Two cases of intrahepatic cholangiocellular carcinoma with high insertion-deletion ratios that achieved a complete response following chemotherapy combined with PD-1 blockade

Minghao Sui, Yu Li, Hongguang Wang, Ying Luo, Tao Wan, Xun Wang, Bingyang Hu, Yanshuang Cheng, Xianrong Lv, Xianlei Xin, Qiang Xu, Guan Wang, Shichun Lu, Minghao Sui, Yu Li, Hongguang Wang, Ying Luo, Tao Wan, Xun Wang, Bingyang Hu, Yanshuang Cheng, Xianrong Lv, Xianlei Xin, Qiang Xu, Guan Wang, Shichun Lu

Abstract

Background: Insertion-deletion mutations (indels) may generate more tumour-specific neoantigens with high affinity to major histocompatibility complex class I. A high indel ratio is also related to a good response to programmed death-1 (PD-1) checkpoint blockade in melanoma and renal cell carcinoma. However, the correlation between a high indel ratio and the immunotherapy response in intrahepatic cholangiocarcinoma (ICC) is unknown.

Case presentation: Two patients with relapsed ICC at stage IIIb were treated with PD-1 blockade combined with chemotherapy. After 7 and 4 months of chemotherapy and PD-1 blockade (3 and 15 cycles, and 5 and 6 cycles, respectively), magnetic resonance imaging and positron emission tomography with computed tomography imaging showed that both patients achieved a complete response (CR), which has lasted up to nearly 16 and 13 months to date, respectively. Whole-exome sequencing and immunohistochemistry analysis showed that both patients had cancers with microsatellite stability (MSS) and mismatch repair (MMR) proficiency, weak PD-L1 expression, and a tumour mutation burden (TMB) of 2.95 and 7.09 mutations/Mb, respectively. Patient 2 had mutations of TP53 and PTEN that are known to confer sensitivity to immunotherapy, and the immunotherapy-resistant mutation JAK2, whereas patient 1 had no known immunotherapy response-related mutations. However, the indel ratios of the two patients (48 and 66.87%) were higher than the median of 12.77% determined in a study of 71 ICC patients. Moreover, comparison to six additional ICC patients who showed a partial response, stable disease, or progressive disease after PD-1 blockade treatment alone or in combination with chemotherapy demonstrated no difference in PD-L1 expression, TMB, MSI, and MMR status from those of the two CR patients, whereas the indel frequency was significantly higher in the CR patients.

Conclusions: These two cases suggest that indels might be a new predictor of PD-1 blockade response for ICC patients beside PD-L1 expression, TMB, MSI, and dMMR, warranting further clinical investigation.

Keywords: Combination immunotherapy; Indel; Intrahepatic cholangiocarcinoma; PD-1 blockade; Whole-exome sequencing.

Conflict of interest statement

Ethics approval and consent to participate

The two patients provided informed consent.

Consent for publication

N/A

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Imaging of patient 1 over the course of therapy. a showed timeline of the clinical course. Representative micrographs of PD-L1 expression (b) and percentage of CD8+ T cells (c) within tumor (original magnification ×400). The positive rate of PD-L1 and CD8+ T cells were < 5% and 10%, respectively. MRI and PET-CT imaging (d) showed the lesion around the margin and enlarged lymph nodes disappeared after treatment with pembrolizumab in combination with tegafur on September 14, 2017. The CR was sustained up to 9 January 2019
Fig. 2
Fig. 2
a Timeline of the clinical course in patient 2. The positive rate of PD-L1 (b) and CD8+ T cells (c) in patient 2 were < 5% and 10% evaluated by IHC, respectively (magnification ×400). Patient 2 had a complete metabolic response after treatment with pembrolizumab in combination with tegafur, with no residual hypermetabolic uptake on post-treatment imaging (d)

