Diabetic Polyneuropathy in Type 2 Diabetes Mellitus: Inflammation, Oxidative Stress, and Mitochondrial Function

Luis Miguel Román-Pintos, Geannyne Villegas-Rivera, Adolfo Daniel Rodríguez-Carrizalez, Alejandra Guillermina Miranda-Díaz, Ernesto Germán Cardona-Muñoz, Luis Miguel Román-Pintos, Geannyne Villegas-Rivera, Adolfo Daniel Rodríguez-Carrizalez, Alejandra Guillermina Miranda-Díaz, Ernesto Germán Cardona-Muñoz

Abstract

Diabetic polyneuropathy (DPN) is defined as peripheral nerve dysfunction. There are three main alterations involved in the pathologic changes of DPN: inflammation, oxidative stress, and mitochondrial dysfunction. Inflammation induces activation of nuclear factor kappa B, activator protein 1, and mitogen-activated protein kinases. Oxidative stress induced by hyperglycemia is mediated by several identified pathways: polyol, hexosamine, protein kinase C, advanced glycosylation end-products, and glycolysis. In addition, mitochondrial dysfunction accounts for most of the production of reactive oxygen and nitrosative species. These free radicals cause lipid peroxidation, protein modification, and nucleic acid damage, to finally induce axonal degeneration and segmental demyelination. The prevalence of DPN ranges from 2.4% to 78.8% worldwide, depending on the diagnostic method and the population assessed (hospital-based or outpatients). Risk factors include age, male gender, duration of diabetes, uncontrolled glycaemia, height, overweight and obesity, and insulin treatment. Several diagnostic methods have been developed, and composite scores combined with nerve conduction studies are the most reliable to identify early DPN. Treatment should be directed to improve etiologic factors besides reducing symptoms; several approaches have been evaluated to reduce neuropathic impairments and improve nerve conduction, such as oral antidiabetics, statins, and antioxidants (alpha-lipoic acid, ubiquinone, and flavonoids).

Conflict of interest statement

The authors declare that there are no competing interests.

Figures

Figure 1
Figure 1
Prevalence of DPN by country. Colors represent the percentiles 25, 50, and 75 of epidemiology studies.
Figure 2
Figure 2
Mechanisms of nerve dysfunction induced by hyperglycemia. The description of how inflammation, oxidative stress, and mitochondrial dysfunction contributes to ROS/RNS formation and nerve damage. Paradoxical increase of adiponectin in DPN.

References

    1. American Diabetes Association. Microvascular complications and foot care. Diabetes Care. 2016;39(1):S72–S80.
    1. Wang W.-T., Lee P., Yeh H.-W., Smirnova I. V., Choi I.-Y. Effects of acute and chronic hyperglycemia on the neurochemical profiles in the rat brain with streptozotocin-induced diabetes detected using in vivo 1H MR spectroscopy at 9.4 T. Journal of Neurochemistry. 2012;121(3):407–417. doi: 10.1111/j.1471-4159.2012.07698.x.
    1. Negi G., Kumar A., Joshi R. P., Ruby P. K., Sharma S. S. Oxidative stress and diabetic neuropathy: current status of antioxidants. Institute of Integrative Omics and Applied Biotechnology Journal. 2011;2(6):71–78.
    1. Bandeira S. D. M., da Fonseca L. J. S., Guedes G. D. S., Rabelo L. A., Goulart M. O. F., Vasconcelos S. M. L. Oxidative stress as an underlying contributor in the development of chronic complications in diabetes mellitus. International Journal of Molecular Sciences. 2013;14(2):3265–3284. doi: 10.3390/ijms14023265.
    1. Brownlee M. A radical explanation for glucose-induced β cell dysfunction. Journal of Clinical Investigation. 2003;112(12):1788–1790. doi: 10.1172/JCI200320501.
    1. Negre-Salvayre A., Coatrieux C., Ingueneau C., Salvayre R. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. British Journal of Pharmacology. 2008;153(1):6–20. doi: 10.1038/sj.bjp.0707395.
    1. Ayepola O. R., Chegou N. N., Brooks N. L., Oguntibeju O. O. Kolaviron, a Garcinia biflavonoid complex ameliorates hyperglycemia-mediated hepatic injury in rats via suppression of inflammatory responses. BMC Complementary and Alternative Medicine. 2013;13, article 363 doi: 10.1186/1472-6882-13-363.
    1. Rijken P. M., Dekker J., Dekker E., et al. Clinical and functional correlates of foot pain in diabetic patients. Disability and Rehabilitation. 1998;20(9):330–336. doi: 10.3109/09638289809166090.
    1. Boulton A. J. M., Vinik A. I., Arezzo J. C., et al. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956–962. doi: 10.2337/diacare.28.4.956.
    1. Boulton A. J. M., Malik R. A., Arezzo J. C., Sosenko J. M. Diabetic somatic neuropathies. Diabetes Care. 2004;27(6):1458–1486. doi: 10.2337/diacare.27.6.1458.
    1. Raman R., Gupta A., Krishna S., Kulothungan V., Sharma T. Prevalence and risk factors for diabetic microvascular complications in newly diagnosed type II diabetes mellitus. Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetic Study (SN-DREAMS, report 27) Journal of Diabetes and Its Complications. 2012;26(2):123–128. doi: 10.1016/j.jdiacomp.2012.02.001.
    1. Ziegler D., Papanas N., Vinik A. I., Shaw J. E. Epidemiology of polyneuropathy in diabetes and prediabetes. Handbook of Clinical Neurology. 2014;126:3–22. doi: 10.1016/B978-0-444-53480-4.00001-1.
    1. Soheilykhah S., Rashidi M., Dehghan F. Prevalence of peripheral neuropathy in diabetic patients. Iranian Journal of Diabetes and Obesity. 2013;5(3):107–113.
    1. Knuiman M. W., Welborn T. A., McCann V. J., Stanton K. G., Constable I. J. Prevalence of diabetic complications in relation to risk factors. Diabetes. 1986;35(12):1332–1339. doi: 10.2337/diab.35.12.1332.
