Long-term outcomes following 90Y Radioembolization of neuroendocrine liver metastases: evaluation of the radiation-emitting SIR-spheres in non-resectable liver tumor (RESiN) registry

Thomas Y Wong, Kevin S Zhang, Ripal T Gandhi, Zachary S Collins, Ryan O'Hara, Eric A Wang, Kirubahara Vaheesan, Lea Matsuoka, Daniel Y Sze, Andrew S Kennedy, Daniel B Brown, Thomas Y Wong, Kevin S Zhang, Ripal T Gandhi, Zachary S Collins, Ryan O'Hara, Eric A Wang, Kirubahara Vaheesan, Lea Matsuoka, Daniel Y Sze, Andrew S Kennedy, Daniel B Brown

Abstract

Background: The goal of this study was to evaluate efficacy and safety of 90Y radioembolization for neuroendocrine liver metastases (NELM) in a multicenter registry.

Methods: One hundred-seventy patients with NELM were enrolled in the registry (NCT02685631). Prior treatments included hepatic resection (n = 23, 14%), arterial therapy (n = 62, 36%), octreotide (n = 119, 83%), cytotoxic chemotherapy (n = 58, 41%), biologic therapy (n = 49, 33%) and immunotherapy (n = 10, 6%). Seventy-seven (45%) patients had extrahepatic disease. Seventy-eight (48%), 61 (37%), and 25 (15%) patients were Eastern Cooperative Oncology Group (ECOG) performance status of 0, 1, or ≥ 2. Tumor grade was known in 81 (48%) patients: 57 (70%) were well-, 12 (15%) moderate-, and 12 (15%) poorly-differentiated. Kaplan-Meier analysis and log rank tests were performed to compare overall and progression-free survival (OS/PFS) by tumor location and grade. Toxicities were reported using Common Terminology Criteria for Adverse Events v.5. Cox Proportional Hazards were calculated for pancreatic primary, performance status, extrahepatic disease at treatment, unilobar treatment, baseline ascites, and > 25% tumor burden.

Results: One, 2, and 3-year OS rates were 75, 62 and 46%, respectively. Median OS was 33 months [(95% CI: 25-not reached (NR)]. The longest median OS was in patients with pancreatic (42 months, 95% CI: 33-NR) and hindgut 41 months, 95% CI: 12-NR) primaries. The shortest OS was in foregut primaries (26 months; 95% CI: 23-NR; X2 = 7, p = 0.1). Median OS of well-differentiated tumors was 36 months (95% CI: 10-NR), compared to 44 (95% CI: 7-NR) and 25 (95% CI: 3-NR) months for moderate and poorly differentiated tumors. Median progression-free survival (PFS) was 25 months with 1, 2, and 3-year PFS rates of 70, 54, and 35%, respectively. Thirteen patients (7.6%) developed grade 3 hepatic toxicity, most commonly new ascites (n = 8, 5%) at a median of 5.5 months. Performance status of ≥2 (HR 2.7, p = 0.01) and baseline ascites (HR 2.8, P = 0.049) predicted shorter OS.

Discussion: In a population with a high incidence of extrahepatic disease, 90Y was effective and safe in treatment of NELM, with median OS of 41 months for well differentiated tumors. Grade 3 or greater hepatic toxicity was developed in 7.6% of patients.

Trial registration: NCT02685631 .

Keywords: Liver cancer; Metastases; Neuroendocrine tumor.

Conflict of interest statement

Ripal T. Gandhi has a research grant from Sirtex Medical, has consulted with Sirtex Medical and Trisalus Life Sciences and has been a speaker for Sirtex Medical.

Zach S. Collins has a research grant from Sirtex Medical, has consulted for Sirtex Medical and has been a speaker for Sirtex Medical.

Eric A. Wang has consulted for Sirtex Medical.

Kirubahara Vaheesan has research grants from Sirtex Medical, Siemens Medical, Merit Medical and Guerbet Medical.

Daniel Y. Sze has a research grant with Sirtex Medical and has consulted for Sirtex Medical.

