S-Ketamine's Effect Changes the Cortical Electrophysiological Activity Related to Semantic Affective Dimension of Pain: A Placebo- Controlled Study in Healthy Male Individuals

André Schwertner, Maxciel Zortea, Felipe Vasconcelos Torres, Leticia Ramalho, Camila Fernanda da Silveira Alves, Guilherme Lannig, Iraci L S Torres, Felipe Fregni, Gustavo Gauer, Wolnei Caumo, André Schwertner, Maxciel Zortea, Felipe Vasconcelos Torres, Leticia Ramalho, Camila Fernanda da Silveira Alves, Guilherme Lannig, Iraci L S Torres, Felipe Fregni, Gustavo Gauer, Wolnei Caumo

Abstract

Background: Previous studies using the electroencephalogram (EEG) technique pointed out that ketamine decreases the amplitude of cortical electrophysiological signal during cognitive tasks, although its effects on the perception and emotional-valence judgment of stimuli are still unknown.

Objective: We evaluated the effect of S-ketamine on affective dimension of pain using EEG and behavioral measures. The hypothesis was that S-ketamine would be more effective than placebo, both within and between groups, to attenuate the EEG signal elicited by target and non-target words.

Methods: This double-blind parallel placebo-controlled study enrolled 24 healthy male volunteers between 19 and 40 years old. They were randomized to receive intravenous S-ketamine (n = 12) at a plasmatic concentration of 60 ng/ml or placebo (n = 12). Participants completed a computerized oddball paradigm containing written words semantically related to pain (targets), and non-pain related words (standard). The volunteers had to classify the words either as "positive," "negative" or "neutral" (emotional valence judgment). The paradigm consisted in 6 blocks of 50 words each with a fixed 4:1 target/non-target rate presented in a single run. Infusion started during the interval between the 3rd and 4th blocks, for both groups. EEG signal was registered using four channels (Fz, Pz, Pz, and Oz, according to the 10-20 EEG system) with a linked-earlobe reference. The area under the curve (AUC) of the N200 (interval of 100-200 ms) and P300 (300-500 ms) components of event-related potentials (ERPs) was measured for each channel.

Results: S-ketamine produced substantial difference (delta) in the AUC of grand average ERP components N200 (P = 0.05) and P300 (P = 0.02) at Pz during infusion period when compared to placebo infusion for both targets and non-targets. S-ketamine was also associated with a decrease in the amount of pain-related words judged as negative from before to after infusion [mean = 0.83 (SD = 0.09) vs. mean = 0.73 (SD = 0.11), respectively; P = 0.04].

Conclusion: Our findings suggest that S-ketamine actively changed the semantic processing of written words. There was an increase in electrophysiological response for pain-related stimuli and a decrease for standard stimuli, as evidenced by the increased delta of AUCs. Behaviorally, S-ketamine seems to have produced an emotional and discrimination blunting effect for pain-related words.

Clinical trial registration: www.ClinicalTrials.gov, identifier NCT03915938.

Keywords: ERPs; P300; ketamine; oddball; pain.

Copyright © 2019 Schwertner, Zortea, Torres, Ramalho, Alves, Lannig, Torres, Fregni, Gauer and Caumo.

Figures

FIGURE 1
FIGURE 1
Procedures. (A) Representation of subject positioning, monitoring and generation of ERPs. Twenty-four healthy men were randomized to receive an infusion of S-ketamine or placebo. (B) Sequence of procedures. All participants completed six runs, grouped into three blocks. A block was made up of a single run consisting in 50 words (10 target, 40 neutral) interrupted by a 30-seconds resting trace. After completion of the first 3 blocks, infusion was initiated (S-ketamine or placebo), and participants rested for 3 min. Following the third block, euphoria and sedation ratings were scored in each block intervals (∗). (C) Semantic oddball paradigm. Each trial began with a fixation cross in the center of a black screen, after which the stimuli were presented for 1000 ms each. Participants were instructed to classify each presented word as “positive,” “negative,” or “neutral” according to their subjective interpretation. The participants pressed the “left arrow” key if the word was negative, “up arrow” if neutral or “right arrow” if positive. Interstimulus interval was randomized in 1500 ± 500 ms during which the fixation cross appeared on the screen.
FIGURE 2
FIGURE 2
(A) Grand averaged P300 ERP waveforms of target and non-target words during placebo and S-ketamine infusions at Pz, Fz, Cz, and Oz. (B) Grand averaged difference between pre and post infusion periods (delta) in group S-ketamine (blue) and placebo (black); Gray-shaded areas denote statistically significant differences. (C) Comparison of delta AUCs between groups placebo and S-ketamine. Asterisk indicates statistical significance (∗p < 0.05).