    1. Franklin G. M., Kahn L. B., Baxter J., Marshall J. A., Hamman R. F. Sensory neuropathy in non-insulin-dependent diabetes mellitus: the san luis valley diabetes study. American Journal of Epidemiology. 1990;131(4):633–643.
    1. Walters D. P., Gatling W., Mullee M. A., Hill R. D. The prevalence of diabetic distal sensory neuropathy in an English community. Diabetic Medicine. 1992;9(4):349–353. doi: 10.1111/j.1464-5491.1992.tb01795.x.
    1. Dyck P. J., Kratz K. M., Karnes J. L., et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester diabetic neuropathy study. Neurology. 1993;43(4):817–824. doi: 10.1212/wnl.43.4.817.
    1. Davies M., Brophy S., Williams R., Taylor A. The prevalence, severity, and impact of painful diabetic peripheral neuropathy in type 2 diabetes. Diabetes Care. 2006;29(7):1518–1522. doi: 10.2337/dc05-2228.
    1. Pop-Busui R., Lu J., Lopes N., Jones T. L. Z. Prevalence of diabetic peripheral neuropathy and relation to glycemic control therapies at baseline in the BARI 2D cohort. Journal of the Peripheral Nervous System. 2009;14(1):1–13. doi: 10.1111/j.1529-8027.2009.00200.x.
    1. Camacho-López J. Prevalencia de neuropatía periférica en pacientes con diabetes mellitus tipo 2, atendidos en la Clínica Hospital del ISSSTE en Mazatlán, Sinaloa. Revista de Especialidades Médico Quirúrgicas. 2011;16(2):71–74.
    1. Tabatabaei-Malazy O., Mohajeri-Tehrani M. R., Madani S. P., Heshmat R., Larijani B. The prevalence of diabetic peripheral neuropathy and related factors. Iranian Journal of Public Health. 2011;40(3):55–62.
    1. Ibarra R. C. T., Rocha L. J. J., Hernández O. R., Nieves R. R. E., Leyva J. R. Prevalence of peripheral neuropathy among primary care type 2 diabetic patients. Revista Médica de Chile. 2012;140(9):1126–1131. doi: 10.4067/s0034-98872012000900004.
    1. Kumar H. K. V. S., Kota S. K., Basile A., et al. Profile of microvascular disease in type 2 diabetes in a tertiary health care hospital in india. Annals of Medical and Health Sciences Research. 2012;2(2):103–108.
    1. Das A. K., Seshiah V., Sahay B. K., et al. Improving management practices and clinical outcomes in type 2 diabetes study: prevalence of complications in people with type 2 diabetes in India. Indian Journal of Endocrinology and Metabolism. 2012;16(2):S430–S431.
    1. Lu B., Hu J., Wen J., et al. Determination of peripheral neuropathy prevalence and associated factors in Chinese subjects with diabetes and pre-diabetes—ShangHai diabetic neuRopathy epidemiology and molecular genetics study (SH-DREAMS) PLoS ONE. 2013;8(4) doi: 10.1371/journal.pone.0061053.e61053
    1. Jaiswal M., Lauer A., Martin C. L., et al. Peripheral neuropathy in adolescents and young adults with type 1 and type 2 diabetes from the SEARCH for diabetes in youth follow-up cohort: a pilot study. Diabetes Care. 2013;36(12):3903–3908. doi: 10.2337/dc13-1213.
    1. Ali A., Iqbal F., Taj A., Iqbal Z., Amin M. J., Iqbal Q. Z. Prevalence of microvascular complications in newly diagnosed patients with type 2 diabetes. Pakistan Journal of Medical Sciences. 2013;29(4):899–902. doi: 10.12669/pjms.294.3704.
    1. Kiani J., Moghimbeigi A., Azizkhani H., Kosarifard S. The prevalence and associated risk factors of peripheral diabetic neuropathy in Hamedan, Iran. Archives of Iranian Medicine. 2013;16(1):17–19.
    1. Bansal D., Gudala K., Muthyala H., Esam H. P., Nayakallu R., Bhansali A. Prevalence and risk factors of development of peripheral diabetic neuropathy in type 2 diabetes mellitus in a tertiary care setting. Journal of Diabetes Investigation. 2014;5(6):714–721. doi: 10.1111/jdi.12223.
    1. Kung K., Chow K. M., Hui E. M., et al. Prevalence of complications among Chinese diabetic patients in urban primary care clinics: a cross-sectional study. BMC Family Practice. 2014;15, article 8 doi: 10.1186/1471-2296-15-8.
    1. Assaad-Khalil S. H., Zaki A., Rehim A. A., et al. Prevalence of diabetic foot disorders and related risk factors among Egyptian subjects with diabetes. Primary Care Diabetes. 2015;9(4):297–303. doi: 10.1016/j.pcd.2014.10.010.
    1. Li L., Chen J., Wang J., Cai D. Prevalence and risk factors of diabetic peripheral neuropathy in type 2 diabetes mellitus patients with overweight/obese in Guangdong province, China. Primary Care Diabetes. 2015;9(3):191–195. doi: 10.1016/j.pcd.2014.07.006.
    1. Kuate-Tegueu C., Temfack E., Ngankou S., Doumbe J., Djientcheu V. P., Kengne A. P. Prevalence and determinants of diabetic polyneuropathy in a sub-Saharan African referral hospital. Journal of the Neurological Sciences. 2015;355(1-2):108–112. doi: 10.1016/j.jns.2015.05.035.
    1. Olamoyegun M., Ibraheem W., Iwuala S., Audu M., Kolawole B. Burden and pattern of micro vascular complications in type 2 diabetes in a tertiary health institution in Nigeria. African Health Sciences. 2015;15(4):1136–1141. doi: 10.4314/ahs.v15i4.12.
    1. De Los Angeles Lazo M., Bernabé-Ortiz A., Pinto M. E., et al. Diabetic peripheral neuropathy in ambulatory patients with type 2 diabetes in a general hospital in a middle income country: a cross-sectional study. PLoS ONE. 2014;9(5) doi: 10.1371/journal.pone.0095403.e95403
    1. Jiang Y., Ran X., Jia L., et al. Epidemiology of type 2 diabetic foot problems and predictive factors for amputation in China. The International Journal of Lower Extremity Wounds. 2015;14(1):19–27. doi: 10.1177/1534734614564867.
