Comparative microbial analysis of paired amniotic fluid and cord blood from pregnancies complicated by preterm birth and early-onset neonatal sepsis

Xiaowei Wang, Catalin S Buhimschi, Stephanie Temoin, Vineet Bhandari, Yiping W Han, Irina A Buhimschi, Xiaowei Wang, Catalin S Buhimschi, Stephanie Temoin, Vineet Bhandari, Yiping W Han, Irina A Buhimschi

Abstract

Background: 16S rRNA-based genomic analyses have revolutionized our understanding of infectious diseases. Many cases which were recognized as "idiopathic" are now known to have an infectious etiology. Here, we present a proof-of-concept study to examine the microbial link between intra-amniotic infection (IAI) and early-onset neonatal sepsis (EONS).

Results: Using culture independent methods, we analyzed paired amniotic fluid (AF) and cord blood (CB) samples from 36 singleton pregnancies complicated by preterm birth (PTB), IAI, and/or EONS. PTB cases were grouped as 1) Group 1- neonatal blood culture-positive EONS (n=6). 2) Group 2- neonatal blood culture-negative presumed EONS with positive IAI (n=16). 3) Group 3- neonatal blood culture-negative presumed EONS with no IAI (n=7); 4) Group 4- no EONS or IAI (n=7). In addition, samples from term healthy deliveries (n=8) served as technical controls. A total of 31 species (15 non-redundant) were identified in AF, of which only 1/3 were cultivated. Significantly fewer microorganisms were detected in CB, with a total of 18 species (7 non-redundant) identified, of which only 2 (Escherichia coli, Streptococcus agalactiae) were cultivated. Of those, Bergeyella, Fusobacterium nucleatum, and Sneathia sanguinegens had not been detected in EONS before. The novel species identified in AF by PCR include Peptoniphilus harei and Lachnospiraceae sp. The majority (72%) of CB species were also detected in the matching AF, with E. coli and F. nucleatum as the most prevalent. The 16S rRNA sequences of paired AF and CB were 99.9-100% identical, while no identical sequences were found between different pregnancies.

Conclusions: Previously unrecognized, uncultivated or difficult-to-cultivate species are implicated in EONS. Microbial species in paired AF and CB likely share the same infectious origin. Given its prevalence in EONS, F. nucleatum should be placed on the same importance scale as E. coli.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Proportion of cases found either…
Figure 1. Proportion of cases found either sterile (open portion of the bar), mono- or poly-microbial (shaded portions of the bars).
From left to right, the 4 compartments are: amniotic fluid (AF) and neonatal blood (NB) analyzed by culture, followed by AF and cord blood (CB) analyzed by the culture-independent methods of PCR and clone analysis.
Figure 2. Euler-Venn diagrams showing the number…
Figure 2. Euler-Venn diagrams showing the number of species shared among compartments of each case (co-occurrences).
Compartments of each case were analyzed by either the culture-dependent (A) or culture-independent methods (B). The size of each space (ellipse) is proportional to the number of species in each compartment. 4-way intersecting diagrams of the 4 compartments showing either non-null spaces that are proportional to the number of species (Euler-like diagram) (C) or the complete non-scaled design which includes spaces with no overlapping species (Venn diagram) (D).

