COVID-19-The Potential Beneficial Therapeutic Effects of Spironolactone during SARS-CoV-2 Infection

Katarzyna Kotfis, Kacper Lechowicz, Sylwester Drożdżal, Paulina Niedźwiedzka-Rystwej, Tomasz K Wojdacz, Ewelina Grywalska, Jowita Biernawska, Magda Wiśniewska, Miłosz Parczewski, Katarzyna Kotfis, Kacper Lechowicz, Sylwester Drożdżal, Paulina Niedźwiedzka-Rystwej, Tomasz K Wojdacz, Ewelina Grywalska, Jowita Biernawska, Magda Wiśniewska, Miłosz Parczewski

Abstract

In March 2020, coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 was declared a global pandemic by the World Health Organization (WHO). The clinical course of the disease is unpredictable but may lead to severe acute respiratory infection (SARI) and pneumonia leading to acute respiratory distress syndrome (ARDS). It has been shown that pulmonary fibrosis may be one of the major long-term complications of COVID-19. In animal models, the use of spironolactone was proven to be an important drug in the prevention of pulmonary fibrosis. Through its dual action as a mineralocorticoid receptor (MR) antagonist and an androgenic inhibitor, spironolactone can provide significant benefits concerning COVID-19 infection. The primary effect of spironolactone in reducing pulmonary edema may also be beneficial in COVID-19 ARDS. Spironolactone is a well-known, widely used and safe anti-hypertensive and antiandrogenic medication. It has potassium-sparing diuretic action by antagonizing mineralocorticoid receptors (MRs). Spironolactone and potassium canrenoate, exerting combined pleiotropic action, may provide a therapeutic benefit to patients with COVID-19 pneumonia through antiandrogen, MR blocking, antifibrotic and anti-hyperinflammatory action. It has been proposed that spironolactone may prevent acute lung injury in COVID-19 infection due to its pleiotropic effects with favorable renin-angiotensin-aldosterone system (RAAS) and ACE2 expression, reduction in transmembrane serine protease 2 (TMPRSS2) activity and antiandrogenic action, and therefore it may prove to act as additional protection for patients at highest risk of severe pneumonia. Future prospective clinical trials are warranted to evaluate its therapeutic potential.

Keywords: ARDS (acute respiratory distress syndrome); COVID-19; SARS-CoV-2; TMPRSS2; androgen receptor antagonist; coronavirus; pandemic; potassium canrenoate; spironolactone.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Metabolites of spironolactone.
Figure 2
Figure 2
Mineralocorticoid receptor (MR) antagonists in heart failure.
Figure 3
Figure 3
Potential effect of spironolactone in prevention of pulmonary fibrosis. MCP-1: monocyte chemoattractant protein-1; TGF-β1: transforming growth factor beta-1; TNF-α: tumor necrosis factor alfa, IL-1β: interleukin-1b; IL-6: interleukin-6; ECM: extracellular matrix.
Figure 4
Figure 4
Potential pharmacological actions of spironolactone in COVID-19.

References

    1. Baloch S., Baloch M.A., Zheng T., Pei X. The Coronavirus Disease 2019 (COVID-19) Pandemic. Tohoku J. Exp. Med. 2020;250:271–278. doi: 10.1620/tjem.250.271.
    1. Parczewski M., Ciechanowicz A. Molecular epidemiology of SARS CoV-2: A review of current data on genetic variability of the virus. Pol. Arch. Intern. Med. 2020 doi: 10.20452/pamw.15550.
    1. Lechowicz K., Drożdżal S., Machaj F., Rosik J., Szostak B., Zegan-Barańska M., Biernawska J., Dabrowski W., Rotter I., Kotfis K. COVID-19: The Potential Treatment of Pulmonary Fibrosis Associated with SARS-CoV-2 Infection. J. Clin. Med. 2020;9:1917. doi: 10.3390/jcm9061917.
    1. Barut F., Ozacmak V.H., Turan I., Sayan-Ozacmak H., Aktunc E. Reduction of Acute Lung Injury by Administration of Spironolactone After Intestinal Ischemia and Reperfusion in Rats. Clin. Investig. Med. 2016;39:E15–E24. doi: 10.25011/cim.v39i1.26326.