Andrew S. Kennedy has received institutional grants from Sirtex Medical, Bard Medical and ABK Medical.

Daniel B. Brown has research grants with Sirtex Medical and Guerbet, has consulted with Sirtex Medical, Astra-Zeneca, BTC and Bard Medical, and has been a speaker for Cook Medical.

The other authors have no conflicts to report.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
A-D Overall survival (A) for the entire cohort (B) by primary NET location (C) for Pancreatic primary (PNET) compared to all other primary tumors and (D) by tumor grade
Fig. 2
Fig. 2
A-D Progression-Free Survival (A) for the entire cohort (B) by primary location (C) for pancreatic primary tumors (PNET) vs all other types combined and (D) by tumor grade

References

    1. Dasari A, Shen C, Halperin D, Zhao B, Zhou S, Xu Y, et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 2017;3(10):1335–1342. doi: 10.1001/jamaoncol.2017.0589.
    1. Riihimäki M, Hemminki A, Sundquist K, Sundquist J, Hemminki K. The epidemiology of metastases in neuroendocrine tumors. Int J Cancer. 2016;139(12):2679–2686. doi: 10.1002/ijc.30400.
    1. Frilling A, Clift AK. Therapeutic strategies for neuroendocrine liver metastases. Cancer. 2015;121(8):1172–1186. doi: 10.1002/cncr.28760.
    1. Broder MS, Beenhouwer D, Strosberg JR, Neary MP, Cherepanov D. Gastrointestinal neuroendocrine tumors treated with high dose octreotide-LAR: a systematic literature review. World J Gastroenterol. 2015;21(6):1945–1955. doi: 10.3748/wjg.v21.i6.1945.
    1. Rinke A, Wittenberg M, Schade-Brittinger C, Aminossadati B, Ronicke E, Gress TM, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of Octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine Midgut tumors (PROMID): results of long-term survival. Neuroendocrinology. 2017;104(1):26–32. doi: 10.1159/000443612.
    1. Caplin ME, Pavel M, Ćwikła JB, Phan AT, Raderer M, Sedláčková E, et al. Lanreotide in metastatic Enteropancreatic neuroendocrine tumors. N Engl J Med. 2014;371(3):224–233. doi: 10.1056/NEJMoa1316158.
    1. National Comprehensive Cancer Network. Neuroendocrine and Adrenal Tumors (Version 2.2021) [Internet]. National Comprehensive Cancer Network. 2021 [cited 2021 Jul 22]. Available from:
    1. Chen JX, Rose S, White SB, El-Haddad G, Fidelman N, Yarmohammadi H, et al. Embolotherapy for neuroendocrine tumor liver metastases: prognostic factors for hepatic progression-free survival and overall survival. Cardiovasc Intervent Radiol. 2017;40(1):69–80. doi: 10.1007/s00270-016-1478-z.
    1. Egger ME, Armstrong E, Martin RCG, Scoggins CR, Philips P, Shah M, et al. Transarterial chemoembolization vs Radioembolization for neuroendocrine liver metastases: a multi-institutional analysis. J Am Coll Surg. 2020;230(4):363–370. doi: 10.1016/j.jamcollsurg.2019.12.026.
    1. Engelman ES, Leon-Ferre R, Naraev BG, Sharma N, Sun S, O’Dorisio TM, et al. Comparison of Transarterial liver-directed therapies for low-grade metastatic neuroendocrine tumors in a single institution. Pancreas. 2014;43(2):219–225. doi: 10.1097/MPA.0000000000000030.
    1. Kennedy A, Bester L, Salem R, Sharma RA, Parks RW, Ruszniewski P, et al. Role of hepatic intra-arterial therapies in metastatic neuroendocrine tumours (NET): guidelines from the NET-liver-metastases consensus conference. HPB. 2015;17(1):29–37. doi: 10.1111/hpb.12326.
