The multivariate physical activity signature associated with metabolic health in children

Eivind Aadland, Olav Martin Kvalheim, Sigmund Alfred Anderssen, Geir Kåre Resaland, Lars Bo Andersen, Eivind Aadland, Olav Martin Kvalheim, Sigmund Alfred Anderssen, Geir Kåre Resaland, Lars Bo Andersen

Abstract

Background: Physical activity is a cornerstone for promoting good metabolic health in children, but it is heavily debated which intensities (including sedentary time) are most influential. A fundamental limitation to current evidence for this relationship is the reliance on analytic approaches that cannot handle collinear variables. The aim of the present study was to determine the physical activity signature related to metabolic health in children, by investigating the association pattern for the whole spectrum of physical activity intensities using multivariate pattern analysis.

Methods: We used a sample of 841 children (age 10.2 ± 0.3 years; BMI 18.0 ± 3.0; 50% boys) from the Active Smarter Kids study, who provided valid data on accelerometry (ActiGraph GT3X+) and several indices of metabolic health (aerobic fitness, abdominal fatness, insulin sensitivity, lipid metabolism, blood pressure) that were used to create a composite metabolic health score. We created 16 physical activity variables covering the whole intensity spectrum (from 0-100 to ≥ 8000 counts per minute) and used multivariate pattern analysis to analyze the data.

Results: Physical activity intensities in the vigorous range (5000-7000 counts per minute) were most strongly associated with metabolic health. Moderate intensity physical activity was weakly related to health, and sedentary time and light physical activity were not related to health.

Conclusions: This study is the first to determine the multivariate physical activity signature related to metabolic health in children across the whole intensity spectrum. This novel approach shows that vigorous physical activity is strongest related to metabolic health. We recommend future studies adapt a multivariate analytic approach to further develop the field of physical activity epidemiology.

Trial registration: The study was registered in Clinicaltrials.gov (www.clinicaltrials.gov) 7th of April 2014 with identification number NCT02132494 .

Keywords: Accelerometer; Childhood; Intensity; Metabolic risk factors; Multivariate pattern analysis; Pediatric.

Conflict of interest statement

Ethics approval and consent to participate

The South-East Regional Committee for Medical Research Ethics approved the study protocol (reference number 2013/1893). We obtained written informed consent from each child’s parents or legal guardian and from the responsible school authorities prior to all testing.

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
The multivariate PA signature associated with a composite metabolic health score in children displayed as a selectivity ratio (SR) plot. The PLS regression model includes 3 components, R2 = 13.3%, and is adjusted for age and sex. The SR for each variable is calculated as the ratio of explained to residual variance on the predictive (target projected) component. A negative bar implies that increased PA are associated with better metabolic health
Fig. 2
Fig. 2
The multivariate PA signature associated different risk factors in children displayed as a selectivity ratio (SR) plot. The models (PLS regression) is adjusted for age and sex. WC:height ratio = waist circumference to height ratio (3 components, R2 = 13.6%); TG = triglyceride (1 component, R2 = 2.2%); TC:HDL ratio = total to high-density lipoprotein cholesterol ratio (1 component, R2 = 3.1%); HOMA = homeostasis model assessment (2 components, R2 = 6.6%); Andersen test (3 components, R2 = 21.0%). The SR for each variable is calculated as the ratio of explained to residual variance on the predictive (target projected) component. A negative bar implies that increased PA are associated with better metabolic health
Fig. 3
Fig. 3
The unweighted target projection loadings for PA intensity intervals on the composite metabolic health vector in children. The figure shows the relative importance of the different PA intensity intervals for a given duration (minutes/day) of change. A negative bar implies that increased PA are associated with better metabolic health

