Insulin resistance, diabetic kidney disease, and all-cause mortality in individuals with type 2 diabetes: a prospective cohort study

Giuseppe Penno, Anna Solini, Emanuela Orsi, Enzo Bonora, Cecilia Fondelli, Roberto Trevisan, Monica Vedovato, Franco Cavalot, Gianpaolo Zerbini, Olga Lamacchia, Antonio Nicolucci, Giuseppe Pugliese, Renal Insufficiency And Cardiovascular Events (RIACE) Study Group, Giuseppe Pugliese, Giuseppe Penno, Anna Solini, Enzo Bonora, Emanuela Orsi, Roberto Trevisan, Luigi Laviola, Antonio Nicolucci, Giuseppe Penno, Anna Solini, Emanuela Orsi, Enzo Bonora, Cecilia Fondelli, Roberto Trevisan, Monica Vedovato, Franco Cavalot, Gianpaolo Zerbini, Olga Lamacchia, Antonio Nicolucci, Giuseppe Pugliese, Renal Insufficiency And Cardiovascular Events (RIACE) Study Group, Giuseppe Pugliese, Giuseppe Penno, Anna Solini, Enzo Bonora, Emanuela Orsi, Roberto Trevisan, Luigi Laviola, Antonio Nicolucci

Abstract

Background: It is unclear whether insulin resistance (IR) contributes to excess mortality in patients with type 2 diabetes independent of diabetic kidney disease (DKD), which is strongly associated with IR and is a major risk factor for cardiovascular disease (CVD), the main cause of death in these individuals. We tested this hypothesis in patients with type 2 diabetes from the Renal Insufficiency And Cardiovascular Events Italian Multicentre Study.

Methods: This observational, prospective, cohort study enrolled 15,773 patients with type 2 diabetes attending 19 Italian Diabetes Clinics in 2006-2008. Insulin sensitivity was assessed as estimated glucose disposal rate (eGDR), which was validated against the euglycaemic-hyperinsulinemic clamp technique. Vital status on October 31, 2015, was retrieved for 15,656 patients (99.3%). Participants were stratified by eGDR tertiles from T1 (≥ 5.35 mg/kg/min) to T3 (≤ 4.14 mg/kg/min, highest IR).

Results: CVD risk profile was worse in T2 and T3 vs T1. eGDR tertiles were independently associated with micro- and macroalbuminuria and the albuminuric DKD phenotypes (albuminuria with preserved or reduced estimated glomerular filtration rate [eGFR]) as well as with eGFR categories or the nonalbuminuric DKD phenotype. Over a 7.4-year follow-up, unadjusted death rates and mortality risks increased progressively across eGDR tertiles, but remained significantly elevated after adjustment only in T3 vs T1 (age- and gender- adjusted death rate, 22.35 vs 16.74 per 1000 person-years, p < 0.0001, and hazard ratio [HR] adjusted for multiple confounders including DKD, 1.140 [95% confidence interval [CI], 1.049-1.238], p = 0.002). However, eGDR was independently associated with mortality in participants with no DKD (adjusted HR, 1.214 [95% CI, 1.072-1.375], p = 0.002) and in those with nonalbuminuric DKD (1.276 [1.034-1.575], p = 0.023), but not in those with the albuminuric DKD phenotypes. Moreover, the association was stronger in males and in younger individuals and was observed in those without but not with prior CVD, though interaction was significant only for age.

Conclusions: The proxy of insulin sensitivity eGDR predicts all-cause mortality in type 2 diabetes, independent of confounders including DKD. However, the impact of IR in individuals with albuminuric DKD may be mediated by its relationship with albuminuria.

Trial registration: ClinicalTrials.gov , NCT00715481, retrospectively registered 15 July 2008.

Keywords: Albuminuria; All-cause mortality; Diabetic kidney disease; Estimated glucose disposal rate; Glomerular filtration rate; Mellitus; Type 2 diabetes.

