games. Curr Biol. 2012;22:R197–R206. doi: 10.1016/j.cub.2012.02.012.
    1. Eftekharsadat B, Babaei-Ghazani A, Mohammadzadeh M, Talebi M, Eslamian F, Azari E. Effect of virtual reality-based balance training in multiple sclerosis. Neurol Res. 2015;37:539–544. doi: 10.1179/1743132815Y.0000000013.
    1. Howe JA, Inness EL, Venturini A, Williams JI, Verrier MC. The Community Balance and Mobility Scale--a balance measure for individuals with traumatic brain injury. Clin Rehabil. 2006;20:885–895.
    1. Inness EL, Howe JA, Niechwiej-Szwedo E, Jaglal SB, Mcllroy WE, Verrier MC. Measuring balance and mobility after traumatic brain injury: validation of the community balance and mobility scale (CB&M) Physiother Can. 2011;63:199–208. doi: 10.3138/ptc.2009-45.
    1. La Porta F, Franceschini M, Caselli S, Cavallini P, Susassi S, Tennant A. Unified Balance Scale: an activity-based, bed to community, and aetiology-independent measure of balance calibrated with Rasch analysis. J Rehabil Med. 2011;43:435–444. doi: 10.2340/16501977-0797.
    1. Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;32:142–148. doi: 10.1111/j.1532-5415.1991.tb01616.x.
    1. Zimmermann P, Fimm B. Testbatterie zur Aufmerksamkeitsprufung (TAP) Wurselen: Psytest; 1992.
    1. Lehmann JF, Boswell S, Price R, Burleigh A, BJ DL, Jaffe KM, Hertling D. Quantitative evaluation of sway as an indicator of functional balance in post-traumatic brain injury. Arch Phys Med Rehabil. 1990;71:955–962.
    1. Campbell M, Parry A. Balance disorder and traumatic brain injury: preliminary findings of a multi-factorial observational study. Brain Inj. 2005;19:1095–1104. doi: 10.1080/02699050500188898.
    1. Peters DM, Jain S, Liuzzo DM, Middleton A, Greene J, Blanck E, Sun S, Raman R, Fritz SL. Individuals with chronic traumatic brain injury improve walking speed and mobility with intensive mobility training. Arch Phys Med Rehabil. 2014;95:1454–1460. doi: 10.1016/j.apmr.2014.04.006.
    1. Kleim JA, Jones TA. Principles of experience–dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008;51:S225–S239. doi: 10.1044/1092-4388(2008/018).
    1. Flansbjer UB, Holmback AM, Downham D, Patten C, Lexell J. Reliability of gait performance tests in men and women with hemiparesis after stroke. J Rehabil Med. 2005;37:75–82. doi: 10.1080/16501970410017215.
    1. La Porta F, Franceschini M, Caselli S, Susassi S, Cavallini P, Tennant A. Unified Balance Scale: classical psychometric and clinical properties. J Rehabil Med. 2011;43:445–453. doi: 10.2340/16501977-0800.
    1. Geurts AC, Ribbers GM, Knoop JA, van Limbeek J. Identification of static and dynamic postural instability following traumatic brain injury. Arch Phys Med Rehabil. 1996;77:639–644. doi: 10.1016/S0003-9993(96)90001-5.
    1. Williams GP, Morris ME. Tests of static balance do not predict mobility performance following traumatic brain injury. Physiother Can. 2011;63:58–64. doi: 10.3138/ptc.2009-53.
    1. Green CS, Bavelier D. Action video game modifies visual selective attention. Nature. 2003;423:534–537. doi: 10.1038/nature01647.
    1. Green CS, Bavelier D. Action video game experience alters the spatial resolution of vision. Psychol Sci. 2007;18:88–94. doi: 10.1111/j.1467-9280.2007.01853.x.
    1. Caplovitz GP, Kastner S. Carrot sticks or joysticks: Video games improve vision. Nat Neurosci. 2009;12:527–528. doi: 10.1038/nn0509-527.
    1. Clark K, Fleck MS, Mitroff SR. Enhanced change detection performance reveals improved strategy use in avid action video game players. Acta Psychol. 2011;136:67–72. doi: 10.1016/j.actpsy.2010.10.003.
    1. Colzato LS, van Leeuwen PJA, van den Wildenberg WPM, Hommel B. DOOM’d to switch: superior cognitive flexibility in players of first shooter games. Front Psychol. 2010;1:8.
    1. Boot WR, Blakely DP, Simons DJ. Do action video games improve perception and cognition? Front Psychol. 2011;2:226. doi: 10.3389/fpsyg.2011.00226.
    1. Koepp MJ, Gunn RN, Lawrence AD, Cunningham VJ, Dagher A, Jones T, Brooks DJ, Bench CJ, Grasby PM. Evidence for striatal dopamine release during a video game. Nature. 1998;393:266–268. doi: 10.1038/30498.
    1. Stuss DT, Levine B. Adult clinical neuropsychology: lessons from studies of the frontal lobes. Annu Rev Psychol. 2002;53:401–433. doi: 10.1146/annurev.psych.53.100901.135220.
    1. O'Neil RL, Skeel RL, Ustinova KI. Cognitive ability predicts motor learning on a virtual reality game in patients with TBI. NeuroRehabilitation. 2013;33:667–680.

Source: PubMed

3
Subskrybuj