    1. Kulshrestha M., Seth S., Tripathi A., Seth A., Kumar A. Prevalence of complications and clinical audit of management of type 2 diabetes mellitus: a prospective hospital based study. Journal of Clinical and Diagnostic Research. 2015;9(11):OC25–OC28. doi: 10.7860/jcdr/2015/15369.6848.
    1. Wu D., Xuan Y., Ruan Y., et al. Prevalence of macro- and microvascular complications in patients with type 2 diabetes and kidney disease with or without albuminuria in a single Chinese Diabetes Centre. Diabetes & Vascular Disease Research. 2016;13(1):21–30. doi: 10.1177/1479164115610247.
    1. Salvotelli L., Stoico V., Perrone F., et al. Prevalence of neuropathy in type 2 diabetic patients and its association with other diabetes complications: the Verona Diabetic Foot Screening Program. Journal of Diabetes and Its Complications. 2015;29(8):1066–1070. doi: 10.1016/j.jdiacomp.2015.06.014.
    1. D'Souza M., Kulkarni V., Bhaskaran U., et al. Diabetic peripheral neuropathy and its determinants among patients attending a tertiary health care centre in Mangalore, India. Journal of Public Health Research. 2015;4(2):p. 450. doi: 10.4081/jphr.2015.450.
    1. Khedr E. M., Fawi G., Allah Abbas M. A., et al. Prevalence of diabetes and diabetic neuropathy in Qena Governorate: population-based survey. Neuroepidemiology. 2016;46(3):173–181. doi: 10.1159/000444056.
    1. Parisi M. C. R., Moura N. A., Menezes F. H. Baseline characteristics and risk factors for ulcer, amputation and severe neuropathy in diabetic foot at risk: the BRAZUPA study. Diabetology & Metabolic Syndrome. 2016;25, article 8 doi: 10.1186/s13098-016-0126-8.
    1. Popescu S., Timar B., Baderca F., et al. Age as an independent factor for the development of neuropathy in diabetic patients. Clinical Interventions in Aging. 2016:313–318. doi: 10.2147/cia.s97295.
    1. Herder C., Bongaerts B. W. C., Rathmann W., et al. Association of subclinical inflammation with polyneuropathy in the older population: KORA F4 Study. Diabetes Care. 2013;36(11):3663–3670. doi: 10.2337/dc13-0382.
    1. Alonso-Morán E., Orueta J. F., Esteban J. I. F., et al. The prevalence of diabetes-related complications and multimorbidity in the population with type 2 diabetes mellitus in the Basque Country. BMC Public Health. 2014;14, article 1059 doi: 10.1186/1471-2458-14-1059.
    1. Kostev K., Jockwig A., Hallwachs A., Rathmann W. Prevalence and risk factors of neuropathy in newly diagnosed type 2 diabetes in primary care practices: a retrospective database analysis in Germany and UK. Primary Care Diabetes. 2014;8(3):250–255. doi: 10.1016/j.pcd.2014.01.011.
    1. Abbott C. A., Malik R. A., Van Ross E. R. E., Kulkarni J., Boulton A. J. M. Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care. 2011;34(10):2220–2224. doi: 10.2337/dc11-1108.
    1. Dyck P. J., Litchy W. J., Lehman K. A., Hokanson J. L., Low P. A., O'Brien P. C. Variables influencing neuropathic endpoints: the Rochester Diabetic Neuropathy Study of Healthy Subjects. Neurology. 1995;45(6):1115–1121. doi: 10.1212/wnl.45.6.1115.
    1. Rivner M. H., Swift T. R., Crout B. O., Rhodes K. P. Toward more rational nerve conduction interpretations: the effect of height. Muscle and Nerve. 1990;13(3):232–239. doi: 10.1002/mus.880130310.
    1. England J. D., Gronseth G. S., Franklin G., et al. Distal symmetric polyneuropathy: a definition for clinical research—report of the American Academy of Neurology, the American Association of Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology. 2005;64(2):199–207. doi: 10.1212/01.wnl.0000149522.32823.ea.
    1. Kärvestedt L., Mårtensson E., Grill V., et al. Peripheral sensory neuropathy associates with micro- or microangiopathy: results from a population-based study of type 2 diabetic patients in Sweden. Diabetes Care. 2009;32(2):317–322. doi: 10.2337/dc08-1250.
    1. Inoue R., Sumitani M., Yasuda T., et al. Independent risk factors for positive and negative symptoms in patients with diabetic polyneuropathy. Journal of Pain & Palliative Care Pharmacotherapy. 2016;30(3):178–183. doi: 10.1080/15360288.2016.1192081.
    1. Dyck P. J., Davies J. L., Wilson D. M., Service F. J., Melton L. J., III, O'Brien P. C. Risk factors for severity of diabetic polyneuropathy: intensive longitudinal assessment of the Rochester Diabetic Neuropathy Study cohort. Diabetes Care. 1999;22(9):1479–1486. doi: 10.2337/diacare.22.9.1479.
    1. Lee W. J., Jang S., Lee S. H., Lee H. Correlation between the severity of diabetic peripheral polyneuropathy and glycosylated hemoglobin levels: a quantitative study. Annals of Rehabilitation Medicine. 2016;40(2):263–270. doi: 10.5535/arm.2016.40.2.263.
    1. Ybarra-Muñoz J., Jurado-Campos J., Garcia-Gil M., et al. Cardiovascular disease predicts diabetic peripheral polyneuropathy in subjects with type 2 diabetes: A 10-year Prospective Study. European Journal of Cardiovascular Nursing. 2016;15(4):248–254. doi: 10.1177/1474515114565215.
    1. Dyck P. J., Lais A., Karnes J. L., et al. Fiber loss is a primary and multifocal in sural nerves in diabetic polyneuropathy. Annals of Neurology. 1973;10:13–18.
    1. Dyck P. J., Giannini C. Pathologic alterations in the diabetic neuropathies of humans: a review. Journal of Neuropathology & Experimental Neurology. 1996;55(12):1181–1193. doi: 10.1097/00005072-199612000-00001.