Conflict of interest statement

G.Pe.: lecture fees from AstraZeneca, Boehringer Ingelheim, Eli Lilly, Merck Sharp & Dohme, Novo Nordisk, Sigma-Tau, and Takeda, and travel grants from AstraZeneca, Novo Nordisk, and Takeda; A.S.: consulting fees from AstraZeneca, Boehringer Ingelheim, and Sanofi-Aventis, and lecture fees from AstraZeneca, Boehringer Ingelheim, Eli Lilly, and MundiPharma; E.O.: consulting fees from Eli Lilly and Novo Nordisk; E.B.: consulting fees from Abbot, AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb, Bruno Farmaceutici, Eli Lilly, Janssen, Johnson&Johnson, Merck Sharp & Dohme, MundiPharma, Novartis, Novo Nordisk, Roche, Sanofi-Aventis, Servier, and Takeda, and research grants from AstraZeneca, Genzyme, Menarini Diagnostics, Novo Nordisk, Roche, and Takeda; C.F.: lecture fees from AstraZeneca, Boehringer Ingelheim, Eli Lilly, and Novo Nordisk and travel grants from AstraZeneca, Boehringer Ingelheim, Eli Lilly, Merck Sharp & Dohme, Sanofi-Aventis, and Takeda; R.T.: consulting fees from AstraZeneca, Boehringer Ingelheim, Eli Lilly, Merck Sharp & Dohme, Novo Nordisk, and Sanofi-Aventis, and lecture fees from AstraZeneca, Boehringer Ingelheim, Eli Lilly, and Novo Nordisk; M.V.: lecture fees from Lifescan and Novo Nordisk; F.C.: lecture fees from AstraZeneca, Sanofi-Aventis, and Takeda; G.Z.: research grants from NTC Pharma and Omikron Italia; O.L.: consulting fees from Astra-Zeneca, Boehringer Ingelheim; lecture fees from Astra-Zeneca, Eli-Lilly, Merck-Sharp&Dohme, Sigma-Tau, Sanofi-Aventis, Takeda; grant support from Astra-Zeneca; A.N.: consulting fees from AstraZeneca, Pikdare, and Roche, lecture fees from AstraZeneca, Boehringer Ingelheim, Medtronic, and Novo Nordisk, and research grants from Aboca, AstraZeneca, Eli Lilly, Novo Nordisk, Sanofi-Aventis, and Theras; G.Pu.: consulting fees from AstraZeneca, Boehringer Ingelheim, and Eli Lilly, lecture fees from AstraZeneca, Boehringer Ingelheim, Eli Lilly, Merck Sharp & Dohme, MundiPharma, Novartis, Novo Nordisk, Sigma-Tau, Takeda, and travel grants from AstraZeneca, Laboratori Guidotti, Sanofi-Aventis, and Takeda.

Figures

Fig. 1
Fig. 1
Cox proportional hazards regression, unadjusted (a), and adjusted by age and gender (b; model 1), plus albuminuria and eGFR categories (c; model 2) plus multiple confounders (d; model 4), according to eGDR tertiles. HRs (95% CI) for mortality are shown for each tertile. CVD risk factors (smoking habits, diabetes duration, and dyslipidaemia) and complications/comorbidities (DR grade, prior CVD, and cancer). HR, hazard ratio; CI, confidence interval; eGFR, estimated glomerular filtration rate; eGDR, estimated glucose disposal rate; HR, hazard ratio; CI, confidence interval; CVD, cardiovascular disease; DR, diabetic retinopathy
Fig. 2
Fig. 2
Cox proportional hazards regression, adjusted by age and gender, albuminuria and eGFR categories, and multiple confounders, according to eGDR tertiles, in participants with no DKD (a), albuminuric DKD with preserved eGFR (b), nonalbuminuric DKD (c) and albuminuric DKD with reduced eGFR (d). HRs (95% CI) for mortality are shown for each tertile. CVD risk factors (smoking habits, diabetes duration, and dyslipidaemia) and complications/comorbidities (DR grade, prior CVD, and cancer). eGFR, estimated glomerular filtration rate; eGDR, estimated glucose disposal rate; DKD, diabetic kidney disease; HR, hazard ratio; CI, confidence interval; CVD, cardiovascular disease; DR, diabetic retinopathy