References

    1. Abel K. M. A., Matthew P. G., Hemsley D. R., Geyer M. A. (2003). Low dose ketamine increases prepulse inhibition in healthy men. Neuropharmacology 44 729–737. 10.1016/s0028-3908(03)00073-x
    1. Adler C. M., Goldberg T. E., Malhotra A. K., Pickar D., Breier A. (1998). Effects of ketamine on thought disorder, working memory, and semantic memory in healthy volunteers. Biol. Psychiatry 43 811–816. 10.1016/s0006-3223(97)00556-8
    1. Ahn K. H., Youn T., Cho S. S., Ha T. H., Ha K. S., Kim M. S., et al. (2003). N-methyl-D-aspartate receptor in working memory impairments in schizophrenia: event-related potential study of late stage of working memory process. Prog. Neuropsychopharmacol. Biol. Psychiatry 27 993–999. 10.1016/S0278-5846(03)00159-3
    1. Aleksandrova L. R., Phillips A. G., Wang Y. T. (2017). Antidepressant effects of ketamine and the roles of AMPA glutamate receptors and other mechanisms beyond NMDA receptor antagonism. J. Psychiatry Neurosci. 42 222–229. 10.1503/jpn.160175
    1. Andrade C. (2017). Ketamine for depression, 1: clinical summary of issues related to efficacy, adverse effects, and mechanism of action. J. Clin. Psychiatry 78 e415–e419. 10.4088/JCP.17f11567
    1. Bandt C., Weymar M., Samaga D., Hamm A. O. (2009). A simple classification tool for single-trial analysis of ERP components. Psychophysiology 46 747–757. 10.1111/j.1469-8986.2009.00816.x
    1. Beck D. A., Koenig H. G. (1996). Minor depression: a review of the literature. Int. J. Psychiatry Med. 26 177–209. 10.2190/AC30-P715-Y4TD-J7D2
    1. Bergman S. A. (1999). Ketamine: review of its pharmacology and its use in pediatric anesthesia. Anesth. Prog. 46 10–20.
    1. Binder J. R., Desai R. H. (2011). The neurobiology of semantic memory. Trends Cogn. Sci. 15 527–536. 10.1016/j.tics.2011.10.001
    1. Carretie L., Hinojosa J. A., Martin-Loeches M., Mercado F., Tapia M. (2004). Automatic attention to emotional stimuli: neural correlates. Hum. Brain Mapp. 22 290–299. 10.1002/hbm.20037
    1. Chen X., Shu S., Bayliss D. A. (2009). HCN1 channel subunits are a molecular substrate for hypnotic actions of ketamine. J. Neurosci. 29 600–609. 10.1523/JNEUROSCI.3481-08.2009
    1. Corssen G., Domino E. F. (1966). Dissociative anesthesia: further pharmacologic studies and first clinical experience with the phencyclidine derivative CI-581. Anesth. Analg. 45 29–40.
    1. de la Salle S., Choueiry J., Shah D., Bowers H., McIntosh J., Ilivitsky V., et al. (2016). Effects of ketamine on resting-state EEG activity and their relationship to perceptual/dissociative symptoms in healthy humans. Front. Pharmacol. 7:348. 10.3389/fphar.2016.00348
    1. Deakin J. F., Lees J., McKie S., Hallak J. E., Williams S. R., Dursun S. M. (2008). Glutamate and the neural basis of the subjective effects of ketamine: a pharmaco-magnetic resonance imaging study. Arch. Gen. Psychiatry 65 154–164. 10.1001/archgenpsychiatry.2007.37
    1. Dillmann J., Miltner W. H., Weiss T. (2000). The influence of semantic priming on event-related potentials to painful laser-heat stimuli in humans. Neurosci. Lett. 284 53–56. 10.1016/s0304-3940(00)00957-5
    1. Domino E. F. (2010). Taming the ketamine tiger. 1965. Anesthesiology 113 678–684. 10.1097/ALN.0b013e3181ed09a2
    1. Estes Z., Verges M. (2008). Freeze or flee? Negative stimuli elicit selective responding. Cognition 108 557–565. 10.1016/j.cognition.2008.03.003
    1. Feng C., Li W., Tian T., Luo Y., Gu R., Zhou C., et al. (2014). Arousal modulates valence effects on both early and late stages of affective picture processing in a passive viewing task. Soc. Neurosci. 9 364–377. 10.1080/17470919.2014.896827