    1. Dyck P. J., Hansen S., Karnes J., et al. Capillary number and percentage closed in human diabetic sural nerve. Proceedings of the National Academy of Sciences of the United States of America. 1985;82(8):2513–2517. doi: 10.1073/pnas.82.8.2513.
    1. Giannini C., Dyck P. J. Ultrastructural morphometric abnormalities of sural nerve endoneurial microvessels in diabetes mellitus. Annals of Neurology. 1994;36(3):408–415. doi: 10.1002/ana.410360312.
    1. Zherebitskaya E., Akude E., Smith D. R., Fernyhough P. Development of selective axonopathy in adult sensory neurons isolated from diabetic rats: role of glucose-induced oxidative stress. Diabetes. 2009;58(6):1356–1364. doi: 10.2337/db09-0034.
    1. Karin M. The regulation of AP-1 activity by mitogen-activated protein kinases. Journal of Biological Chemistry. 1995;270(28):16483–16486. doi: 10.1074/jbc.270.28.16483.
    1. Liu G.-H., Qu J., Shen X. NF-κB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochimica et Biophysica Acta—Molecular Cell Research. 2008;1783(5):713–727. doi: 10.1016/j.bbamcr.2008.01.002.
    1. Ganesh Yerra V., Negi G., Sharma S. S., Kumar A. Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy. Redox Biology. 2013;1(1):394–397. doi: 10.1016/j.redox.2013.07.005.
    1. Shimomura I., Funahashi T., Matsuzawa Y. Significance of adipocytokine, fat-derived hormones, in metabolic syndrome. Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme. 2002;47(14):1896–1903.
    1. Adamska A., Nikołajuk A., Karczewska-Kupczewska M., et al. Relationships between serum adiponectin and soluble TNF-α receptors and glucose and lipid oxidation in lean and obese subjects. Acta Diabetologica. 2012;49(1):17–24. doi: 10.1007/s00592-010-0252-y.
    1. Salmenniemi U., Zacharova J., Ruotsalainen E., et al. Association of adiponectin level and variants in the adiponectin gene with glucose metabolism, energy expenditure, and cytokines in offspring of type 2 diabetic patients. Journal of Clinical Endocrinology and Metabolism. 2005;90(7):4216–4223. doi: 10.1210/jc.2004-2289.
    1. Matsuda M., Kawasaki F., Inoue H., et al. Possible contribution of adipocytokines on diabetic neuropathy. Diabetes Research and Clinical Practice. 2004;66, supplement:S121–S123. doi: 10.1016/j.diabres.2004.05.010.
    1. Herder C., Lankisch M., Ziegler D., et al. Subclinical inflammation and diabetic polyneuropathy. Diabetes Care. 2009;32(4):680–682. doi: 10.2337/dc08-2011.
    1. Schamarek I., Herder C., Nowotny B., et al. Adiponectin, markers of subclinical inflammation and nerve conduction in individuals with recently diagnosed type 1 and type 2 diabetes. European Journal of Endocrinology. 2016;174(4):433–443. doi: 10.1530/EJE-15-1010.
    1. Hussain G., Rizvi S. A. A., Singhal S., Zubair M., Ahmad J. Serum levels of TNF-α in peripheral neuropathy patients and its correlation with nerve conduction velocity in type 2 diabetes mellitus. Diabetes and Metabolic Syndrome: Clinical Research and Reviews. 2013;7(4):238–242. doi: 10.1016/j.dsx.2013.02.005.
    1. Vlassara H., Cai W., Crandall J., et al. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(24):15596–15601. doi: 10.1073/pnas.242407999.
    1. Vlassara H., Striker G. E. Advanced Glycation Endproducts in Diabetes and Diabetic Complications. Endocrinology and Metabolism Clinics of North America. 2013;42(4):697–719. doi: 10.1016/j.ecl.2013.07.005.
    1. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–820. doi: 10.1038/414813a.
    1. Leverve X. M., Guigas B., Detaille D., et al. Mitochondrial metabolism and type-2 diabetes: a specific target of metformin. Diabetes and Metabolism. 2003;29(4):6588–6594. doi: 10.1016/s1262-3636(07)70001-0.
    1. Zhang Z., Liew C. W., Handy D. E., et al. High glucose inhibits glucose-6-phosphate dehydrogenase, leading to increased oxidative stress and β-cell apoptosis. FASEB Journal. 2010;24(5):1497–1505. doi: 10.1096/fj.09-136572.
    1. Buse M. G. Hexosamines, insulin resistance, and the complications of diabetes: current status. American Journal of Physiology—Endocrinology and Metabolism. 2006;290(1):E1–E8. doi: 10.1152/ajpendo.00329.2005.
    1. Comer F. I., Hart G. W. Reciprocity between O-GlcNAc and O-phosphate on the carboxyl terminal domain of RNA polymerase II. Biochemistry. 2001;40(26):7845–7852. doi: 10.1021/bi0027480.
    1. Federici M., Menghini R., Mauriello A., et al. Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation. 2002;106(4):466–472. doi: 10.1161/01.cir.0000023043.02648.51.
    1. Du X.-L., Edelstein D., Rossetti L., et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(22):12222–12226. doi: 10.1073/pnas.97.22.12222.
    1. Ramana K. V., Friedrich B., Tammali R., West M. B., Bhatnagar A., Srivastava S. K. Requirement of aldose reductase for the hyperglycemic activation of protein kinase C and formation of diacylglycerol in vascular smooth muscle cells. Diabetes. 2005;54(3):818–829. doi: 10.2337/diabetes.54.3.818.
    1. Gabbay K. H., Merola L. O., Field R. A. Sorbitol pathway: presence in nerve and cord with substrate accumulation in diabetes. Science. 1966;151(3707):209–210. doi: 10.1126/science.151.3707.209.
    1. Yorek M. A., Dunlap J. A., Ginsberg B. H. myo-Inositol metabolism in 41A3 neuroblastoma cells: Effects of high glucose and sorbitol levels. Journal of Neurochemistry. 1987;48(1):53–61. doi: 10.1111/j.1471-4159.1987.tb13126.x.
    1. Majno G., Karnovsky M. L. A biochemical and morphologic study of myelination and demyelination: II. Lipogenesis in vitro by rat nerves following transection. Journal of Experimental Medicine. 1958;108(2):197–214. doi: 10.1084/jem.108.2.197.