    1. Liaudet L., Szabo C. Blocking mineralocorticoid receptor with spironolactone may have a wide range of therapeutic actions in severe COVID-19 disease. Crit. Care. 2020;24:318. doi: 10.1186/s13054-020-03055-6.
    1. Cadegiani F.A., Wambier C.G., Goren A. Spironolactone: An Anti-androgenic and Anti-hypertensive Drug That May Provide Protection Against the Novel Coronavirus (SARS-CoV-2) Induced Acute Respiratory Distress Syndrome (ARDS) in COVID-19. Front. Med. 2020;7:453. doi: 10.3389/fmed.2020.00453.
    1. Belden Z., Deiuliis J.A., Dobre M., Rajagopalan S. The Role of the Mineralocorticoid Receptor in Inflammation: Focus on Kidney and Vasculature. Am. J. Nephrol. 2017;46:298–314. doi: 10.1159/000480652.
    1. Williams J.S., Williams G.H. 50th anniversary of aldosterone. J. Clin. Endocrinol. Metab. 2003;88:2364–2372. doi: 10.1210/jc.2003-030490.
    1. Layton A.M., Eady E.A., Whitehouse H., Del Rosso J.Q., Fedorowicz Z., van Zuuren E.J. Oral Spironolactone for Acne Vulgaris in Adult Females: A Hybrid Systematic Review. Am. J. Clin. Dermatol. 2017;18:169–191. doi: 10.1007/s40257-016-0245-x.
    1. Fuller P.J., Young M.J. Mechanisms of mineralocorticoid action. Hypertension. 2005;46:1227–1235. doi: 10.1161/01.HYP.0000193502.77417.17.
    1. Zannad F., Gattis Stough W., Rossignol P., Bauersachs J., McMurray J.J.V., Swedberg K., Struthers A.D., Voors A.A., Ruilope L.M., Bakris G.L., et al. Mineralocorticoid receptor antagonists for heart failure with reduced ejection fraction: Integrating evidence into clinical practice. Eur. Heart J. 2012;33:2782–2795. doi: 10.1093/eurheartj/ehs257.
    1. Herrada A.A., Contreras F.J., Marini N.P., Amador C.A., González P.A., Cortés C.M., Riedel C.A., Carvajal C.A., Figueroa F., Michea L.F., et al. Aldosterone Promotes Autoimmune Damage by Enhancing Th17-Mediated Immunity. J. Immunol. 2010;184:191–202. doi: 10.4049/jimmunol.0802886.
    1. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., Liu S., Zhao P., Liu H., Zhu L., et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020;8:420–422. doi: 10.1016/S2213-2600(20)30076-X.
    1. South A.M., Tomlinson L., Edmonston D., Hiremath S., Sparks M.A. Controversies of renin-angiotensin system inhibition during the COVID-19 pandemic. Nat. Rev. Nephrol. 2020;16:305–307. doi: 10.1038/s41581-020-0279-4.
    1. Sica D.A. Pharmacokinetics and pharmacodynamics of mineralocorticoid blocking agents and their effects on potassium homeostasis. Heart Fail. Rev. 2005;10:23–29. doi: 10.1007/s10741-005-2345-1.
    1. Los L.E., Pitzenberger S.M., Ramjit H.G., Coddington A.B., Colby H.D. Hepatic metabolism of spironolactone. Production of 3-hydroxy-thiomethyl metabolites. Drug Metab. Dispos. 1994;22:903–908.
    1. Patibandla S., Heaton J., Kyaw H. Spironolactone. StatPearls Publishing; Treasure Island, FL, USA: 2020.
    1. Pitt B., Zannad F., Remme W.J., Cody R., Castaigne A., Perez A., Palensky J., Wittes J. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N. Engl. J. Med. 1999;341:709–717. doi: 10.1056/NEJM199909023411001.
    1. Faris R., Flather M., Purcell H., Henein M., Poole-Wilson P., Coats A. Current evidence supporting the role of diuretics in heart failure: A meta analysis of randomised controlled trials. Int. J. Cardiol. 2002;82:149–158. doi: 10.1016/S0167-5273(01)00600-3.
    1. Faris R.F., Flather M., Purcell H., Poole-Wilson P.A., Coats A.J.S. Diuretics for heart failure. Cochrane Database Syst. Rev. 2012;2:CD003838. doi: 10.1002/14651858.CD003838.pub3.
