The IMBG Test for Evaluating the Pharmacodynamic Response to Immunosuppressive Therapy in Kidney Transplant Patients: Current Evidence and Future Applications

Julio Pascual, Marta Crespo, Jose Portoles, Carlos Jimenez, Alvaro Ortega-Carrion, Teresa Diez, Isabel Portero, Julio Pascual, Marta Crespo, Jose Portoles, Carlos Jimenez, Alvaro Ortega-Carrion, Teresa Diez, Isabel Portero

Abstract

Immunosuppressive drugs are widely used to prevent rejection after kidney transplantation. However, the pharmacological response to a given immunosuppressant can vary markedly between individuals, with some showing poor treatment responses and/or experiencing serious side effects. There is an unmet need for diagnostic tools that allow clinicians to individually tailor immunosuppressive therapy to a patient's immunological profile. The Immunobiogram (IMBG) is a novel blood-based in vitro diagnostic test that provides a pharmacodynamic readout of the immune response of individual patients to a range of immunosuppressants commonly used in kidney transplant recipients. Here, we discuss the current approaches used to measure the pharmacodynamic responses of individual patients to specific immunosuppressive drugs in vitro, which can then be correlated with patient's clinical outcomes. We also describe the procedure of the IMBG assay, and summarize the results obtained using the IMBG in different kidney transplant populations. Finally, we outline future directions and other novel applications of the IMBG, both in kidney transplant patients and other autoimmune diseases.

Keywords: cellular pharmacodynamics; immune cell assay; immunosuppressive therapy; infection; transplant rejection.

Conflict of interest statement

The institutional sponsor of the research studies performed with the IMBG is BIOHOPE, a start-up Biotech company based in Madrid (Spain) that received a competitive grant from the European Commission to perform some of these studies. A.O., T.D. and I.P. are employees at Biohope. The authors J.P. (Julio Pascual), M.C., J.P. (Jose Portoles) and C.J. are independent investigators who participated in the IMBG research studies, have no shares at BIOHOPE, and do not receive financial compensation from Biohope. Only common expenses (materials, working hours) that arose during these studies were charged to EU grants awarded to these research projects. The authors declare that this review was conducted in the absence of other third-party financial or commercial relationships that could be construed as a potential conflict of interest. The research mentioned involved the use of proprietary technologies belonging to BIOHOPE: patent “method for predicting and monitoring clinical response to immunomodulatory therapy”; co-Inventors, J.D., M.d.S., V.S., I.P.; (2018) European Patent; https://patentscope.wipo.int/search/es/detail.jsf?docId=WO2019002305&_cid=P21-LEQ1AF-12273-1 (accessed on 1 January 2023).

Figures

Figure 1
Figure 1
Mechanisms of action of immunosuppressive drugs on patient’s T cells.
Figure 2
Figure 2
IMBG assay procedure. PBMCs are extracted from the patient’s blood sample and immunologically stimulated to induce their activation and proliferation. These activated PBMCs are embedded in a hydrogel substrate, which is then loaded into segregated channels in the IMBG plate. PBMCs in each channel are exposed to a concentration gradient of a distinct immunosuppressant. Next, PBMC activation and proliferation along the concentration gradient are measured using a resazurin-based immunofluorescence assay, which provides a read-out of PBMC response to each immunosuppressant. For each immunosuppressant, dose–response curves are generated based on 15 immunofluorescence readings taken at sequential points along the concentration gradient in the IMBG channel.
Figure 3
Figure 3
Measurement of metabolic activity. The measurement is performed by means of ubiquitous reducing agents in cells (NADH and NADPH) with of a vital probe (resazurin). Resazurin is reduced via the aerobic respiration of metabolically active cells, changing resazurin to resorufin, a reaction that fluoresces when exposed to green light.
Figure 4
Figure 4
Immunobiogram dose–response curves obtained for a patient. Each immunosuppressive drug is tested in triplicate in the Immunobiogram plate, and the mean value of these measurements (IMS mean) is used to obtain the final curve for each immunosuppressant.