References

    1. Janssen I, LeBlanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7 10.1186/1479-5868-7-40.
    1. Poitras VJ, Gray CE, Borghese MM, Carson V, Chaput JP, Janssen I, et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl Physiol Nutr Metab. 2016;41(6):S197–S239. doi: 10.1139/apnm-2015-0663.
    1. Ekelund U, Luan JA, Sherar LB, Esliger DW, Griew P, Cooper A, et al. Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. JAMA. 2012;307(7):704–712. doi: 10.1001/jama.2012.156.
    1. Andersen LB, Harro M, Sardinha LB, Froberg K, Ekelund U, Brage S, et al. Physical activity and clustered cardiovascular risk in children: a cross-sectional study (the European youth heart study) Lancet. 2006;368(9532):299–304. doi: 10.1016/S0140-6736(06)69075-2.
    1. Barnes J, Behrens TK, Benden ME, Biddle S, Bond D, Brassard P, et al. Letter to the editor: standardized use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol Nutr Metab. 2012;37(3):540–542. doi: 10.1139/h2012-024.
    1. Saunders TJ, Chaput JP, Tremblay MS. Sedentary behaviour as an emerging risk factor for cardiometabolic diseases in children and youth. Can J Diabetes. 2014;38(1):53–61. doi: 10.1016/j.jcjd.2013.08.266.
    1. Altenburg TM, Chinapaw MJM. Bouts and breaks in children’s sedentary time: currently used operational definitions and recommendations for future research. Prev Med. 2015;77:1–3. doi: 10.1016/j.ypmed.2015.04.019.
    1. van der Ploeg HP, Hillsdon M. Is sedentary behaviour just physical inactivity by another name? Int J Behav Nutr Phys Act. 2017;14:8. doi: 10.1186/s12966-017-0601-0.
    1. Cliff DP, Hesketh KD, Vella SA, Hinkley T, Tsiros MD, Ridgers ND, et al. Objectively measured sedentary behaviour and health and development in children and adolescents: systematic review and meta-analysis. Obes Rev. 2016;17(4):330–344. doi: 10.1111/obr.12371.
    1. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women a meta-analysis. JAMA. 2009;301(19):2024–2035. doi: 10.1001/jama.2009.681.
    1. Swain DP, Franklin BA. Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am J Cardiol. 2006;97(1):141–147. doi: 10.1016/j.amjcard.2005.07.130.
    1. Milanovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta-analysis of controlled trials. Sports Med. 2015;45(10):1469–1481. doi: 10.1007/s40279-015-0365-0.
    1. Gebel K, Ding D, Chey T, Stamatakis E, Brown WJ, Bauman AE. Effect of moderate to vigorous physical activity on all-cause mortality in middle-aged and older australians. JAMA Intern Med. 2015;175(6):970–977. doi: 10.1001/jamainternmed.2015.0541.
    1. Lavie CJ, Lee DC, Sui XM, Arena R, O'Keefe JH, Church TS, et al. Effects of running on chronic diseases and cardiovascular and all-cause mortality. Mayo Clin Proc. 2015;90(11):1541–1552. doi: 10.1016/j.mayocp.2015.08.001.
    1. Cain KL, Sallis JF, Conway TL, Van Dyck D, Calhoon L. Using accelerometers in youth physical activity studies: a review of methods. J Phys Act Health. 2013;10(3):437–450. doi: 10.1123/jpah.10.3.437.
    1. Saunders TJ, Gray CE, Poitras VJ, Chaput JP, Janssen I, Katzmarzyk PT, et al. Combinations of physical activity, sedentary behaviour and sleep: relationships with health indicators in school-aged children and youth. Appl Physiol Nutr Metab. 2016;41(6):S283–SS93. doi: 10.1139/apnm-2015-0626.
    1. Chastin SFM, Palarea-Albaladejo J, Dontje ML, Skelton DA. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: A novel compositional data analysis approach. PLoS One. 2015;10(10) 10.1371/journal.pone.0139984.
    1. Mekary RA, Willett WC, Hu FB, Ding EL. Isotemporal substitution paradigm for physical activity epidemiology and weight change. Am J Epidemiol. 2009;170(4):519–527. doi: 10.1093/aje/kwp163.
    1. Rajalahti T, Kvalheim OM. Multivariate data analysis in pharmaceutics: a tutorial review. Int J Pharm. 2011;417(1–2):280–290. doi: 10.1016/j.ijpharm.2011.02.019.
    1. Madsen R, Lundstedt T, Trygg J. Chemometrics in metabolomics - a review in human disease diagnosis. Anal Chim Acta. 2010;659(1–2):23–33. doi: 10.1016/j.aca.2009.11.042.
    1. Rajalahti T, Kroksveen AC, Arneberg R, Berven FS, Vedeler CA, Myhr K-M, et al. A multivariate approach to reveal biomarker signatures for disease classification: application to mass spectral profiles of cerebrospinal fluid from patients with multiple sclerosis. J Proteome Res. 2010;9(7):3608–3620. doi: 10.1021/pr100142m.
    1. Resaland GK, Moe VF, Aadland E, Steene-Johannessen J, Glosvik Ø, Andersen JR, et al. Active Smarter Kids (ASK): Rationale and design of a cluster-randomized controlled trial investigating the effects of daily physical activity on children's academic performance and risk factors for non-communicable diseases. BMC Public Health. 2015;15:709. doi: 10.1186/s12889-015-2049-y.