    1. Friston K., Brown H. R., Siemerkus J., Stephan K. E. (2016). The dysconnection hypothesis (2016). Schizophr. Res. 176 83–94. 10.1016/j.schres.2016.07.014
    1. Gelman A., Hill J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge: Cambridge University Press.
    1. Gratton G., Coles M. G., Donchin E. (1983). A new method for off-line removal of ocular artifact. Electroencephalogr. Clin. Neurophysiol. 55 468–484. 10.1016/0013-4694(83)90135-9
    1. Gunduz-Bruce H., Reinhart R. M., Roach B. J., Gueorguieva R., Oliver S., D’Souza D. C., et al. (2012). Glutamatergic modulation of auditory information processing in the human brain. Biol. Psychiatry 71 969–977. 10.1016/j.biopsych.2011.09.031
    1. Gupta A., Devi L. A., Gomes I. (2011). Potentiation of mu-opioid receptor-mediated signaling by ketamine. J. Neurochem. 119 294–302. 10.1111/j.1471-4159.2011.07361.x
    1. Holcomb H. H., Lahti A. C., Medoff D. R., Weiler M., Tamminga C. A. (2001). Sequential regional cerebral blood flow brain scans using PET with H2(15)O demonstrate ketamine actions in CNS dynamically. Neuropsychopharmacology 25 165–172. 10.1016/S0893-133X(01)00229-9
    1. Honda M., Deiber M. P., Ibanez V., Pascual-Leone A., Zhuang P., Hallett M. (1998). Dynamic cortical involvement in implicit and explicit motor sequence learning. A PET study. Brain 121(Pt 11), 2159–2173. 10.1093/brain/121.11.2159
    1. Hopstaken J. F., van der Linden D., Bakker A. B., Kompier M. A., Leung Y. K. (2016). Shifts in attention during mental fatigue: evidence from subjective, behavioral, physiological, and eye-tracking data. J. Exp. Psychol. Hum. Percept. Perform 42 878–889. 10.1037/xhp0000189
    1. Imbir K. K., Spustek T., Zygierewicz J. (2016). Effects of valence and origin of emotions in word processing evidenced by event related potential correlates in a lexical decision task. Front. Psychol. 7:271. 10.3389/fpsyg.2016.00271
    1. Jentzsch I., Sommer W. (2001). Sequence-sensitive subcomponents of P300: topographical analyses and dipole source localization. Psychophysiology 38 607–621. 10.1017/s0048577201000531
    1. Jeon Y. W., Polich J. (2003). Meta-analysis of P300 and schizophrenia: patients, paradigms, and practical implications. Psychophysiology 40 684–701. 10.1111/1469-8986.00070
    1. Jongsma M. L., van Rijn C. M., Gerrits N. J., Eichele T., Steenbergen B., Maes J. H., et al. (2013). The learning-oddball paradigm: data of 24 separate individuals illustrate its potential usefulness as a new clinical tool. Clin. Neurophysiol. 124 514–521. 10.1016/j.clinph.2012.09.009
    1. Kadriu B., Musazzi L., Henter I. D., Graves M., Popoli M., Zarate C. A., Jr. (2019). Glutamatergic neurotransmission: pathway to developing novel rapid-acting antidepressant treatments. Int. J. Neuropsychopharmacol. 22 119–135. 10.1093/ijnp/pyy094
    1. Kaipper M. B., Chachamovich E., Hidalgo M. P., Torres I. L., Caumo W. (2010). Evaluation of the structure of Brazilian State-Trait Anxiety Inventory using a Rasch psychometric approach. J. Psychosom. Res. 68 223–233. 10.1016/j.jpsychores.2009.09.013
    1. Kapur S., Seeman P. (2002). NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D(2) and serotonin 5-HT(2)receptors-implications for models of schizophrenia. Mol. Psychiatry 7 837–844. 10.1038/sj.mp.4001093
    1. Knott V. J., Millar A. M., McIntosh J. F., Shah D. K., Fisher D. J., Blais C. M., et al. (2011). Separate and combined effects of low dose ketamine and nicotine on behavioural and neural correlates of sustained attention. Biol. Psychol. 88 83–93. 10.1016/j.biopsycho.2011.06.012
    1. Koychev I. D., William J. F., El-Deredy W., Haenschel C. (2016). Effects of acute ketamine infusion on visual working memory: event-related potentials. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2 253–262. 10.1016/j.bpsc.2016.09.008