References

    1. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, et al. (2009) The human microbiome project. Nature 449: 804–810.
    1. Committee on Metagenomics: Challenges and Functional Applications (2007) The new science of metagenomics: revealing the secrets of our microbial planets. National Research Council of the National Academies. The National Academies Press. Washington. D.C.
    1. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697–703.
    1. Nelson KE, Weinstock GM, Highlander SK, Worley KC, Creasy HH, et al. (2010) Human Microbiome Jumpstart Reference Strains Consortium, a catalog of reference genomes from the human microbiome. Science 328: 994–999.
    1. Maidak BL, Cole JR, Lilburn TG, Parker CJ, Saxman PR, et al. (2001) The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29: 173–174.
    1. Han YW, Ikegami A, Bissada NF, Herbst M, Redline RW, et al. (2006) Transmission of an uncultivated Bergeyella strain from the oral cavity to amniotic fluid in a case of preterm birth. J Clin Microbiol 44: 1475–1483.
    1. Han YW, Shen T, Chung P, Buhimschi IA, Buhimschi CS (2009) Uncultivated bacteria as etiologic agents of intra-amniotic inflammation leading to preterm birth. J Clin Microbiol 47: 38–47.
    1. Stoll BJ, Hansen NI, Sánchez PJ, Faix RG, Poindexter BB, et al. (2011) Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Early onset neonatal sepsis: the burden of group B Streptococcal and E. coli disease continues. Pediatrics 127: 817–826.
    1. Goldenberg RL, Andrews WW, Goepfert AR, Faye-Petersen O, Cliver SP, et al. (2008) The Alabama Preterm Birth Study: umbilical cord blood Ureaplasma urealyticum and Mycoplasma hominis cultures in very preterm newborn infants. Am J Obstet Gynecol 198: 43e1–5.
    1. Buhimschi IA, Buhimschi CS (2010) The role of proteomics in the diagnosis of chorioamnionitis and early-onset neonatal sepsis. Clin Perinatol 37: 355–374.
    1. Buhimschi IA, Buhimschi CS (2012) Proteomics/diagnosis of chorioamnionitis and of relationships with the fetal exposome. Semin Fetal Neonatal Med 17: 36–45.
    1. Buhimschi CS, Dulay AT, Abdel-Razeq S, Zhao G, Lee S, et al. (2009) Fetal inflammatory response in women with proteomic biomarkers characteristic of intra-amniotic inflammation and preterm birth. BJOG 116: 257–267.
    1. Pettker CM, Buhimschi IA, Magloire LK, Sfakianaki AK, Hamar BD, et al. (2007) Value of placental microbial evaluation in diagnosing intra-amniotic infection. Obstet Gynecol 109: 739–749.
    1. Buhimschi CS, Bhandari V, Dulay AT, Bhandari V, Dulay AT, et al. (2011) Proteomics mapping of cord blood identifies haptoglobin “switch-on” pattern as biomarker of early-onset neonatal sepsis in preterm newborns. PLoS ONE 6: e26111.
    1. Manges AR, Labbe A, Loo VG, Atherton JK, Behr MA, et al. (2010) Comparative metagenomic study of alterations to the intestinal microbiota and risk of nosocomial Clostridum difficile-associated disease. J Infect Dis 202: 1877–1884.
    1. Ordovas JM, Mooser V (2006) Metagenomics: the role of the microbiome in cardiovascular diseases. Curr Opin Lipidol 17: 157–161.
    1. Mantovani E, Costa IP, Gauditano G, Bonoldi VL, Higuchi ML, et al. (2007) Description of Lyme disease-like syndrome in Brazil. Is it a new tick borne disease or Lyme disease variation? Braz J Med Biol Res 40: 443–456.
    1. Hebb JK, Cohen CR, Astete SG, Bukusi EA, Totten PA (2004) Detection of novel organisms associated with salpingitis, by use of 16S rDNA polymerase chain reaction. J Infect Dis 190: 2109–2120.
    1. American College of Obstetrics and Gynecology (2012) Practice Bulletin. Management of Preterm Labor. Number 127, June 2012.
    1. American College of Obstetrics and Gynecology (2007) Practice Bulletin. Premature Rupture of Membranes. Number 80, April 2007.
    1. American College of Obstetrics and Gynecology (2011) Practice Bulletin. Use of Prophylactic Antibiotics in Labor and Delivery. Number 120, June 2011.
    1. American College of Obstetrics and Gynecology (2011) Committee Opinion. Prevention of Early-Onset Group B Streptococcal Disease in Newborns. Number 485, April 2011.
    1. Wynn JL, Levy O (2010) Role of innate host defenses in susceptibility to early-onset neonatal sepsis. Clin Perinatol 37: 307–337.
    1. Smulian JC, Bhandari V, Campbell WA, Rodis JF, Vintzileos AM (1997) Value of umbilical artery and vein levels of interleukin-6 and soluble intracellular adhesion molecule-1 as predictors of neonatal hematologic indices and suspected early sepsis. J Matern Fetal Med. 6: 254–259.
    1. Gonzalez BE, Mercado CK, Johnson L, Brodsky NL, Bhandari V (2003) Early markers of late-onset sepsis in premature neonates: clinical, hematological and cytokine profile. J Perinat Med. 31: 60–68.
    1. Buhimschi CS, Buhimschi IA, Abdel-Razeq S, Rosenberg VA, Thung SF, et al. (2007) Proteomic biomarkers of intra-amniotic inflammation: relationship with funisitis and early-onset sepsis in the premature neonate. Pediatr Res 61: 318–324.