    1. Greene D. A., Yagihashi S., Lattimer S. A., Sima A. A. Nerve Na+-K+-ATPase, conduction, and myo-inositol in the insulin-deficient BB rat. The American Journal of Physiology. 1984;247(4):E534–E539.
    1. Brownlee M. Advanced protein glycosylation in diabetes and aging. Annual Review of Medicine. 1995;46:223–234. doi: 10.1146/annurev.med.46.1.223.
    1. Duran-Jimenez B., Dobler D., Moffatt S., et al. Advanced glycation end products in extracellular matrix proteins contribute to the failure of sensory nerve regeneration in diabetes. Diabetes. 2009;58(12):2893–2903. doi: 10.2337/db09-0320.
    1. Goh S.-Y., Cooper M. E. The role of advanced glycation end products in progression and complications of diabetes. Journal of Clinical Endocrinology and Metabolism. 2008;93(4):1143–1152. doi: 10.1210/jc.2007-1817.
    1. Cai W., Ramdas M., Zhu L., Chen X., Striker G. E., Vlassara H. Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(39):15888–15893. doi: 10.1073/pnas.1205847109.
    1. Valko M., Leibfritz D., Moncol J., Cronin M. T. D., Mazur M., Telser J. Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry and Cell Biology. 2007;39(1):44–84. doi: 10.1016/j.biocel.2006.07.001.
    1. Russell J. W., Golovoy D., Vincent A. M., et al. High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB Journal. 2002;16(13):1738–1748. doi: 10.1096/fj.01-1027com.
    1. Cederberg J., Basu S., Eriksson U. J. Increased rate of lipid peroxidation and protein carbonylation in experimental diabetic pregnancy. Diabetologia. 2001;44(6):766–774. doi: 10.1007/s001250051686.
    1. Ziegler D., Sohr C. G. H., Nourooz-Zadeh J. Oxidative stress and antioxidant defense in relation to the severity of diabetic polyneuropathy and cardiovascular autonomic neuropathy. Diabetes Care. 2004;27(9):2178–2183. doi: 10.2337/diacare.27.9.2178.
    1. Niki E., Yoshida Y., Saito Y., Noguchi N. Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochemical and Biophysical Research Communications. 2005;338(1):668–676. doi: 10.1016/j.bbrc.2005.08.072.
    1. Carbonneau M. A., Penchant E., Sess D., Canioni P., Clerc M. Free and bound malondialdehyde measured as thiobarbituric acid adduct by HPLC in serum and plasma. Clinical Chemistry. 1991;37(8):1423–1429.
    1. Ahmed F. N., Naqvi F. N., Shafiq F. Lipid peroxidation and serum antioxidant enzymes in patients with type 2 diabetes mellitus. Annals of the New York Academy of Sciences. 2006;1084:481–489. doi: 10.1196/annals.1372.022.
    1. Kalaivanam K. N., Dharmalingam M., Marcus S. R. Lipid peroxidation in type 2 diabetes mellitus. International Journal of Diabetes in Developing Countries. 2006;26(1):30–32. doi: 10.4103/0973-3930.26889.
    1. Aydin A., Orhan H., Sayal A., Özata M., Şahin G., Işımer A. Oxidative stress and nitric oxide related parameters in type II diabetes mellitus: effects of glycemic control. Clinical Biochemistry. 2001;34(1):65–70. doi: 10.1016/s0009-9120(00)00199-5.
    1. Mahboob M., Rahman M. F., Grover P. Serum lipid peroxidation and antioxidant enzyme levels in male and female diabetic patients. Singapore Medical Journal. 2005;46(7):322–324.
    1. El Boghdady N. A., Badr G. A. Evaluation of oxidative stress markers and vascular risk factors in patients with diabetic peripheral neuropathy. Cell Biochemistry and Function. 2012;30(4):328–334. doi: 10.1002/cbf.2808.
    1. Srivatsan R., Das S., Gadde R., et al. Antioxidants and lipid peroxidation status in diabetic patients with and without complications. Archives of Iranian Medicine. 2009;12(2):121–127.
    1. Murphy M. P. How mitochondria produce reactive oxygen species. Biochemical Journal. 2009;417(1):1–13. doi: 10.1042/BJ20081386.
    1. Balaban R. S., Nemoto S., Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120(4):483–495. doi: 10.1016/j.cell.2005.02.001.
    1. Naudi A., Jove M., Ayala V., et al. Cellular dysfunction in diabetes as maladaptive response to mitochondrial oxidative stress. Experimental Diabetes Research. 2012;2012:14. doi: 10.1155/2012/696215.696215
    1. Cashman C. R., Höke A. Mechanisms of distal axonal degeneration in peripheral neuropathies. Neuroscience Letters. 2015;596:33–50. doi: 10.1016/j.neulet.2015.01.048.
    1. Metodiewa D., Kośka C. Reactive oxygen species and reactive nitrogen species: relevance to cyto(neuro)toxic events and neurologic disorders. An overview. Neurotoxicity Research. 1999;1(3):197–233. doi: 10.1007/bf03033290.
    1. Tewari S., Santos J. M., Kowluru R. A. Damaged mitochondrial DNA replication system and the development of diabetic retinopathy. Antioxidants and Redox Signaling. 2012;17(3):492–504. doi: 10.1089/ars.2011.4333.
    1. Vincent A. M., Brownlee M., Russell J. W. Oxidative stress and programmed cell death in diabetic neuropathy. Annals of the New York Academy of Sciences. 2002;959:368–383. doi: 10.1111/j.1749-6632.2002.tb02108.x.
    1. Akude E., Zherebitskaya E., Chowdhury S. K. R., Smith D. R., Dobrowsky R. T., Fernyhough P. Diminished superoxide generation is associated with respiratory chain dysfunction and changes in the mitochondrial proteome of sensory neurons from diabetic rats. Diabetes. 2011;60(1):288–297. doi: 10.2337/db10-0818.
    1. Meijer J.-W. G., Bosma E., Lefrandt J. D., et al. Clinical diagnosis of diabetic polyneuropathy with the diabetic neuropathy symptom and diabetic neuropathy examination scores. Diabetes Care. 2003;26(3):697–701. doi: 10.2337/diacare.26.3.697.