    1. Krystal J. H., D’Souza D. C., Mathalon D., Perry E., Belger A., Hoffman R. (2003). NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology 169 215–233. 10.1007/s00213-003-1582-z
    1. Krystal J. H., Karper L. P., Seibyl J. P., Freeman G. K., Delaney R., Bremner J. D., et al. (1994). Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 51 199–214.
    1. Lang P. J., Greenwald M. K., Bradley M. M., Hamm A. O. (1993). Looking at pictures: affective, facial, visceral, and behavioral reactions. Psychophysiology 30 261–273. 10.1111/j.1469-8986.1993.tb03352.x
    1. Mathalon D. H., Ahn K. H., Perry E. B., Jr., Cho H. S., Roach B. J., Blais R. K., et al. (2014). Effects of nicotine on the neurophysiological and behavioral effects of ketamine in humans. Front. Psychiatry 5:3. 10.3389/fpsyt.2014.00003
    1. Mathew S. J., Shah A., Lapidus K., Clark C., Jarun N., Ostermeyer B., et al. (2012). Ketamine for treatment-resistant unipolar depression: current evidence. CNS Drugs 26 189–204.
    1. Michelet D., Brasher C., Horlin A. L., Bellon M., Julien-Marsollier F., Vacher T., et al. (2018). Ketamine for chronic non-cancer pain: a meta-analysis and trial sequential analysis of randomized controlled trials. Eur. J. Pain 22 632–646. 10.1002/ejp.1153
    1. Musso F., Brinkmeyer J., Ecker D., London M. K., Thieme G., Warbrick T., et al. (2011). Ketamine effects on brain function–simultaneous fMRI/EEG during a visual oddball task. Neuroimage 58 508–525. 10.1016/j.neuroimage.2011.06.045
    1. Niesters M., Khalili-Mahani N., Martini C., Aarts L., van Gerven J., van Buchem M. A., et al. (2012). Effect of subanesthetic ketamine on intrinsic functional brain connectivity: a placebo-controlled functional magnetic resonance imaging study in healthy male volunteers. Anesthesiology 117 868–877. 10.1097/ALN.0b013e31826a0db3
    1. Noppers I., Niesters M., Aarts L., Smith T., Sarton E., Dahan A. (2010). Ketamine for the treatment of chronic non-cancer pain. Expert. Opin. Pharmacother. 11 2417–2429. 10.1517/14656566.2010.515978
    1. Oertel B. G., Kettner M., Scholich K., Renne C., Roskam B., Geisslinger G., et al. (2009). A common human micro-opioid receptor genetic variant diminishes the receptor signaling efficacy in brain regions processing the sensory information of pain. J. Biol. Chem. 284 6530–6535. 10.1074/jbc.M807030200
    1. Ohman A., Flykt A., Esteves F. (2001). Emotion drives attention: detecting the snake in the grass. J. Exp. Psychol. Gen. 130 466–478. 10.1037//0096-3445.130.3.466
    1. Oranje B., Gispen-de Wied C. C., Westenberg H. G., Kemner C., Verbaten M. N., Kahn R. S. (2009). Haloperidol counteracts the ketamine-induced disruption of processing negativity, but not that of the P300 amplitude. Int. J. Neuropsychopharmacol. 12 823–832. 10.1017/S1461145708009814
    1. Pimenta C. A., Teixeiro M. J. (1996). [Proposal to adapt the McGill Pain Questionnaire into Portuguese]. Rev. Esc Enferm. USP 30 473–483.
    1. Rogers R., Wise R. G., Painter D. J., Longe S. E., Tracey I. (2004). An investigation to dissociate the analgesic and anesthetic properties of ketamine using functional magnetic resonance imaging. Anesthesiology 100 292–301. 10.1097/00000542-200402000-00018
    1. Rosch R. E., Auksztulewicz R., Leung P. D., Friston K. J., Baldeweg T. (2019). Selective prefrontal disinhibition in a roving auditory oddball paradigm under N-Methyl-D-aspartate receptor blockade. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 4 140–150. 10.1016/j.bpsc.2018.07.003
    1. Russeler J., Probst S., Johannes S., Munte T. (2003). Recognition memory for high- and low-frequency words in adult normal and dyslexic readers: an event-related brain potential study. J. Clin. Exp. Neuropsychol. 25 815–829. 10.1076/jcen.25.6.815.16469