    1. Do Minh D, Chapiro J, Gorodetski B, Huang Q, Liu C, Smolka S, et al. Intra-arterial therapy of neuroendocrine tumour liver metastases: comparing conventional TACE, drug-eluting beads TACE and yttrium-90 radioembolisation as treatment options using a propensity score analysis model. Eur Radiol. 2017;27(12):4995–5005. doi: 10.1007/s00330-017-4856-2.
    1. Fan KY, Wild AT, Halappa VG, Kumar R, Ellsworth S, Ziegler M, et al. Neuroendocrine tumor liver metastases treated with yttrium-90 radioembolization. Contemp Clin Trials. 2016;50:143–149. doi: 10.1016/j.cct.2016.08.001.
    1. Tsang ES, Loree JM, Davies JM, Gill S, Liu D, Ho S, et al. Efficacy and prognostic factors for Y-90 Radioembolization (Y-90) in metastatic neuroendocrine tumors with liver metastases. Can J Gastroenterol Hepatol. 2020;2020:e5104082. doi: 10.1155/2020/5104082.
    1. Helmberger T, Golfieri R, Pech M, Pfammatter T, Arnold D, Cianni R, et al. Clinical application of trans-arterial Radioembolization in hepatic malignancies in Europe: first results from the prospective multicentre observational study CIRSE registry for SIR-spheres therapy (CIRT) Cardiovasc Intervent Radiol. 2021;44(1):21–35. doi: 10.1007/s00270-020-02642-y.
    1. Devcic Z, Rosenberg J, Braat AJA, Techasith T, Banerjee A, Sze DY, et al. The efficacy of hepatic 90Y resin Radioembolization for metastatic neuroendocrine tumors: a meta-analysis. J Nucl Med. 2014;55(9):1404–1410. doi: 10.2967/jnumed.113.135855.
    1. Tomozawa Y, Jahangiri Y, Pathak P, Kolbeck KJ, Schenning RC, Kaufman JA, et al. Long-term toxicity after Transarterial Radioembolization with Yttrium-90 using resin microspheres for neuroendocrine tumor liver metastases. J Vasc Interv Radiol. 2018;29(6):858–865. doi: 10.1016/j.jvir.2018.02.002.
    1. Su Y-K, Mackey RV, Riaz A, Gates VL, Benson AB, Miller FH, et al. Long-term hepatotoxicity of Yttrium-90 Radioembolization as treatment of metastatic neuroendocrine tumor to the liver. J Vasc Interv Radiol. 2017;28(11):1520–1526. doi: 10.1016/j.jvir.2017.05.011.
    1. Currie BM, Hoteit MA, Ben-Josef E, Nadolski GJ, Soulen MC. Radioembolization-induced chronic hepatotoxicity: a single-center cohort analysis. J Vasc Interv Radiol. 2019;30(12):1915–1923. doi: 10.1016/j.jvir.2019.06.003.
    1. Braat AJAT, Ahmadzadehfar H, Kappadath SC, Stothers CL, Frilling A, Deroose CM, et al. Radioembolization with 90Y resin microspheres of neuroendocrine liver metastases after initial peptide receptor radionuclide therapy. Cardiovasc Intervent Radiol. 2020;43(2):246–253. doi: 10.1007/s00270-019-02350-2.
    1. Memon K, Lewandowski RJ, Mulcahy MF, Riaz A, Ryu RK, Sato KT, et al. Radioembolization for neuroendocrine liver metastases: safety, imaging, and long-term outcomes. Int J Radiat Oncol Biol Phys. 2012;83(3):887–894. doi: 10.1016/j.ijrobp.2011.07.041.
    1. Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 trial of 177Lu-Dotatate for Midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125–135. doi: 10.1056/NEJMoa1607427.
    1. Lawrence B, Gustafsson BI, Chan A, Svejda B, Kidd M, Modlin IM. The epidemiology of gastroenteropancreatic neuroendocrine tumors. Endocrinol Metab Clin N Am. 2011;40(1):1–18. doi: 10.1016/j.ecl.2010.12.005.