    1. Tesfaye S., Boulton A. J. M., Dyck P. J., et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care. 2010;33(12):p. 2725. doi: 10.2337/dc10-er12a.
    1. Dyck P. J. Detection, characterization, and staging of polyneuropathy: assessed in diabetics. Muscle and Nerve. 1988;11(1):21–32. doi: 10.1002/mus.880110106.
    1. Tesfaye S., Boulton A. J., Dyck P. J., et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care. 2010;33(10):2285–2293. doi: 10.2337/dc10-1303.
    1. Lunetta M., Le Moli R., Grasso G., Sangiorgio L. A simplified diagnostic test for ambulatory screening of peripheral diabetic neuropathy. Diabetes Research and Clinical Practice. 1998;39(3):165–172. doi: 10.1016/S0168-8227(98)00005-9.
    1. Moghtaderi A., Bakhshipour A., Rashidi H. Validation of Michigan neuropathy screening instrument for diabetic peripheral neuropathy. Clinical Neurology and Neurosurgery. 2006;108(5):477–481. doi: 10.1016/j.clineuro.2005.08.003.
    1. Bril V., Perkins B. A. Validation of the Toronto clinical scoring system for diabetic polyneuropathy. Diabetes Care. 2002;25(11):2048–2052. doi: 10.2337/diacare.25.11.2048.
    1. Dyck P. J., Davies J. L., Litchy W. J., O'Brien P. C. Longitudinal assessment of diabetic polyneuropathy using a composite score in the Rochester Diabetic Neuropathy Study cohort. Neurology. 1997;49(1):229–239. doi: 10.1212/WNL.49.1.229.
    1. Al-Geffari M. Comparison of different screening tests for diagnosis of diabetic peripheral neuropathy in Primary Health Care setting. International Journal of Health Sciences. 2012;6(2):127–134. doi: 10.12816/0005988.
    1. Feldman E. L., Stevens M. J., Thomas P. K., Brown M. B., Canal N., Greene D. A. A practical two-step quantitative clinical and electrophysiological assessment for the diagnosis and staging of diabetic neuropathy. Diabetes Care. 1994;17(11):1281–1289. doi: 10.2337/diacare.17.11.1281.
    1. Xiong Q., Lu B., Ye H., Wu X., Zhang T., Li Y. The diagnostic value of neuropathy symptom and change score, neuropathy impairment score and Michigan neuropathy screening instrument for diabetic peripheral neuropathy. European Neurology. 2015;74(5-6):323–327. doi: 10.1159/000441449.
    1. Liu F., Mao J. P., Yan X. Toronto clinical scoring system in diabetic peripheral neuropathy. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2008;33(12):1137–1141.
    1. Shakher J., Stevens M. J. Update on the management of diabetic polyneuropathies. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2011;4:289–305. doi: 10.2147/dmso.s11324.
    1. Scarpello J. H. B., Howlett H. C. S. Metformin therapy and clinical uses. Diabetes and Vascular Disease Research. 2008;5(3):157–167. doi: 10.3132/dvdr.2008.027.
    1. Dunn C. J., Peters D. H. Metformin. A review of its pharmacological properties and therapeutic use in non-insulin-dependent diabetes mellitus. Drugs. 1995;49(5):721–749. doi: 10.2165/00003495-199549050-00007.
    1. Guigas B., Detaille D., Chauvin C., et al. Metformin inhibits mitochondrial permeability transition and cell death: a pharmacological in vitro study. Biochemical Journal. 2004;382(3):877–884. doi: 10.1042/bj20040885.
    1. Detaille D., Guigas B., Chauvin C., et al. Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process. Diabetes. 2005;54(7):2179–2187. doi: 10.2337/diabetes.54.7.2179.
    1. Kooy A., De Jager J., Lehert P., et al. Long-term effects of metformin on metabolism and microvascular and macrovascular disease in patients with type 2 diabetes mellitus. Archives of Internal Medicine. 2009;169(6):616–625. doi: 10.1001/archinternmed.2009.20.
    1. Hasanvand A., Amini-Khoei H., Hadian M. R., et al. Anti-inflammatory effect of AMPK signaling pathway in rat model of diabetic neuropathy. Inflammopharmacology. 2016;24(5):207–219. doi: 10.1007/s10787-016-0275-2.
    1. Akinlade K. S., Agbebaku S. O., Rahamon S. K., Balogun W. O. Vitamin B12 levels in patients with type 2 diabetes mellitus on metformin. Annals of Ibadan Postgraduate Medicine. 2015;13(2):79–83.
    1. Ahmed M. A., Muntingh G., Rheeder P. Vitamin B12 deficiency in metformin-treated type-2 diabetes patients, prevalence and association with peripheral neuropathy. BMC Pharmacology and Toxicology. 2016;17, article 44 doi: 10.1186/s40360-016-0088-3.
    1. Russo G. T., Giandalia A., Romeo E. L., et al. Diabetic neuropathy is not associated with homocysteine, folate, vitamin B12 levels, and MTHFR C677T mutation in type 2 diabetic outpatients taking metformin. Journal of Endocrinological Investigation. 2016;39(3):305–314. doi: 10.1007/s40618-015-0365-9.
    1. de Groot-Kamphuis D. M., van Dijk P. R., Groenier K. H., Houweling S. T., Bilo H. J. G., Kleefstra N. Vitamin B12 deficiency and the lack of its consequences in type 2 diabetes patients using metformin. Netherlands Journal of Medicine. 2013;71(7):386–390.
    1. Roy R. P., Ghosh K., Ghosh M., et al. Study of Vitamin B12 deficiency and peripheral neuropathy in metformin-treated early Type 2 diabetes mellitus. Indian Journal of Endocrinology and Metabolism. 2016;20(5):631–637. doi: 10.4103/2230-8210.190542.
    1. Mennickent S., Bravo M., Calvo C., Avello M. Pleiotropic effects of statins. Revista Medica de Chile. 2008;136(6):775–782.
    1. Davis T. M. E., Yeap B. B., Davis W. A., Bruce D. G. Lipid-lowering therapy and peripheral sensory neuropathy in type 2 diabetes: The Fremantle Diabetes Study. Diabetologia. 2008;51(4):562–566. doi: 10.1007/s00125-007-0919-2.