References

    1. Hariharan S., Israni A., Danovitch G. Long-term survival after kidney transplantation. N. Engl. J. Med. 2021;385:729–743. doi: 10.1056/NEJMra2014530.
    1. Kasiske L., Zeier M., Craig J., Chapman J.R., Craig J.C., Ekberg H., Garvey C.A., Green M.D., Jha V., Josephson M.A., et al. Kidney Tx guideline. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am. J. Transplant. 2009;9:S6–S19.
    1. Baker R., Mark P., Patel R., Stevens K., Palmer N. Renal association clinical practice guideline in post-operative care in the kidney transplant recipient. BMC Nephrol. 2017;18:174. doi: 10.1186/s12882-017-0553-2.
    1. Neuberger J., Bechstein W., Kuypers D., Burra P., Citterio F., De Geest S., Duvoux C., Jardine A.G., Kamar N., Krämer B., et al. Practical recommendations for long-term Management of Modifiable Risks in kidney and liver transplant recipients: A guidance report and clinical checklist by the consensus on managing modifiable risk in transplantation (COMMIT) group. Transplantation. 2017;101:S1–S56. doi: 10.1097/TP.0000000000001651.
    1. Cherukuri A., Mehta R., Sharma A., Sood P., Zeevi A., Tevar A.D., Rothstein D.M., Hariharan S. Post-transplant donor specific antibody is associated with poor kidney transplant outcomes only when combined with both T-cell-mediated rejection and non-adherence. Kidney Int. 2019;96:202–213. doi: 10.1016/j.kint.2019.01.033.
    1. Salinas F.O., Santos J.P., Mateu L.P. Inmunosupresión en el trasplante renal. Nefrol. Día. 2020. [(accessed on 10 December 2022)]. Available online: .
    1. Chen C.C., Koenig A., Saison C., Dahdal S., Rigault G., Barba T., Taillardet M., Chartoire D., Ovize M., Morelon E., et al. CD4+ T Cell Help Is Mandatory for Naive and Memory Donor-Specific Antibody Responses: Impact of Therapeutic Immunosuppression. Front. Immunol. 2018;19:275. doi: 10.3389/fimmu.2018.00275.
    1. Gorbacheva V., Fan R., Fairchild R.L., Baldwin W.M., Valujskikh A. Memory CD4 T Cells Induce Antibody-Mediated Rejection of Renal Allografts. J Am. Soc. Nephrol. 2016;27:3299–3307. doi: 10.1681/ASN.2015080848.
    1. Christians U., Schmitz V., Schoning W., Bendrick-Peart J., Klawitter J., Haschke M., Klawitter J. Toxicodynamic therapeutic drug monitoring of immunosuppressants: Promises, reality, and challenges. Ther. Drug Monit. 2008;30:151–158. doi: 10.1097/FTD.0b013e31816b9063.
    1. Kuypers D. Immunosuppressive drug monitoring—What to use in clinical practice today to improve renal graft outcome. Transp. Int. 2005;18:140–150. doi: 10.1111/j.1432-2277.2004.00041.x.
    1. Andrews M.L.Y., Brenda C., Shi Y.Y., Baan C.C., Hesselink D.A. Pharmacokinetic considerations related to therapeutic drug monitoring of tacrolimus in kidney transplant patients. Expert Opin. Drug Metab. Toxicol. 2017;13:1225–1236. doi: 10.1080/17425255.2017.1395413.
    1. Bestard O., Nickel, Cruzado J., Schoenemann C., Boenisch O., Sefrin A., Grinyó J.M., Volk H.D., Reinke P. Circulating alloreactive T cells correlate with graft function in longstanding renal transplant recipients. J. Am. Soc. Nephrol. 2008;19:1419–1429. doi: 10.1681/ASN.2007050539.
    1. Sottong P., Rosebrock J., Britz J., Kramer T. Measurement of T-lymphocyte responses in whole-blood cultures using newly synthesized DNA and AT. Clin. Diagn. Lab. Immunol. 2000;7:307–311. doi: 10.1128/CDLI.7.2.307-311.2000.