    1. Ponikowski P., Voors A.A., Anker S.D., Bueno H., Cleland J.G.F., Coats A.J.S., Falk V., González-Juanatey J.R., Harjola V.P., Jankowska E.A., et al. Wytyczne ESC dotyczace diagnostyki i leczenia ostrej i przewlekłej niewydolności serca w 2016 roku. Kardiol. Pol. 2016;74:1037–1147. doi: 10.5603/KP.2016.0141.
    1. Yancy C.W., Jessup M., Bozkurt B., Butler J., Casey D.E.J., Colvin M.M., Drazner M.H., Filippatos G.S., Fonarow G.C., Givertz M.M., et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of Ame. J. Card. Fail. 2017;23:628–651. doi: 10.1016/j.cardfail.2017.04.014.
    1. McDiarmid A.K., Swoboda P.P., Erhayiem B., Bounford K.A., Bijsterveld P., Tyndall K., Fent G.J., Garg P., Dobson L.E., Musa T.A., et al. Myocardial Effects of Aldosterone Antagonism in Heart Failure With Preserved Ejection Fraction. J. Am. Heart Assoc. 2020;9:e011521. doi: 10.1161/JAHA.118.011521.
    1. Pitt B., Pfeffer M.A., Assmann S.F., Boineau R., Anand I.S., Claggett B., Clausell N., Desai A.S., Diaz R., Fleg J.L., et al. Spironolactone for heart failure with preserved ejection fraction. N. Engl. J. Med. 2014;370:1383–1392. doi: 10.1056/NEJMoa1313731.
    1. Mancia G., Fagard R., Narkiewicz K., Redón J., Zanchetti A., Böhm M., Christiaens T., Cifkova R., De Backer G., Dominiczak A., et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC) J. Hypertens. 2013;31:1281–1357. doi: 10.1097/.
    1. Zhou H., Xi D., Liu J., Zhao J., Chen S., Guo Z. Spirolactone provides protection from renal fibrosis by inhibiting the endothelial-mesenchymal transition in isoprenaline-induced heart failure in rats. Drug Des. Devel. Ther. 2016;10:1581–1588. doi: 10.2147/DDDT.S100095.
    1. Moore B.B., Moore T.A. Viruses in Idiopathic Pulmonary Fibrosis. Etiology and Exacerbation. Ann. Am. Thorac. Soc. 2015;12(Suppl. 2):S186–S192. doi: 10.1513/AnnalsATS.201502-088AW.
    1. He J., Xu Y., Koya D., Kanasaki K. Role of the endothelial-to-mesenchymal transition in renal fibrosis of chronic kidney disease. Clin. Exp. Nephrol. 2013;17:488–497. doi: 10.1007/s10157-013-0781-0.
    1. Collange O., Charles A.-L., Bouitbir J., Chenard M.-P., Zoll J., Diemunsch P., Thaveau F., Chakfé N., Piquard F., Geny B. Methylene blue protects liver oxidative capacity after gut ischaemia-reperfusion in the rat. Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 2013;45:168–175. doi: 10.1016/j.ejvs.2012.11.011.
    1. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., Xiang J., Wang Y., Song B., Gu X., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020;395:1054–1062. doi: 10.1016/S0140-6736(20)30566-3.
    1. Palaiodimos L., Kokkinidis D.G., Li W., Karamanis D., Ognibene J., Arora S., Southern W.N., Mantzoros C.S. Severe obesity is associated with higher in-hospital mortality in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism. 2020;108:154262. doi: 10.1016/j.metabol.2020.154262.
    1. Goren A., Vaño-Galván S., Wambier C.G., McCoy J., Gomez-Zubiaur A., Moreno-Arrones O.M., Shapiro J., Sinclair R.D., Gold M.H., Kovacevic M., et al. A preliminary observation: Male pattern hair loss among hospitalized COVID-19 patients in Spain–A potential clue to the role of androgens in COVID-19 severity. J. Cosmet. Dermatol. 2020;19:1545–1547. doi: 10.1111/jocd.13443.
    1. Hou Y.J., Okuda K., Edwards C.E., Martinez D.R., Asakura T., Dinnon K.H., 3rd, Kato T., Lee R.E., Yount B.L., Mascenik T.M., et al. SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell. 2020;182:429–446.e14. doi: 10.1016/j.cell.2020.05.042.