References

    1. Emerging Risk Factors Collaboration. Seshasai SR, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med. 2011;364:829–841. doi: 10.1056/NEJMoa1008862.
    1. Tancredi M, Rosengren A, Svensson AM, Kosiborod M, Pivodic A, Gudbjörnsdottir S, et al. Excess mortality among persons with type 2 diabetes. N Engl J Med. 2015;373:1720–1732. doi: 10.1056/NEJMoa1504347.
    1. Penno G, Solini A, Bonora E, Orsi E, Fondelli C, Zerbini G, et al. Defining the contribution of chronic kidney disease to all-cause mortality in patients with type 2 diabetes: the Renal Insufficiency And Cardiovascular Events (RIACE) Italian Multicenter Study. Acta Diabetol. 2018;55:603–612. doi: 10.1007/s00592-018-1133-z.
    1. Rawshani A, Rawshani A, Franzén S, Eliasson B, Svensson AM, Miftaraj M, et al. Mortality and cardiovascular disease in type 1 and type 2 diabetes. N Engl J Med. 2017;376:1407–1418. doi: 10.1056/NEJMoa1608664.
    1. Gregg EW, Cheng YJ, Srinivasan M, Lin J, Geiss LS, Albright AL, et al. Trends in cause-specific mortality among adults with and without diagnosed diabetes in the USA: an epidemiological analysis of linked national survey and vital statistics data. Lancet. 2018;391:2430–2440. doi: 10.1016/S0140-6736(18)30314-3.
    1. Gæde P, Oellgaard J, Carstensen B, Rossing P, Lund-Andersen H, Parving HH, et al. Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the Steno-2 randomised trial. Diabetologia. 2016;59:2298–2307. doi: 10.1007/s00125-016-4065-6.
    1. Oellgaard J, Gæde P, Rossing P, Persson F, Parving HH, Pedersen O. Intensified multifactorial intervention in type 2 diabetics with microalbuminuria leads to long-term renal benefits. Kidney Int. 2017;91:982–988. doi: 10.1016/j.kint.2016.11.023.
    1. Patel TP, Rawal K, Bagchi AK, Akolkar G, Bernardes N, Dias DDS, et al. Insulin resistance: an additional risk factor in the pathogenesis of cardiovascular disease in type 2 diabetes. Heart Fail Rev. 2016;21:11–23. doi: 10.1007/s10741-015-9515-6.
    1. Laakso M, Kuusisto J. Insulin resistance and hyperglycaemia in cardiovascular disease development. Nat Rev Endocrinol. 2014;10:293–302. doi: 10.1038/nrendo.2014.29.
    1. Kilpatrick ES, Rigby AS, Atkin SL. Insulin resistance, the metabolic syndrome, and complication risk in type 1 diabetes: “double diabetes” in the diabetes control and complications trial. Diabetes Care. 2007;30:707–712. doi: 10.2337/dc06-1982.
    1. van Sloten TT, Henry RM, Dekker JM, Nijpels G, Unger T, Schram MT, et al. Endothelial dysfunction plays a key role in increasing cardiovascular risk in type 2 diabetes: the Hoorn study. Hypertension. 2014;64:1299–1305. doi: 10.1161/HYPERTENSIONAHA.114.04221.
    1. Sakkinen PA, Wahl P, Cushman M, Lewis MR, Tracy RP. Clustering of procoagulation, inflammation, and fibrinolysis variables with metabolic factors in insulin resistance syndrome. Am J Epidemiol. 2000;152:897–907. doi: 10.1093/aje/152.10.897.
    1. Karalliedde J, Gnudi L. Diabetes mellitus, a complex and heterogeneous disease, and the role of insulin resistance as a determinant of diabetic kidney disease. Nephrol Dial Transplant. 2016;31:206–213.
    1. Spoto B, Pisano A, Zoccali C. Insulin resistance in chronic kidney disease: a systematic review. Am J Physiol Renal Physiol. 2016;311:F1087–F1108. doi: 10.1152/ajprenal.00340.2016.