    1. Bestard O., Cravedi P. Monitoring alloimmune response in kidney transplantation. J. Nephrol. 2017;30:187–200. doi: 10.1007/s40620-016-0320-7.
    1. Portoles J., Jimenez C., Janeiro D., Lopez-Oliva M., Ortega-Carrion A., Blanquez D., Arribas L., Gomez C., Diez T., Pascual P., et al. The Immunobiogram, a novel in vitro assay to evaluate treatment resistance in patients receiving immunosuppressive therapy. Front. Immunol. 2021;11:3483. doi: 10.3389/fimmu.2020.618202.
    1. Pascual J., Jiménez C., Krajewskad M., Seron D., Kotton C.N., Portolés J., Witzke O., Sorensen S.S., Andrés A., Crespo M., et al. The Immunobiogram, a novel in vitro diagnostic test to measure the pharmacodynamic response to immunosuppressive therapy in kidney transplant patients. Transpl. Immunol. 2022;75:101711. doi: 10.1016/j.trim.2022.101711.
    1. Heemann U., Abramowicz D., Spasovski G., Vanholder R. Aprobación de las directrices Kidney Disease Improving Global Outcomes (KDIGO) sobre el trasplante renal: Una declaración de posición de la European Renal Best Practice (ERBP) Nephrol. Dial. Transplant. 2011;26:2099–2106. doi: 10.1093/ndt/gfr169.
    1. Schinstock C., Dadhania D., Everly M., Smith B., Gandhi M., Farkash E., Sharma V.K., Samaniego-Picota M., Stegall M.D. Factors at de novo donor-specific antibody initial detection associated with allograft loss: A multicenter study. Transp. Int. 2019;32:502–515. doi: 10.1111/tri.13395.
    1. Tait B., Süsal C., Gebel H., Nickerson P.W., Zachary A.A., Claas F.H., Reed E.F., Bray R.A., Campbell P., Chapman J.R., et al. Consensus guidelines on the testing and clinical management issues associated with HLA and non-HLA antibodies in transplantation. Transplantation. 2013;15:19–47. doi: 10.1097/TP.0b013e31827a19cc.
    1. Crespo M., Llinàs-Mallol L., Redondo-Pachón D., Butler C., Gimeno J., Pérez-Sáez M., Burballa C., Buxeda A., Arias-Cabrales C., Folgueiras M., et al. Non-HLA Antibodies and Epitope Mismatches in Kidney Transplant Recipients With Histological Antibody-Mediated Rejection. Front. Immunol. 2021;12:703457. doi: 10.3389/fimmu.2021.703457.
    1. Bloom R., Bromberg J., Poggio E., Bunnapradist S., Langone A.J., Sood P., Matas A.J., Mehta S., Mannon R.B., Sharfuddin A., et al. Cell-free DNA and active rejection in kidney allografts. J. Am. Soc. Nephrol. 2017;28:2221–2232. doi: 10.1681/ASN.2016091034.
    1. Sigdel T., Archila F., Constantin T., Prins S.A., Liberto J., Damm I., Towfighi P., Navarro S., Kirkizlar E., Demko Z.P., et al. Optimizing detection of kidney transplant injury by assessment of donor derived cell-free DNA via massively multiplex PCR. J. Clin. Med. 2018;8:8. doi: 10.3390/jcm8010019.
    1. Sigdel T., Yang J., Bestard O., Schroeder A., Hsieh S.C., Liberto J.M., Damm I., Geraedts A.C.M., Sarwal M.M. A urinary Common Rejection Module (uCRM) score for non-invasive kidney transplant monitoring. PLoS ONE. 2019;31:e0220052. doi: 10.1371/journal.pone.0220052.
    1. Suthanthiran M., Schwartz J., Ding R., Abecassis M., Dadhania D., Samstein B., Knechtle S.J., Friedewald J., Becker Y.T., Sharma V.K., et al. Urinary-cell mRNA profile and acute cellular rejection in kidney allografts. N. Engl. J. Med. 2013;369:20–31. doi: 10.1056/NEJMoa1215555.