    1. Gupta S, Johnson MM, Murthy R, Ahrar K, Wallace MJ, Madoff DC, et al. Hepatic arterial embolization and chemoembolization for the treatment of patients with metastatic neuroendocrine tumors. Cancer. 2005;104(8):1590–1602. doi: 10.1002/cncr.21389.
    1. Eriksson BK, Larsson EG, Skogseid BM, Löfberg AM, Lörelius LE, Öberg KE. Liver embolizations of patients with malignant neuroendocrine gastrointestinal tumors. Cancer. 1998;83(11):2293–2301. doi: 10.1002/(SICI)1097-0142(19981201)83:11<2293::AID-CNCR8>;2-E.
    1. Moertel CG, Johnson CM, McKusick MA, Martin JK, Nagorney DM, Kvols LK, et al. The Management of Patients with advanced carcinoid tumors and islet cell carcinomas. Ann Intern Med. 1994;120(4):302–309. doi: 10.7326/0003-4819-120-4-199402150-00008.
    1. Nave H, Mössinger E, Feist H, Lang H, Raab H-R. Surgery as primary treatment in patients with liver metastases from carcinoid tumors: a retrospective, unicentric study over 13 years. Surgery. 2001;129(2):170–175. doi: 10.1067/msy.2001.110426.
    1. Pape U-F, Böhmig M, Berndt U, Tiling N, Wiedenmann B, Plöckinger U. Survival and clinical outcome of patients with neuroendocrine tumors of the Gastroenteropancreatic tract in a German referral center. Ann N Y Acad Sci. 2004;1014(1):222–233. doi: 10.1196/annals.1294.025.
    1. Ezziddin S, Meyer C, Kahancova S, Haslerud T, Willinek W, Wilhelm K, et al. 90Y Radioembolization after radiation exposure from peptide receptor radionuclide therapy. J Nucl Med. 2012;53(11):1663–1669. doi: 10.2967/jnumed.112.107482.
    1. Saxena A, Chua TC, Bester L, Kokandi A, Morris DL. Factors predicting response and survival after Yttrium-90 Radioembolization of Unresectable neuroendocrine tumor liver metastases: a critical appraisal of 48 cases. Ann Surg. 2010;251(5):910–916. doi: 10.1097/SLA.0b013e3181d3d24a.
    1. Kennedy AS, Dezarn WA, McNeillie P, Coldwell D, Nutting C, Carter D, et al. Radioembolization for Unresectable neuroendocrine hepatic metastases using resin 90Y-microspheres: early results in 148 patients. Am J Clin Oncol. 2008;31(3):271–279. doi: 10.1097/COC.0b013e31815e4557.
    1. Strosberg JR, Halfdanarson TR, Bellizzi AM, Chan JA, Dillon J, Heaney AP, et al. The north American neuroendocrine society (NANETS) consensus guidelines for surveillance and medical Management of Midgut Neuroendocrine Tumors. Pancreas. 2017;46(6):707–714. doi: 10.1097/MPA.0000000000000850.
    1. Currie BM, Nadolski G, Mondschein J, Dagli M, Sudheendra D, Stavropoulos SW, et al. Chronic hepatotoxicity in patients with metastatic neuroendocrine tumor: Transarterial chemoembolization versus Transarterial Radioembolization. J Vasc Interv Radiol. 2020;31(10):1627–1635. doi: 10.1016/j.jvir.2020.05.019.
    1. United States Food and Drug Administration. FDA approves new treatment for certain digestive tract cancers [internet]. FDA FDA; 2018 [cited 2021 Sep 8]. Available from:
    1. Levillain H, Bagni O, Deroose CM, Dieudonné A, Gnesin S, Grosser OS, et al. International recommendations for personalised selective internal radiation therapy of primary and metastatic liver diseases with yttrium-90 resin microspheres. Eur J Nucl Med Mol Imaging. 2021;48(5):1570–1584. doi: 10.1007/s00259-020-05163-5.

Source: PubMed

3
Subskrybuj