    1. Scheidegger M., Henning A., Walter M., Boeker H., Weigand A., Seifritz E., et al. (2016). Effects of ketamine on cognition-emotion interaction in the brain. Neuroimage 124(Pt A), 8–15. 10.1016/j.neuroimage.2015.08.070
    1. Schimmack U., Derryberry D. (2005). Attentional interference effects of emotional pictures: threat, negativity, or arousal? Emotion 5 55–66. 10.1037/1528-3542.5.1.55
    1. Schlaghecken F., Eimer M. (2000). A central-peripheral asymmetry in masked priming. Percept. Psychophys. 62 1367–1382. 10.3758/bf03212139
    1. Seeman P., Guan H. C. (2008). Phencyclidine and glutamate agonist LY379268 stimulate dopamine D2High receptors: D2 basis for schizophrenia. Synapse 62 819–828. 10.1002/syn.20561
    1. Sigtermans M., Dahan A., Mooren R., Bauer M., Kest B., Sarton E., et al. (2009). S(+)-ketamine effect on experimental pain and cardiac output: a population pharmacokinetic-pharmacodynamic modeling study in healthy volunteers. Anesthesiology 111 892–903. 10.1097/ALN.0b013e3181b437b1
    1. Sprenger T., Valet M., Woltmann R., Zimmer C., Freynhagen R., Kochs E. F., et al. (2006). Imaging pain modulation by subanesthetic S-(+)-ketamine. Anesth. Analg. 103 729–737. 10.1213/01.ane.0000231635.14872.40
    1. Stancak A., Fallon N. (2013). Emotional modulation of experimental pain: a source imaging study of laser evoked potentials. Front. Hum. Neurosci. 7:552. 10.3389/fnhum.2013.00552
    1. Stefani L. C., Torres I. L., de Souza I. C., Rozisky J. R., Fregni F., Caumo W. (2012). BDNF as an effect modifier for gender effects on pain thresholds in healthy subjects. Neurosci. Lett. 514 62–66. 10.1016/j.neulet.2012.02.057
    1. Stein L. G., de Azevedo Gomes C. F. (2009). Normas Brasileiras para Listas de Palavras Associadas: Associação Semântica, Concretude, Frequência e Emocionalidade. Psicologia Teoria e Pesquisa 25 537–546. 10.1590/s0102-37722009000400009
    1. Vogt J., De Houwer J., Koster E. H., Van Damme S., Crombez G. (2008). Allocation of spatial attention to emotional stimuli depends upon arousal and not valence. Emotion 8 880–885. 10.1037/a0013981
    1. Wang D. S., Penna A., Orser B. A. (2017). Ketamine increases the function of gamma-aminobutyric acid type a receptors in hippocampal and cortical neurons. Anesthesiology 126 666–677. 10.1097/ALN.0000000000001483
    1. Wang Y. P., Gorenstein C. (2013). Psychometric properties of the Beck Depression Inventory-II: a comprehensive review. Rev. Bras. Psiquiatr. 35 416–431. 10.1590/1516-4446-2012-1048
    1. Warmenhoven F., van Rijswijk E., Engels Y., Kan C., Prins J., van Weel C., et al. (2012). The Beck Depression Inventory (BDI-II) and a single screening question as screening tools for depressive disorder in Dutch advanced cancer patients. Support Care Cancer 20 319–324. 10.1007/s00520-010-1082-8
    1. Watson T. D., Petrakis I. L., Edgecombe J., Perrino A., Krystal J. H., Mathalon D. H. (2009). Modulation of the cortical processing of novel and target stimuli by drugs affecting glutamate and GABA neurotransmission. Int. J. Neuropsychopharmacol. 12 357–370. 10.1017/S1461145708009334
    1. Zarate C. A., Jr., Brutsche N. E., Ibrahim L., Franco-Chaves J., Diazgranados N., Cravchik A., et al. (2012). Replication of ketamine’s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol. Psychiatry 71 939–946. 10.1016/j.biopsych.2011.12.010
    1. Zarate C. A., Jr., Singh J. B., Carlson P. J., Brutsche N. E., Ameli R., Luckenbaugh D. A., et al. (2006). A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry 63 856–864. 10.1001/archpsyc.63.8.856

Source: PubMed

3
Subskrybuj