    1. Roedder S., Sigdel T., Salomonis N., Hsieh S., Dai H., Bestard O., Metes D., Zeevi A., Gritsch A., Cheeseman J., et al. The kSORT assay to detect renal transplant patients at high risk for acute rejection: Results of the multicenter AART study. PLoS Med. 2014;11:e1001759. doi: 10.1371/journal.pmed.1001759.
    1. Zhang W., Yi Z., Keung K., Wei C., Cravedi P., Sun Z., Xi C., Woytovich C., Farouk S., Huang W., et al. Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection. J. Am. Soc. Nephrol. 2019;30:1481–1494. doi: 10.1681/ASN.2018111098.
    1. Friedewald J., Kurian S., Heilman R., Whisenant T.C., Poggio E.D., Marsh C., Baliga P., Odim J., Brown M.M., Ikle D.N., et al. Development and clinical validity of a novel blood-based molecular biomarker for subclinical acute rejection following kidney transplant. Am. J. Transplant. 2019;19:98–109. doi: 10.1111/ajt.15011.
    1. Loupy A., Aubert O., Orandi B., Naesens M., Bouatou Y., Raynaud M., Divard G., Jackson A.M., Viglietti D., Giral M., et al. Prediction system for risk of allograft loss in patients receiving kidney transplants: International derivation and validation study. BMJ. 2019;17:l4923. doi: 10.1136/bmj.l4923.
    1. Yang J., Sarwal R., Sigdel T., Damm I., Rosenbaum B., Liberto J.M., Chan-On C., Arreola-Guerra J.M., Alberu J., Vincenti F., et al. A urine score for noninvasive accurate diagnosis and prediction of kidney transplant rejection. Sci. Transl. Med. 2020;12:eaba250. doi: 10.1126/scitranslmed.aba2501.
    1. Langhoff E., Ladefoged J., Jakobsen B., Platz P., Ryder L.P., Svejgaard A., Thaysen J.H. Recipient lymphocyte sensitivity to methylprednisolone affects cadaver kidney graft survival. Lancet. 1986;327:1296–1297. doi: 10.1016/S0140-6736(86)91220-1.
    1. Langhoff E., Ladefoged J. The impact of high lymphocyte sensitivity to glucocorticoids on kidney graft survival in patients treated with azathioprine and cyclosporine. Transplantation. 1987;43:380–384. doi: 10.1097/00007890-198703000-00012.
    1. Francis D., Dumble L., Bowes L., Clunie G.J., Macdonald I.M. Adverse influence of recipient lymphoid resistance to in vitro immunosuppression on the outcome of kidney transplants. Transplantation. 1988;46:853–857. doi: 10.1097/00007890-198812000-00012.
    1. Hirano T., Oka K., Takeuchi H., Sakurai E., Matsuno N., Tamaki T., Kozaki M. Clinical significance of glucocorticoid pharmacodynamics assessed by anti-lymphocite action in kidney transplantation: Marked difference between prednisolone and methylprednisolone. Transplantation. 1994;57:1341–1348. doi: 10.1097/00007890-199405150-00010.
    1. Hirano T., Oka K., Sakurai E., Iwamoto H., Shimazu M., Unezaki S., Hirano T. Impaired prednisolone sensitivity of endogenous system as well as that of peripheral-blood lymphocytes is closely related to clinical incidence in renal transplantation. J. Pharm. Pharmacol. 1991;43:569–573. doi: 10.1111/j.2042-7158.1991.tb03538.x.
    1. Takeuchi H., Hirano T., Oka K., Mizumoto K., Akashi T., Sakurai E., Degawa T., Uchiyama M., Kozaki K., Matsuno N., et al. Lymphocyte-sensitivities to cyclosporine and tacrolimus in chronic renal failure patients and their significance on renal transplantation. Transplant. Proc. 1998;30:36–39. doi: 10.1016/S0041-1345(97)01172-X.