    1. Villegas-Rivera G., Román-Pintos L. M., Cardona-Muñoz E. G., et al. Effects of ezetimibe/simvastatin and rosuvastatin on oxidative stress in diabetic neuropathy: a randomized, double-blind, placebo-controlled clinical trial. Oxidative Medicine and Cellular Longevity. 2015;2015:10. doi: 10.1155/2015/756294.756294
    1. Pesaro A. E. P., Serrano C. V., Jr., Fernandes J. L., et al. Pleiotropic effects of ezetimibe/simvastatin vs. high dose simvastatin. International Journal of Cardiology. 2012;158(3):400–404. doi: 10.1016/j.ijcard.2011.01.062.
    1. Rasmussen S. T., Andersen J. T., Nielsen T. K., et al. Simvastatin and oxidative stress in humans: a randomized, double-blinded, placebo-controlled clinical trial. Redox Biology. 2016;9:32–38. doi: 10.1016/j.redox.2016.05.007.
    1. Kostapanos M. S., Spyrou A. T., Tellis C. C., et al. Ezetimibe treatment lowers indicators of oxidative stress in hypercholesterolemic subjects with high oxidative stress. Lipids. 2011;46(4):341–348. doi: 10.1007/s11745-011-3539-z.
    1. Hernández-Ojeda J., Román-Pintos L. M., Rodríguez-Carrízalez A. D., et al. Effect of rosuvastatin on diabetic polyneuropathy: A Randomized, Double-Blind, Placebo-Controlled Phase IIa Study. Diabetes, Metabolic Syndrome & Obesity: Targets and Therapy. 2014;7:401–407. doi: 10.2147/dmso.s65500.
    1. Koksal M., Eren M. A., Turan M. N., Sabuncu T. The effects of atorvastatin and rosuvastatin on oxidative stress in diabetic patients. European Journal of Internal Medicine. 2011;22(3):249–253. doi: 10.1016/j.ejim.2010.12.003.
    1. Sharma N., Ooi J.-L., Ong J., Newman D. The use of fenofibrate in the management of patients with diabetic retinopathy: an evidence-based review. Australian Family Physician. 2015;44(6):367–370.
    1. Cho Y. R., Lim J. H., Kim M. Y., et al. Therapeutic effects of fenofibrate on diabetic peripheral neuropathy by improving endothelial and neural survival in db/db mice. PLoS ONE. 2014;9(1):1–12. doi: 10.1371/journal.pone.0083204.0083204
    1. Simó R., Simó-Servat O., Hernández C. Is Fenofibrate a Reasonable Treatment for Diabetic Microvascular Disease? Current Diabetes Reports. 2015;15(24) doi: 10.1007/s11892-015-0599-0.
    1. Lenaz G., Fato R., Formiggini G., Genova M. L. The role of Coenzyme Q in mitochondrial electron transport. Mitochondrion. 2007;7:S8–S33. doi: 10.1016/j.mito.2007.03.009.
    1. Ayaz M., Tuncer S., Okudan N., Gökbel H. Coenzyme Q10 and α-lipoic acid supplementation in diabetic rats: conduction velocity distributions. Methods and Findings in Experimental and Clinical Pharmacology. 2008;30(5):367–374. doi: 10.1358/mf.2008.30.5.1186072.
    1. El-ghoroury E. A., Raslan H. M., Badawy E. A., et al. Malondialdehyde and coenzyme Q10 in platelets and serum in type 2 diabetes mellitus: correlation with glycemic control. Blood Coagulation & Fibrinolysis. 2009;20(4):248–251. doi: 10.1097/mbc.0b013e3283254549.
    1. Hernández-Ojeda J., Cardona-Muñoz E. G., Román-Pintos L. M., et al. The effect of ubiquinone in diabetic polyneuropathy: a randomized double-blind placebo-controlled study. Journal of Diabetes and Its Complications. 2012;26(4):352–358. doi: 10.1016/j.jdiacomp.2012.04.004.
    1. Akbari Fakhrabadi M., Zeinali Ghotrom A., Mozaffari-Khosravi H., Nodoushan H. H., Nadjarzadeh A. Effect of Coenzyme Q10 on oxidative stress, glycemic control and inflammation in diabetic neuropathy: a double blind randomized clinical Trial. International Journal for Vitamin and Nutrition Research. 2014;84(5-6):252–260. doi: 10.1024/0300-9831/a000211.
    1. Bahadoran Z., Mirmiran P., Azizi F. Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. Journal of Diabetes and Metabolic Disorders. 2013;12(1, article no. 43) doi: 10.1186/2251-6581-12-43.
    1. Ding Y., Dai X., Jiang Y., Zhang Z., Li Y. Functional and morphological effects of grape seed proanthocyanidins on peripheral neuropathy in rats with type 2 diabetes mellitus. Phytotherapy Research. 2014;28(7):1082–1087. doi: 10.1002/ptr.5104.
    1. Ding Y., Dai X., Zhang Z., et al. Proanthocyanidins protect against early diabetic peripheral neuropathy by modulating endoplasmic reticulum stress. Journal of Nutritional Biochemistry. 2014;25(7):765–772. doi: 10.1016/j.jnutbio.2014.03.007.
    1. Valensi P., Le Devehat C., Richard J.-L., et al. A multicenter, double-blind, safety study of QR-333 for the treatment of symptomatic diabetic peripheral neuropathy. A preliminary report. Journal of Diabetes and Its Complications. 2005;19(5):247–253. doi: 10.1016/j.jdiacomp.2005.05.011.
    1. Setchell K. D. R., Nardi E., Battezzati P.-M., et al. Novel soy germ pasta enriched in isoflavones ameliorates gastroparesis in type 2 diabetes: a pilot study. Diabetes Care. 2013;36(11):3495–3497. doi: 10.2337/dc12-1615.
    1. Wu J., Zhang X., Zhang B. Efficacy and safety of puerarin injection in treatment of diabetic peripheral neuropathy: a systematic review and Meta-analysis of randomized controlled trials. Journal of Traditional Chinese Medicine. 2014;34(4):401–410. doi: 10.1016/s0254-6272(15)30039-x.