    1. Buhimschi CS, Bhandari V, Hamar BD, Bahtiyar MO, Zhao G, et al. (2007) Proteomic profiling of the amniotic fluid to detect inflammation, infection, and neonatal sepsis. PLoS Med 4: e18.
    1. Edwards RK, Clark P, Locksmith Gregory J, Duff P (2001) Performance characteristics of putative tests for subclinical chorioamnionitis. Infect Dis Obstet Gynecol 9: 209–214.
    1. Garry D, Figueroa R, Aguero-Rosenfeld M, Martinez E, Visintainer P, et al. (1996) A comparison of rapid amniotic fluid markers in the prediction of microbial invasion of the uterine cavity and preterm delivery. Am J Obstet Gynecol. 175: 1336–1341.
    1. Abdel-Razeq SS, Buhimschi IA, Bahtiyar MO, Rosenberg VA, Dulay AT, et al. (2010) Interpretation of amniotic fluid white blood cell count in “bloody tap” amniocenteses in women with symptoms of preterm labor. Obstet Gynecol 116: 344–354.
    1. Horz HP, Vianna ME, Gomes BP, Conrads G (2005) Evaluation of Universal Probes and Primer Sets for Assessing Total Bacterial Load in Clinical Samples: General Implications and Practical Use in Endodontic Antimicrobial Therapy. J Clin Microbiol 43: 5332–5337.
    1. Vergin KL, Urbach E, Stein JL, DeLong EF, Lanoil BD, et al. (1998) Screening of a fosmid library of marine environmental genomic DNA fragments reveals four clones related to members of the order Planctomycetales. App Environ Microbiol 64: 3075–3078.
    1. Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Method 55: 541–555.
    1. Kumar PS, Griffen AL, Barton JA, Paster BJ, Moeschberger ML, et al. (2003) New bacterial species associated with chronic periodontitis. J Dent Res 82: 338–344.
    1. Greenhood GP, Highsmith AK, Allen JR, Causey WA, West CM, et al. (1981) Klebsiella pneumoniae pseudobacteremia due to cross-contamination of a radiometric blood culture analyzer. Infect Control 2: 460–465.
    1. Struthers S, Underhill H, Albersheim S, Greenberg D, Dobson S (2002) A comparison of two versus one blood culture in the diagnosis and treatment of coagulase-negative Staphylococcus in the neonatal intensive care unit. J Perinatol 22: 547–549.
    1. Veloo AC, Welling GW, Degener JE (2011) Mistaken identity of Peptoniphilus asaccharolyticus . J Clin Microbiol 49: 1189.
    1. Han YW, Fardini Y, Chen C, Iacampo KG, Peraino VA, et al. (2010) Term stillbirth caused by oral Fusobacterium nucleatum . Obstet Gynecol 115: 442–445.
    1. Chaim W, Mazor M (1992) Intraamniotic infection with fusobacteria. Arch Gynecol Obstet. 251: 1–7.
    1. Han YW, Shi W, Huang GT, Haake SK, Park NH, et al. (2000) Interactions between periodontal bacteria and human oral epithelial cells: Fusobacterium nucleatum adheres to and invades epithelial cells. Infect Immun 68: 3140–3146.
    1. Han YW, Redline RW, Li M, Yin L, Hill GB, et al. (2004) Fusobacterium nucleatum induces premature and term stillbirths in pregnant mice: implication of oral bacteria in preterm birth. Infect Immun 72: 2272–2279.
    1. Liu H, Redline RW, Han YW (2007) Fusobacterium nucleatum induces fetal death in mice via stimulation of TLR4-mediated placental inflammatory response. J Immunol 179: 2501–2508.
    1. Han YW, Ikegami A, Rajanna C, Kawsar HI, Zhou Y, et al. (2005) Identification and characterization of a novel adhesin unique to oral fusobacteria. J Bacteriol 187: 5330–5340.
    1. Ikegami A, Chung P, Han YW (2009) Complementation of the fadA mutation in Fusobacterium nucleatum demonstrates that the surface-exposed adhesin promotes cellular invasion and placental colonization. Infect Immun 77: 3075–3079.
    1. Nithianantham S, Xu M, Yamada M, Ikegami A, Shoham M, et al. (2009) Crystal structure of FadA adhesin from Fusobacterium nucleatum reveals a novel oligomerization motif, the leucine chain. J Biol Chem 284: 3865–3872.
    1. Fardini Y, Wang X, Témoin S, Nithianantham S, Lee D, et al. (2011) Fusobacterium nucleatum adhesin FadA binds vascular endothelial cadherin and alters endothelial integrity. Mol Microbiol 82: 1468–1480.
    1. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, et al. (2010) The human oral microbiome. J Bacteriol 192: 5002–5017.
    1. Fardini Y, Chung P, Dumm R, Joshi N, Han YW (2010) Transmission of diverse oral bacteria to murine placenta: evidence for the oral microbiome as a potential source of intrauterine infection. Infect Immun 78: 1789–1796.
    1. Figueroa-Damián R, Arredondo-García JL, Mancilla-Ramírez J (1999) Amniotic fluid interleukin-6 and the risk of early-onset sepsis among preterm infants. Arch Med Res 30: 198–202.
    1. Bobitt JR, Ledger WJ (1978) Amniotic fluid analysis. Its role in maternal neonatal infection. Obstet Gynecol 51: 56–62.
    1. Barron EJ, Jorgensen JH, Landry ML, Pfaller MA (2007) Bacteriology. P 974. In Murray PR (ed). Manual of clinical Bacteriology, 9th ed, ASM Press, Washington, DC.
    1. El Kebir D, József L, Pan W, Wang L, Filep JG (2009) Bacterial DNA activates endothelial cells and promotes neutrophil adherence through TLR9 signaling. J Immunol 182: 4386–4694.

Source: PubMed

3
Subskrybuj