    1. Muhetaer G., Takeuchi H., Unezaki S., Kawachi S., Iwamoto H., Nakamura Y., Shimazu M., Sugiyama K., Hirano T. Clinical Significance of Peripheral Blood Lymphocyte Sensitivity toGlucocorticoids for the Differentiation of High-risk Patients With Decreased Allograft Function After Glucocorticoid Withdrawal in Renal Transplantation. Clin. Ther. 2014;36:1264–1272. doi: 10.1016/j.clinthera.2014.06.019.
    1. Sugiyama K., Isogai K., Toyama A., Satoh H., Saito K., Nakagawa Y., Tasaki M., Takahashi K., Saito N., Hirano T. Cyclosporine pharmacological efficacy estimated by lymphocyte immunosuppressant sensitivity test before and after renal transplantation. J. Clin. Pharm. Ther. 2009;34:539–545. doi: 10.1111/j.1365-2710.2009.01036.x.
    1. Sugiyama K., Isogai K., Horisawa S., Toyama A., Satoh H., Saito K., Nakagawa Y., Tasaki M., Takahashi K., Hirano T., et al. The pharmacological efficacy of mycophenolic acid before and after renal transplantation as estimated by the lymphocyte immunosuppressant sensitivity test (LIST) Immunopharmacol. Immunotoxicol. 2010;32:430–436. doi: 10.3109/08923970903490478.
    1. Sugiyama K., Sasahara H., Tsukaguchi M., Isogai K., Toyama A., Satoh H., Saitoh K., Nakagawa Y., Takahashi K., Tanaka S., et al. Peripheral Lymphocyte Response to Mycophenolic Acid In Vitro and Incidence of Cytomegalovirus Infection in Renal Transplantation. Cell Med. 2013;6:47–55. doi: 10.3727/215517913X674216.
    1. Sugiyama K., Isogai K., Toyama A., Satoh H., Saito K., Nakagawa Y., Tasaki M., Takahashi K., Hirano T. Clinical Significance of the Pharmacological Efficacy of Tacrolimus Estimated by the Lymphocyte Immunosuppressant Sensitivity Test (LIST) Before and After Renal Transplantation. Cell Med. 2012;3:81–88. doi: 10.3727/215517912X639360.
    1. Kurata Y., Kato M., Kuzuya T., Miwa Y., Iwasaki K., Haneda M., Amioka K., Watarai Y., Uchida K., Nakao A., et al. Pretransplant pharmacodynamic analysis of immunosuppressive agents using CFSE-based T-cell proliferation assay. Clin. Pharmacol. Ther. 2009;86:285–289. doi: 10.1038/clpt.2009.61.
    1. Kurata Y., Kuzuya T., Miwa Y., Iwasaki K., Haneda M., Amioka K., Yamada K., Watarai Y., Katayama A., Uchida K., et al. Clinical relevance of post-transplant pharmacodynamic analysis of cyclosporine in renal transplantation. Int. Immunopharmacol. 2014;22:384–391. doi: 10.1016/j.intimp.2014.07.022.
    1. Mijiti A., Matsuno N., Takeuchi H., Unezaki S., Nagao T., Hirano T. Clinical Significance of the Cellular Pharmacodynamics of Tacrolimus in Living-Donor Liver Transplantation. Cell Transplant. 2009;18:657–664. doi: 10.1177/096368970901805-622.
    1. Kleiveland C.R. Peripheral Blood Mononuclear Cells. In: Verhoeckx K., Cotter P., editors. The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models. Springer; New York, NY, USA: 2015.
    1. Jimenez C., Portolés J., Crespo M., Rubio-Terrés C., Rubio-Rodríguez D., Diez T., Portero I. Economic evaluation of the personalization of immunosuppressive therapy in kidney transplantation by means of an in vitro diagnostic test (Immunobiogram) in Spain. Rev. EsEco Salud. 2022;17:23–34.

Source: PubMed

3
Subskrybuj