    1. Resaland GK, Aadland E, Moe VF, Aadland KN, Skrede T, Stavnsbo M, et al. Effects of physical activity on schoolchildren’s academic performance: the active smarter kids (ASK) cluster-randomized controlled trial. Prev Med. 2016;91:322–328. doi: 10.1016/j.ypmed.2016.09.005.
    1. John D, Freedson P. ActiGraph and Actical physical activity monitors: a peek under the hood. Med Sci Sports Exerc. 2012;44(1 Suppl 1):S86–SS9. doi: 10.1249/MSS.0b013e3182399f5e.
    1. Ridgers ND, Salmon J, Ridley K, O'Connell E, Arundell L, Timperio A. Agreement between activPAL and ActiGraph for assessing children's sedentary time. Int J Behav Nutr Phys Act. 2012;9:8. doi: 10.1186/1479-5868-9-15.
    1. Ridley K, Ridgers ND, Salmon J. Criterion validity of the activPAL (TM) and ActiGraph for assessing children's sitting and standing time in a school classroom setting. Int J Behav Nutr Phys Act. 2016;13:5. doi: 10.1186/s12966-016-0402-x.
    1. Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):1557–1565. doi: 10.1080/02640410802334196.
    1. Trost SG, Loprinzi PD, Moore R, Pfeiffer KA. Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc. 2011;43(7):1360–1368. doi: 10.1249/MSS.0b013e318206476e.
    1. Aadland E, Terum T, Mamen A, Andersen LB, Resaland GK. The Andersen aerobic fitness test: reliability and validity in 10-year-old children. PLoS One. 2014;9(10):e110492-e. doi: 10.1371/journal.pone.0110492.
    1. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ. 2000;320:1240–1243. doi: 10.1136/bmj.320.7244.1240.
    1. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502.
    1. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–419. doi: 10.1007/BF00280883.
    1. Wold S, Ruhe A, Wold H, Dunn WJ. The collinearity problem in linear-regression - the partial least-squares (PLS) approach to generalized inverses. SIAM J Sci Comput. 1984;5(3):735–743. doi: 10.1137/0905052.
    1. Kvalheim OM, Arneberg R, Grung B, Rajalahti T. Determination of optimum number of components in partial least squares regression from distributions of the root-mean-squared error obtained by Monte Carlo resampling. J Chemom. 2018; 10.1002/cem.2993.
    1. Kvalheim OM, Karstang TV. Interpretation of latent-variable regression-models. Chemometr Intell Lab Syst. 1989;7(1–2):39–51. doi: 10.1016/0169-7439(89)80110-8.
    1. Rajalahti T, Arneberg R, Kroksveen AC, Berle M, Myhr KM, Kvalheim OM. Discriminating variable test and selectivity ratio plot: quantitative tools for interpretation and variable (biomarker) selection in complex spectral or chromatographic profiles. Anal Chem. 2009;81(7):2581–2590. doi: 10.1021/ac802514y.
    1. Rajalahti T, Arneberg R, Berven FS, Myhr KM, Ulvik RJ, Kvalheim OM. Biomarker discovery in mass spectral profiles by means of selectivity ratio plot. Chemometr Intell Lab Syst. 2009;95(1):35–48. doi: 10.1016/j.chemolab.2008.08.004.
    1. Stamatakis E, Coombs N, Tiling K, Mattocks C, Cooper A, Hardy LL, et al. Sedentary time in late childhood and cardiometabolic risk in adolescence. Pediatrics. 2015;135(6):e1432–e1441. doi: 10.1542/peds.2014-3750.
    1. Chinapaw M, Klakk H, Moller NC, Andersen LB, Altenburg T, Wedderkopp N. Total volume versus bouts: prospective relationship of physical activity and sendetary time with cardiometabolic risk in children. Int J Obes. 2018; 10.1038/s41366-018-0063-8.
    1. Pearson N, Braithwaite RE, Biddle SJH, van Sluijs EMF, Atkin AJ. Associations between sedentary behaviour and physical activity in children and adolescents: a meta-analysis. Obes Rev. 2014;15(8):666–675. doi: 10.1111/obr.12188.
    1. Mansoubi M, Pearson N, Biddle SJH, Clemes S. The relationship between sedentary behaviour and physical activity in adults: a systematic review. Prev Med. 2014;69:28–35. doi: 10.1016/j.ypmed.2014.08.028.
    1. Garcia-Hermoso A, Saavedra JM, Ramirez-Velez R, Ekelund U, del Pozo-Cruz B. Reallocating sedentary time to moderate-to-vigorous physical activity but not to light-intensity physical activity is effective to reduce adiposity among youths: a systematic review and meta-analysis. Obes Rev. 2017;18(9):1088–1095. doi: 10.1111/obr.12552.
    1. Benatti FB, Ried-Larsen M. The effects of breaking up prolonged sitting time: a review of experimental studies. Med Sci Sports Exerc. 2015;47(10):2053–2061. doi: 10.1249/MSS.0000000000000654.
    1. Freedson P, Pober D, Janz KF. Calibration of accelerometer output for children. Med Sci Sports Exerc. 2005;37(11):S523–SS30. doi: 10.1249/.
    1. Brage S, Wedderkopp N, Franks PW, Andersen LB, Froberg K. Reexamination of validity and reliability of the CSA monitor in walking and running. Med Sci Sports Exerc. 2003;35(8):1447–1454. doi: 10.1249/.
    1. John D, Miller R, Kozey-Keadle S, Caldwell G, Freedson P. Biomechanical examination of the ‘plateau phenomenon’ in ActiGraph vertical activity counts. Physiol Meas. 2012;33(2):219–230. doi: 10.1088/0967-3334/33/2/219.

Source: PubMed

3
Subskrybuj