    1. Leyking S, Fliser D. Insulin resistance in CKD. Clin J Am Soc Nephrol. 2014;9:638–640. doi: 10.2215/CJN.01290214.
    1. Ahlqvist E, Storm P, Käräjämäki A, Martinell M, Dorkhan M, Carlsson A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6:361–369. doi: 10.1016/S2213-8587(18)30051-2.
    1. Olson JC, Erbey JR, Williams KV, Becker DJ, Edmundowicz D, Kelsey SF, et al. Subclinical atherosclerosis and estimated glucose disposal rate as predictors of mortality in type 1 diabetes. Ann Epidemiol. 2002;12:331–337. doi: 10.1016/S1047-2797(01)00269-1.
    1. Nyström T, Holzmann MJ, Eliasson B, Svensson AM, Sartipy U. Estimated glucose disposal rate predicts mortality in adults with type 1 diabetes. Diabetes Obes Metab. 2018;20:556–563. doi: 10.1111/dom.13110.
    1. Garofolo M, Gualdani E, Scarale MG, Bianchi C, Aragona M, Campi F, et al. Insulin resistance and risk of major vascular events and all-cause mortality in type 1 diabetes: a 10-year follow-up study. Diabetes Care. 2020;3:e139–e141. doi: 10.2337/dc20-0433.
    1. Ausk KJ, Boyko EJ, Ioannou GN. Insulin resistance predicts mortality in nondiabetic individuals in the U.S. Diabetes Care. 2010;33:1179–1185. doi: 10.2337/dc09-2110.
    1. Pan K, Chlebowski RT, Mortimer JE, Gunther MJ, Rohan T, Vitolins MZ, et al. Insulin resistance and breast cancer incidence and mortality in postmenopausal women in the Women's Health Initiative. Cancer. 2020;126:3638–3647. doi: 10.1002/cncr.33002.
    1. de Boer IH, Katz R, Chonchol MB, Fried LF, Ix JH, Kestenbaum B, et al. Insulin resistance, cystatin C, and mortality among older adults. Diabetes Care. 2012;35:1355–1360. doi: 10.2337/dc11-1657.
    1. Barr EL, Cameron AJ, Balkau B, Zimmet PZ, Welborn TA, Tonkin AM, et al. HOMA insulin sensitivity index and the risk of all-cause mortality and cardiovascular disease events in the general population: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab) study. Diabetologia. 2010;53:79–88. doi: 10.1007/s00125-009-1588-0.
    1. Welsh P, Preiss D, Lloyd SM, de Craen AJ, Jukema JW, Westendorp RG, et al. Contrasting associations of insulin resistance with diabetes, cardiovascular disease and all-cause mortality in the elderly: PROSPER long-term follow-up. Diabetologia. 2014;57:2513–2520. doi: 10.1007/s00125-014-3383-9.
    1. Williams KV, Erbey JR, Becker D, Arslanian S, Orchard TJ. Can clinical factors estimate insulin resistance in type 1 diabetes? Diabetes. 2000;49:626–632. doi: 10.2337/diabetes.49.4.626.
    1. Orchard TJ, Olson JC, Erbey JR, Williams K, Forrest KY, Smithline Kinder L, et al. Insulin resistance-related factors, but not glycemia, predict coronary artery disease in type 1 diabetes: 10-year follow-up data from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetes Care. 2003;26:1374–1379. doi: 10.2337/diacare.26.5.1374.
    1. Epstein EJ, Osman JL, Cohen HW, Rajpathak SN, Lewis O, Crandall JP. Use of the estimated glucose disposal rate as a measure of insulin resistance in an urban multiethnic population with type 1 diabetes. Diabetes Care. 2013;36:2280–2285. doi: 10.2337/dc12-1693.
    1. Penno G, Solini A, Bonora E, Fondelli C, Orsi E, Zerbini G, Trevisan R, et al. Clinical significance of nonalbuminuric renal impairment in type 2 diabetes. J Hypertens. 2011;29:1802–1809. doi: 10.1097/HJH.0b013e3283495cd6.