References

    1. Mavros MN, Economopoulos KP, Alexiou VG, Pawlik TM. Treatment and prognosis for patients with intrahepatic cholangiocarcinoma: systematic review and meta-analysis. JAMA Surg. 2014;149:565–574. doi: 10.1001/jamasurg.2013.5137.
    1. Wirth TC, Vogel A. Surveillance in cholangiocellular carcinoma. Best Pract Res Clin Gastroenterol. 2016;30:987. doi: 10.1016/j.bpg.2016.11.001.
    1. Cardinale V, Bragazzi MC, Carpino G, Di Matteo S, Overi D, Nevi L, et al. Intrahepatic cholangiocarcinoma: review and update. Hepatoma Res. 2018;4:20. doi: 10.20517/2394-5079.2018.46.
    1. Ott PA, Hodi FS. The B7-H1/PD-1 pathway in cancers associated with infections and inflammation: opportunities for therapeutic intervention. Chin Clin Oncol. 2012;2:7.
    1. Santana-Davila R, Bhatia S, Chow LQ. Harnessing the immune system as a therapeutic tool in virus-associated cancers. JAMA Oncol. 2017;3:106–112. doi: 10.1001/jamaoncol.2016.4574.
    1. Sabbatino F, Villani V, Yearley JH, Deshpande V, Cai L, Konstantinidis IT, et al. PD-L1 and HLA class I antigen expression and clinical course of the disease in intrahepatic cholangiocarcinoma. Clin Cancer Res. 2016;22:470–478. doi: 10.1158/1078-0432.CCR-15-0715.
    1. Gani F, Nagarajan N, Kim Y, Zhu Q, Luan L, Bhaijjee F, et al. Program death 1 immune checkpoint and tumor microenvironment: implications for patients with intrahepatic cholangiocarcinoma. Ann Surg Oncol. 2016;23:2610–2617. doi: 10.1245/s10434-016-5101-y.
    1. Nakamura H, Arai Y, Totoki Y, Shirota T, Elzawahry A, Kato M, et al. Genomic spectra of biliary tract cancer. Nat Genet. 2015;47:1003. doi: 10.1038/ng.3375.
    1. Bang YJ, Doi T, De Braud F, Piha-Paul S, Hollebecque A, Abdul Razak AR, et al. 525 safety and efficacy of pembrolizumab (MK-3475) in patients (pts) with advanced biliary tract cancer: interim results of KEYNOTE-028. Eur J Cancer. 2015;51:S112. doi: 10.1016/S0959-8049(16)30326-4.
    1. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409–413. doi: 10.1126/science.aan6733.
    1. Kim R, Kim D, Alese O, Li D, El-Rayes B, Shah N, et al. O-009 a phase II multi institutional study of nivolumab in patients with advanced refractory biliary tract cancers (BTC) Ann Oncol. 2018;29:mdy149.008.
    1. Yoo C, Oh DY, Choi HJ, Kudo M, Ueno M, Kondo S, et al. 153OM7824 (MSB0011359C), a bifunctional fusion protein targeting transforming growth factor β (TGF-β) and PD-L1, in Asian patients with pretreated biliary tract cancer (BTC): Efficacy by BTC subtype. Ann Oncol. 2018;29:mdy432.005.
    1. Mou H, Yu L, Liao Q, Hou X, Wu Y, Cui Q, et al. Successful response to the combination of immunotherapy and chemotherapy in cholangiocarcinoma with high tumour mutational burden and PD-L1 expression: a case report. BMC Cancer. 2018;18:1105. doi: 10.1186/s12885-018-5021-2.
    1. Turajlic S, Litchfield K, Xu H, Rosenthal R, McGranahan N, Reading JL, et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 2017;18:1009–1021. doi: 10.1016/S1470-2045(17)30516-8.
    1. Voss MH, Novik JB, Hellmann MD, Ball M, Hakimi AA, Miao D, et al. Correlation of degree of tumor immune infiltration and insertion-and-deletion (indel) burden with outcome on programmed death 1 (PD1) therapy in advanced renal cell cancer (RCC) J Clin Oncol. 2018;36:4518. doi: 10.1200/JCO.2018.36.15_suppl.4518.
    1. Conway JR, Kofman E, Mo SS, Elmarakeby H, Van Allen E. Genomics of response to immune checkpoint therapies for cancer: implications for precision medicine. Genome Med. 2018;10:93. doi: 10.1186/s13073-018-0605-7.
    1. Singavi A, Menon S, Kilari D, Alqwasmi A, Ritch PS, Thomas JP, et al. Predictive biomarkers for hyper-progression (HP) in response to immune checkpoint inhibitors (ICI)–analysis of somatic alterations (SAs). Ann Oncol. 2017;28(Suppl 5):Abstract 1140.
    1. Otto G. Kidney cancer: PBRM1 loss promotes tumour response to immunotherapy. Nat Rev Clin Oncol. 2018;15:134–135. doi: 10.1038/nrclinonc.2018.12.
    1. Niu B, Ye K, Zhang Q, Lu C, Xie M, McLellan MD, et al. MSIsensor: microsatellite instability detection using paired tumor-normal sequence data. Bioinformatics. 2013;30:1015–1016. doi: 10.1093/bioinformatics/btt755.
    1. Vanderwalde A, Spetzler D, Xiao N, Gatalica Z, Marshall J. Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients. Cancer Med. 2018;7:746–756. doi: 10.1002/cam4.1372.
    1. Cao Jingyu, Jiang Bo, Liu Zimin, Shu Weibin, Li Lei, Yang Han, Li Hua, Xiao Zhiyu, Yan Maolin, Lin Jie, Liu Siqin, Zhang Peng, Javle Milind, Yao Ming, Wang Kai, Zhao Haitao. Abstract 3437: Genomic alterations, mutation burden, and microsatellite instability status of Chinese intrahepatic cholangiocarcinoma. Cancer Research. 2018;78(13 Supplement):3437–3437. doi: 10.1158/1538-7445.AM2018-3437.
    1. Jusakul A, Cutcutache I, Yong CH, Lim JQ, Huang MN, Padmanabhan N, et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov. 2017;7:1116–1135. doi: 10.1158/-17-0368.
    1. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–571. doi: 10.1038/nature13954.
    1. Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 2019;18:197–218. doi: 10.1038/s41573-018-0007-y.
    1. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463–1469. doi: 10.1126/science.aaf1490.
    1. Fridman WH, Zitvogel L, Sautès-Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 2017;14:717–734. doi: 10.1038/nrclinonc.2017.101.
    1. Yan Y, Kumar AB, Finnes H, Markovic SN, Park S, Dronca RS, et al. Combining immune checkpoint inhibitors with conventional cancer therapy. Front Immunol. 2018;9:1739. doi: 10.3389/fimmu.2018.01739.
    1. Lin J, Shi W, Zhao S, Hu J, Hou Z, Yao M, et al. Lenvatinib plus checkpoint inhibitors in patients (pts) with advanced intrahepatic cholangiocarcinoma (ICC): preliminary data and correlation with next-generation sequencing. J Clin Oncol. 2018;36:500. doi: 10.1200/JCO.2018.36.4_suppl.500.
    1. Balachandran VP, Luksza M, Zhao JN, Makarov V, Moral JA, Remark R, et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature. 2017;551:512–516. doi: 10.1038/nature24462.
    1. Prelaj A, Tay R, Ferrara R, Chaput N, Besse B, Califano R. Predictive biomarkers of response for immune checkpoint inhibitors in non–small-cell lung cancer. Eur J Cancer. 2019;106:144–159. doi: 10.1016/j.ejca.2018.11.002.

Source: PubMed

3
Subskrybuj