    1. Lukassen S., Chua R.L., Trefzer T., Kahn N.C., Schneider M.A., Muley T., Winter H., Meister M., Veith C., Boots A.W., et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. 2020;39:e105114. doi: 10.15252/embj.2020105114.
    1. South A.M., Diz D.I., Chappell M.C. COVID-19, ACE2, and the cardiovascular consequences. Am. J. Physiol. Circ. Physiol. 2020;318:H1084–H1090. doi: 10.1152/ajpheart.00217.2020.
    1. Groß S., Jahn C., Cushman S., Bär C., Thum T. SARS-CoV-2 receptor ACE2-dependent implications on the cardiovascular system: From basic science to clinical implications. J. Mol. Cell. Cardiol. 2020;144:47–53. doi: 10.1016/j.yjmcc.2020.04.031.
    1. Clinckemalie L., Spans L., Dubois V., Laurent M., Helsen C., Joniau S., Claessens F. Androgen regulation of the TMPRSS2 gene and the effect of a SNP in an androgen response element. Mol. Endocrinol. 2013;27:2028–2040. doi: 10.1210/me.2013-1098.
    1. Acheampong D.O., Barffour I.K., Boye A., Aninagyei E., Ocansey S., Morna M.T. Male predisposition to severe COVID-19: Review of evidence and potential therapeutic prospects. Biomed. Pharmacother. 2020;131:110748. doi: 10.1016/j.biopha.2020.110748.
    1. Marzolla V., Armani A., Feraco A., De Martino M.U., Fabbri A., Rosano G., Caprio M. Mineralocorticoid receptor in adipocytes and macrophages: A promising target to fight metabolic syndrome. Steroids. 2014;91:46–53. doi: 10.1016/j.steroids.2014.05.001.
    1. Jaisser F., Farman N. Emerging Roles of the Mineralocorticoid Receptor in Pathology: Toward New Paradigms in Clinical Pharmacology. Pharmacol. Rev. 2016;68:49–75. doi: 10.1124/pr.115.011106.
    1. Ames M.K., Atkins C.E., Pitt B. The renin-angiotensin-aldosterone system and its suppression. J. Vet. Intern. Med. 2019;33:363–382. doi: 10.1111/jvim.15454.
    1. Safdar Z., Frost A., Basant A., Deswal A., O’Brian Smith E., Entman M. Spironolactone in pulmonary arterial hypertension: Results of a cross-over study. Pulm. Circ. 2020;10:2045894019898030. doi: 10.1177/2045894019898030.
    1. Tomlins S.A., Rhodes D.R., Perner S., Dhanasekaran S.M., Mehra R., Sun X.-W., Varambally S., Cao X., Tchinda J., Kuefer R., et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310:644–648. doi: 10.1126/science.1117679.
    1. Mollica V., Rizzo A., Massari F. The pivotal role of TMPRSS2 in coronavirus disease 2019 and prostate cancer. Future Oncol. 2020;16:2029–2033. doi: 10.2217/fon-2020-0571.
    1. Cadegiani F.A., Goren A., Wambier C.G. Spironolactone may provide protection from SARS-CoV-2: Targeting androgens, angiotensin converting enzyme 2 (ACE2), and renin-angiotensin-aldosterone system (RAAS) Med. Hypotheses. 2020;143:110112. doi: 10.1016/j.mehy.2020.110112.
    1. Krieger N., Chen J.T., Waterman P.D. Excess mortality in men and women in Massachusetts during the COVID-19 pandemic. Lancet. 2020;395:1829. doi: 10.1016/S0140-6736(20)31234-4.
    1. Clark A., Jit M., Warren-Gash C., Guthrie B., Wang H.H.X., Mercer S.W., Sanderson C., McKee M., Troeger C., Ong K.L., et al. Global, regional, and national estimates of the population at increased risk of severe COVID-19 due to underlying health conditions in 2020: A modelling study. Lancet Glob. Heal. 2020;8:e1003–e1017. doi: 10.1016/S2214-109X(20)30264-3.
    1. Jin J.M., Bai P., He W., Wu F., Liu X.F., Han D.M., Liu S., Yang J.K. Gender Differences in Patients With COVID-19: Focus on Severity and Mortality. Front. Public Heal. 2020;8:152. doi: 10.3389/fpubh.2020.00152.