    1. Lee C.-H., Jeong T.-S., Choi Y.-K., et al. Anti-atherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM-1 and MCP-1 in high cholesterol-fed rabbits. Biochemical and Biophysical Research Communications. 2001;284(3):681–688. doi: 10.1006/bbrc.2001.5001.
    1. Al-Rejaie S. S., Aleisa A. M., Abuohashish H. M., et al. Naringenin neutralises oxidative stress and nerve growth factor discrepancy in experimental diabetic neuropathy. Neurological Research. 2015;37(10):924–933. doi: 10.1179/1743132815Y.0000000079.
    1. Hasanein P., Fazeli F. Role of naringenin in protection against diabetic hyperalgesia and tactile allodynia in male Wistar rats. Journal of Physiology and Biochemistry. 2014;70(4):997–1006. doi: 10.1007/s13105-014-0369-5.
    1. Huang Y., Tsang S.-Y., Yao X., Chen Z.-Y. Biological properties of baicalein in cardiovascular system. Current Drug Targets—Cardiovascular and Haematological Disorders. 2005;5(2):177–184. doi: 10.2174/1568006043586206.
    1. Zhou H., Beevers C. S., Huang S. The targets of curcumin. Current Drug Targets. 2011;12(3):332–347. doi: 10.2174/138945011794815356.
    1. Ma J., Yu H., Liu J., Chen Y., Wang Q., Xiang L. Curcumin promotes nerve regeneration and functional recovery after sciatic nerve crush injury in diabetic rats. Neuroscience Letters. 2016;610:139–143. doi: 10.1016/j.neulet.2015.11.005.
    1. Sebastian R. S., Cleveland L. E., Goldman J. D., Moshfegh A. J. Older adults who use vitamin/mineral supplements differ from nonusers in nutrient intake adequacy and dietary attitudes. Journal of the American Dietetic Association. 2007;107(8):1322–1332. doi: 10.1016/j.jada.2007.05.010.
    1. Smith A. R., Shenvi S. V., Widlansky M., Suh J. H., Hagen T. M. Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress. Current Medicinal Chemistry. 2004;11(9):1135–1146. doi: 10.2174/0929867043365387.
    1. Ziegler D., Hanefeld M., Ruhnau K. J., et al. Treatment of symptomatic diabetic peripheral neuropathy with the anti-oxidant α-lipoic acid - A 3-week multicentre randomized controlled trial (ALADIN Study) Diabetologia. 1995;38(12):1425–1433. doi: 10.1007/BF00400603.
    1. Reljanovic M., Reichel G., Rett K., et al. Treatment of diabetic polyneuropathy with the antioxidant thioctic acid (α-lipoic acid): a two year multicenter randomized double-blind placebo-controlled trial (ALADIN II) Free Radical Research. 1999;31(3):171–179. doi: 10.1080/10715769900300721.
    1. Ziegler D., Hanefeld M., Ruhnau K.-J., et al. Treatment of symptomatic diabetic polyneuropathy with the antioxidant α-lipoic acid: a 7-month multicenter randomized controlled trial (ALADIN III study) Diabetes Care. 1999;22(8):1296–1301. doi: 10.2337/diacare.22.8.1296.
    1. Ametov A. S., Barinov A., Dyck P. J., et al. The sensory symptoms of diabetic polyneuropathy are improved with α-lipoic acid. The SYDNEY Trial. Diabetes Care. 2003;26(3):770–776. doi: 10.2337/diacare.26.3.770.
    1. Ziegler D., Ametov A., Barinov A., et al. Oral treatment with α-lipoic acid improves symptomatic diabetic polyneuropathy. Diabetes Care. 2006;29(11):2365–2370. doi: 10.2337/dc06-1216.
    1. Ziegler D., Low P. A., Litchy W. J., et al. Efficacy and safety of antioxidant treatment with α-lipoic acid over 4 years in diabetic polyneuropathy: the NATHAN 1 trial. Diabetes Care. 2011;34(9):2054–2060. doi: 10.2337/dc11-0503.
    1. Greene D. A., Sima A. A. F. Effects of aldose reductase inhibitors on the progression of nerve damage. Diabetic Medicine. 1993;10(2):31S–32S.
    1. Tomlinson D. R., Carrington A. L., Diemel L. T., Ettlinger C. B., Smith W. J., Fernyhough P. Limitations of the polyol hypothesis in the pathobiology of experimental diabetic neuropathy. Diabetic Medicine. 1993;10, supplement 2
    1. Obrosova I. G., Fathallah L., Lang H. J., Greene D. A. Evaluation of a sorbitol dehydrogenase inhibitor on diabetic peripheral nerve metabolism: a prevention study. Diabetologia. 1999;42(10):1187–1194. doi: 10.1007/s001250051290.
    1. Bril V., Buchanan R. A., The AS-3201 Study Group Aldose reductase inhibition by AS-3201 in sural nerve from patients with diabetic sensorimotor polyneuropathy. Diabetes Care. 2004;27(10):2369–2375. doi: 10.2337/diacare.27.10.2369.
    1. Bril V., Buchanan R. A., The Ranirestat Study Group Long-Term Effects of Ranirestat (AS-3201) on peripheral nerve function in patients with diabetic sensorimotor polyneuropathy. Diabetes Care. 2006;29(1):68–72. doi: 10.2337/diacare.29.01.06.dc05-1447.
    1. Polydefkis M., Arezzo J., Nash M., et al. Safety and efficacy of ranirestat in patients with mild-to-moderate diabetic sensorimotor polyneuropathy. Journal of the Peripheral Nervous System. 2015;20(4):363–371. doi: 10.1111/jns.12138.
    1. Bril V., Hirose T., Tomioka S., Buchanan R. Ranirestat for the management of diabetic sensorimotor polyneuropathy. Diabetes Care. 2009;32(7):1256–1260. doi: 10.2337/dc08-2110.
    1. Chiechio S., Copani A., Gereau R. W., IV, Nicoletti F. Acetyl-L-carnitine in neuropathic pain: experimental data. CNS Drugs. 2007;21(supplement 1):31–38. doi: 10.2165/00023210-200721001-00005.

Source: PubMed

3
Subskrybuj