    1. Penno G, Solini A, Bonora E, Fondelli C, Orsi E, Zerbini G, Trevisan R, et al. Gender differences in cardiovascular disease risk factors, treatments and complications in patients with type 2 diabetes: the RIACE Italian multicentre study. J Intern Med. 2013;274:176–191. doi: 10.1111/joim.12073.
    1. Pugliese G, Solini A, Fondelli C, Trevisan R, Vedovato M, Nicolucci A, et al. Reproducibility of albuminuria in type 2 diabetic subjects. Findings from the Renal Insufficiency And Cardiovascular Events (RIACE) study. Nephrol Dial Transplant. 2011;26:3950–3954. doi: 10.1093/ndt/gfr140.
    1. Penno G, Solini A, Zoppini G, Orsi E, Zerbini G, Trevisan R, et al. Rate and determinants of association between advanced retinopathy and chronic kidney disease in patients with type 2 diabetes: the Renal Insufficiency And Cardiovascular Events (RIACE) Italian multicenter study. Diabetes Care. 2012;35:2317–2323. doi: 10.2337/dc12-0628.
    1. Solini A, Penno G, Bonora E, Fondelli C, Orsi E, Arosio M, et al. Diverging association of reduced glomerular filtration rate and albuminuria with coronary and noncoronary events in patients with type 2 diabetes: the renal insufficiency and cardiovascular events (RIACE) Italian multicenter study. Diabetes Care. 2012;35:143–149. doi: 10.2337/dc11-1380.
    1. Xu H, Huang X, Arnlov J, Cederholm T, Stenvinkel P, Lindholm B, et al. Clinical correlates of insulin sensitivity and its association with mortality among men with CKD stages 3 and 4. Clin J Am Soc Nephrol. 2014;9:690–697. doi: 10.2215/CJN.05230513.
    1. Schrauben SJ, Jepson C, Hsu JY, Wilson FP, Zhang X, Lash JP, et al. Insulin resistance and chronic kidney disease progression, cardiovascular events, and death: findings from the chronic renal insufficiency cohort study. BMC Nephrol. 2019;20:60. doi: 10.1186/s12882-019-1220-6.
    1. Orchard TJ, Chang YF, Ferrell RE, Petro N, Ellis DE. Nephropathy in type 1 diabetes: a manifestation of insulin resistance and multiple genetic susceptibilities? Further evidence from the Pittsburgh Epidemiology of Diabetes Complication Study. Kidney Int. 2002;62:963–970. doi: 10.1046/j.1523-1755.2002.00507.x.
    1. Pilz S, Rutters F, Nijpels G, Stehouwer CDA, Hojlund K, Nolan JJ, et al. Insulin sensitivity and albuminuria: the RISC study. Diabetes Care. 2014;37:1597–1603. doi: 10.2337/dc13-2573.
    1. Matsumoto K, Sera Y, Abe Y, Ueki Y, Tominaga T, Miyake S. Inflammation and insulin resistance are independently related to all-cause of death and cardiovascular events in Japanese patients with type 2 diabetes mellitus. Atherosclerosis. 2003;169:317–321. doi: 10.1016/S0021-9150(03)00198-9.
    1. Zuliani G, Morieri ML, Volpato S, Maggio M, Cherubini A, Francesconi D, et al. Insulin resistance and systemic inflammation, but not metabolic syndrome phenotype, predict 9 years mortality in older adults. Atherosclerosis. 2014;235:538–545. doi: 10.1016/j.atherosclerosis.2014.05.959.
    1. Lee DY, Rhee EJ, Chang Y, Sohn CI, Shin HC, Ryu S, et al. Impact of systemic inflammation on the relationship between insulin resistance and all-cause and cancer-related mortality. Metabolism. 2018;81:52–62. doi: 10.1016/j.metabol.2017.11.014.
    1. Nyström T, Holzmann MJ, Eliasson B, Svensson AM, Kuhl J, Sartipy U. Estimated glucose disposal rate and long-term survival in type 2 diabetes after coronary artery bypass grafting. Heart Vessel. 2017;32:269–278. doi: 10.1007/s00380-016-0875-1.

Source: PubMed

3
Subskrybuj