    1. Wambier C.G., Vaño-Galván S., McCoy J., Gomez-Zubiaur A., Herrera S., Hermosa-Gelbard Á., Moreno-Arrones O.M., Jiménez-Gómez N., González-Cantero A., Fonda-Pascual P., et al. Androgenetic alopecia present in the majority of patients hospitalized with COVID-19: The “Gabrin sign”. J. Am. Acad. Dermatol. 2020;83:680–682. doi: 10.1016/j.jaad.2020.05.079.
    1. Saleem H., Rahman J., Aslam N., Murtazaliev S., Khan S. Coronavirus Disease 2019 (COVID-19) in Children: Vulnerable or Spared? A Systematic Review. Cureus. 2020;12:e8207. doi: 10.7759/cureus.8207.
    1. McCoy J., Wambier C.G., Vano-Galvan S., Shapiro J., Sinclair R., Ramos P.M., Washenik K., Andrade M., Herrera S., Goren A. Racial variations in COVID-19 deaths may be due to androgen receptor genetic variants associated with prostate cancer and androgenetic alopecia. Are anti-androgens a potential treatment for COVID-19? J. Cosmet. Dermatol. 2020;19:1542–1543. doi: 10.1111/jocd.13455.
    1. Thebault R., Ba Tran A., Williams V. The coronavirus is infecting and killing black Americans at an alarmingly high rate. The Washington Post. Apr 8, 2020. pp. 1–8.
    1. Mikkonen L., Pihlajamaa P., Sahu B., Zhang F.P., Jänne O.A. Androgen receptor and androgen-dependent gene expression in lung. Mol. Cell. Endocrinol. 2010;317:14–24. doi: 10.1016/j.mce.2009.12.022.
    1. Goren A., McCoy J., Wambier C.G., Vano-Galvan S., Shapiro J., Dhurat R., Washenik K., Lotti T. What does androgenetic alopecia have to do with COVID-19? An insight into a potential new therapy. Dermatol. Ther. 2020;33:e13365. doi: 10.1111/dth.13365.
    1. Ghazavi A., Ganji A., Keshavarzian N., Rabiemajd S., Mosayebi G. Cytokine profile and disease severity in patients with COVID-19. Cytokine. 2021;137:155323. doi: 10.1016/j.cyto.2020.155323.
    1. Miura R., Nakamura K., Miura D., Miura A., Hisamatsu K., Kajiya M., Nagase S., Morita H., Kengo F.K., Ohe T., et al. Anti-inflammatory effect of spironolactone on human peripheral blood mononuclear cells. J. Pharmacol. Sci. 2006;101:256–259. doi: 10.1254/jphs.SC0060049.
    1. Bendtzen K., Hansen P.R., Rieneck K., Sørensen S.F., Nielsen H., Schou M., Skjødt H., Jacobsen S., Nielsen S.M., Peters N.D. Spironolactone inhibits production of proinflammatory cytokines, including tumour necrosis factor-α and interferon-γ and has potential in the treatment of arthritis. Clin. Exp. Immunol. 2003;134:151–158. doi: 10.1046/j.1365-2249.2003.02249.x.
    1. Hansen P.R., Rieneck K., Bendtzen K. Spironolactone inhibits production of proinflammatory cytokines by human mononuclear cells. Immunol. Lett. 2004;91:87–91. doi: 10.1016/j.imlet.2003.11.008.
    1. Sønder S.U.S., Mikkelsen M., Rieneck K., Hedegaard C.J., Bendtzen K. Effects of spironolactone on human blood mononuclear cells: Mineralocorticoid receptor independent effects on gene expression and late apoptosis induction. Br. J. Pharmacol. 2006;148:46–53. doi: 10.1038/sj.bjp.0706700.
    1. Biyashev D., Onay U.V., Dalal P., Demczuk M., Evans S., Techner J., Lu K.Q. A novel treatment for skin repair using a combination of spironolactone and vitamin D3. Ann. N. Y. Acad. Sci. 2020;1480:170. doi: 10.1111/nyas.14485.
    1. Sønder S.U.S., Woetmann A., Ødum N., Bendtzen K. Spironolactone induces apoptosis and inhibits NF-κB independent of the mineralocorticoid receptor. Apoptosis. 2006;11:2159–2165. doi: 10.1007/s10495-006-0286-3.
    1. Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033–1034. doi: 10.1016/S0140-6736(20)30628-0.
    1. Mikkelsen M., Sønder S.U., Nersting J., Bendtzen K. Spironolactone induces apoptosis in human mononuclear cells. Association between apoptosis and cytokine suppression. Apoptosis. 2006;11:573–579. doi: 10.1007/s10495-006-4919-3.
    1. Gold A., Eini L., Nissim-Rafinia M., Viner R., Ezer S., Erez K., Aqaqe N., Hanania R., Milyavsky M., Meshorer E., et al. Spironolactone inhibits the growth of cancer stem cells by impairing DNA damage response. Oncogene. 2019;38:3103–3118. doi: 10.1038/s41388-018-0654-9.
    1. Yavas G., Yavas C., Celik E., Sen E., Ata O., Afsar R.E. The impact of spironolactone on the lung injury induced by concomitant trastuzumab and thoracic radiotherapy. Int. J. Radiat. Res. 2019;17:87–95. doi: 10.1016/j.jtho.2018.08.997.
    1. Zannad F., Alla F., Dousset B., Perez A., Pitt B. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: Insights from the randomized aldactone evaluation study (RALES). Rales Investigators. Circulation. 2000;102:2700–2706. doi: 10.1161/01.CIR.102.22.2700.
    1. Chen X., Ge W., Dong T., Hu J., Chen L., Fan X., Gong Y., Zhou H. Spironolactone inhibits endothelial-mesenchymal transition via the adenosine A2A receptor to reduce cardiorenal fibrosis in rats. Life Sci. 2019;224:177–186. doi: 10.1016/j.lfs.2019.01.017.
    1. Lother A. Mineralocorticoid Receptors: Master Regulators of Extracellular Matrix Remodeling. Circ. Res. 2020;127:354–356. doi: 10.1161/CIRCRESAHA.120.317424.
    1. Lieber G.B., Fernandez X., Mingo G.G., Jia Y., Caniga M., Gil M.A., Keshwani S., Woodhouse J.D., Cicmil M., Moy L.Y., et al. Mineralocorticoid receptor antagonists attenuate pulmonary inflammation and bleomycin-evoked fibrosis in rodent models. Eur. J. Pharmacol. 2013;718:290–298. doi: 10.1016/j.ejphar.2013.08.019.
    1. Ji W.-J., Ma Y.-Q., Zhou X., Zhang Y.-D., Lu R.-Y., Guo Z.-Z., Sun H.-Y., Hu D.-C., Yang G.-H., Li Y.-M., et al. Spironolactone attenuates bleomycin-induced pulmonary injury partially via modulating mononuclear phagocyte phenotype switching in circulating and alveolar compartments. PLoS ONE. 2013;8:e81090. doi: 10.1371/journal.pone.0081090.
    1. Atalay C., Dogan N., Aykan S., Gundogdu C., Keles M.S. The efficacy of spironolactone in the treatment of acute respiratory distress syndrome-induced rats. Singapore Med. J. 2010;51:501–505.
    1. Zhang Z., Rong L., Li Y.-P. Flaviviridae Viruses and Oxidative Stress: Implications for Viral Pathogenesis. Oxid. Med. Cell. Longev. 2019;2019:1409582. doi: 10.1155/2019/1409582.
    1. Camini F.C., da Silva Caetano C.C., Almeida L.T., de Brito Magalhães C.L. Implications of oxidative stress on viral pathogenesis. Arch. Virol. 2017;162:907–917. doi: 10.1007/s00705-016-3187-y.
    1. Maciejewski D. High flow oxygen therapy in intensive care and anaesthesiology. Anaesthesiol. Intensive Ther. 2019;51:41–50. doi: 10.5603/AIT.2019.0012.
    1. Mayyas F.A., Aljohmani A.I., Alzoubi K.H. The Impact of Spironolactone on Markers of Myocardial Oxidative Status, Inflammation and Remodeling in Hyperthyroid Rats. Curr. Mol. Pharmacol. 2019;13:206–215. doi: 10.2174/1874467212666191113150553.
    1. Taye A., Morawietz H. Spironolactone inhibits NADPH oxidase-induced oxidative stress and enhances eNOS in human endothelial cells. Iran. J. Pharm. Res. IJPR. 2011;10:329–337.

Source: PubMed

3
Subskrybuj