Modelling the risk of hospital admission of lab confirmed SARS-CoV-2-infected patients in primary care: a population-based study

Janire Portuondo-Jimenez, Amaia Bilbao-González, Verónica Tíscar-González, Ignacio Garitano-Gutiérrez, Susana García-Gutiérrez, Almudena Martínez-Mejuto, Jaione Santiago-Garin, Silvia Arribas-García, Julia García-Asensio, Johnny Chart-Pascual, Iñaki Zorrilla-Martínez, Jose Maria Quintana-Lopez, COVID-19-Osakidetza Working group, Janire Portuondo-Jimenez, Amaia Bilbao-González, Verónica Tíscar-González, Ignacio Garitano-Gutiérrez, Susana García-Gutiérrez, Almudena Martínez-Mejuto, Jaione Santiago-Garin, Silvia Arribas-García, Julia García-Asensio, Johnny Chart-Pascual, Iñaki Zorrilla-Martínez, Jose Maria Quintana-Lopez, COVID-19-Osakidetza Working group

Abstract

The objectives of this study are to develop a predictive model of hospital admission for COVID-19 to help in the activation of emergency services, early referrals from primary care, and the improvement of clinical decision-making in emergency room services. The method is the retrospective cohort study of 49,750 patients with microbiological confirmation of SARS-CoV-2 infection. The sample was randomly divided into two subsamples, for the purposes of derivation and validation of the prediction rule (60% and 40%, respectively). Data collected for this study included sociodemographic data, baseline comorbidities, baseline treatments, and other background data. Multilevel analyses with generalized estimated equations were used to develop the predictive model. Male sex and the gradual effect of age were the main risk factors for hospital admission. Regarding baseline comorbidities, coagulopathies, cancer, cardiovascular diseases, diabetes with organ damage, and liver disease were among the five most notable. Flu vaccination was a risk factor for hospital admission. Drugs that increased risk were chronic systemic steroids, immunosuppressants, angiotensin-converting enzyme inhibitors, and NSAIDs. The AUC of the risk score was 0.821 and 0.828 in the derivation and validation samples, respectively. Based on the risk score, five risk groups were derived with hospital admission ranging from 2.94 to 51.87%. In conclusion, we propose a classification system for people with COVID-19 with a higher risk of hospitalization, and indirectly with it a greater severity of the disease, easy to be completed both in primary care, as well as in emergency services and in hospital emergency room to help in clinical decision-making.Registration: ClinicalTrials.gov Identifier: NCT04463706.

Keywords: Coronavirus infections; Emergencies; Epidemiology; Primary health care; Risk factors.

Conflict of interest statement

The authors declare that they have no conflict of interest.

© 2022. The Author(s), under exclusive licence to Società Italiana di Medicina Interna (SIMI).

Figures

Fig. 1
Fig. 1
ROC curves for the risk score in both derivation and validations samples, and k-fold cross-validation

References

    1. World Health Organization (WHO) (2020) WHO Director-General’s remarks at the media briefing on 2019-nCoV on 11 Feb 2020 [Internet]. Available from:
    1. Velavan TP, Meyer CG. The COVID-19 epidemic. Trop Med Int Health. 2020;25(3):278–280. doi: 10.1111/tmi.13383.
    1. España. Ministerio de la Presidencia. Real Decreto 463/2020, de 14 de marzo, por el que se declara el estado de alarma para la gestión de la situación de crisis sanitaria ocasionada por el COVID-19. Boletín Oficial del Estado [Internet]. 2020 [cited 2022 Feb 5];67(I):25390–400. Available from:
    1. Caramelo F, Ferreira N, Oliveiros B. ESTimation of risk factors for COVID-19 mortality—preliminary results. MedRxiv. 2020 doi: 10.1101/2020.02.24.20027268.
    1. Jehi L, Ji X, Milinovich A, Erzurum S, Merlino A, Gordon S, et al. Development and validation of a model for individualized prediction of hospitalization risk in 4,536 patients with COVID-19. PLoS ONE. 2020 doi: 10.1371/journal.pone.0237419.
    1. Fernández García L, Puentes Gutiérrez AB, García BM. Relationship between obesity, diabetes and ICU admission in COVID-19 patients. Med Clín (English Edition) 2020;155(7):314–315. doi: 10.1016/j.medcle.2020.06.008.
    1. World Health Organization (WHO) Coronavirus disease (COVID-19): Tobacco [Internet]. [Cited 26 Jan 2021]. Available from:
    1. Zhao Z, Chen A, Hou W, Graham JM, Li H, Richman PS, et al. Prediction model and risk scores of ICU admission and mortality in COVID-19. PLoS ONE. 2020 doi: 10.1371/journal.pone.0236618.
    1. Goff PH, Hayashi T, Martínez-Gil L, et al. Synthetic toll-like receptor 4 (TLR4) andTLR7 ligands as influenza virus vaccine adjuvants induce rapid, sustained, and broadly protective responses. J Virol. 2015;89(6):3221–3235. doi: 10.1128/JVI.03337-14.
    1. Chih-cheng L, Tzu-Ping S, Wen-Chien K, Hung-Jen T, Po-Ren H. Severe acute respiratory syndrome coronavirus 2 ( SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents. 2020;55(3):105924. doi: 10.1016/j.ijantimicag.2020.105924.
    1. Deng Y, Liu W, Liu K, Fang Y-Y, Shang J, Zhou L, et al. Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 (COVID-19) in Wuhan, China. Chin Med J. 2020 doi: 10.1097/CM9.0000000000000824.
    1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Charlson ME, Sax FL, MacKenzie CR, Fields SD, Braham RL, Douglas RG. Assessing illness severity: does clinical judgment work? J Chronic Dis. 1986;39(6):439–452. doi: 10.1016/0021-9681(86)90111-6.
    1. WHO|WHO Collaborating Centre for Drug Statistics and Methodology [Internet] (2016) WHO. World Health Organization; [Cited 10 Apr 2021]. Available from:
    1. Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care. 2005;43(11):1130–1139. doi: 10.1097/01.mlr.0000182534.19832.83.
    1. España PP, Bilbao A, García-Gutiérrez S, Lafuente I, Anton-Ladislao A, Villanueva A, et al. Predictors of mortality of COVID-19 in the general population and nursing homes. Intern Emerg Med. 2021 doi: 10.1007/s11739-020-02594-8.
    1. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36. doi: 10.1148/radiology.143.1.7063747.
    1. Hosmer DW, Lemeshow S. Applied logistic regression. Wiley; 1989. pp. 1–375.
    1. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction. The business of giving. New York: Springer; 2009.
    1. Steyerberg EW. Clinical prediction models. Springer, New York; 2010
    1. Barrio I, Arostegui I, Rodríguez-Álvarez M-X, Quintana J-M. A new approach to categorising continuous variables in prediction models: proposal and validation. Stat Methods Med Res. 2017;26(6):2586–2602. doi: 10.1177/0962280215601873.
    1. Docherty AB, Harrison EM, Green CA, Hardwick HE, Pius R, Norman L, et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO clinical characterisation protocol: prospective observational cohort study. BMJ. 2020 doi: 10.1136/bmj.m1985.
    1. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–481. doi: 10.1016/S2213-2600(20)30079-5.
    1. Colombi D, Bodini FC, Petrini M, Maffi G, Morelli N, Milanese G, et al. Well-aerated lung on admitting chest CT to predict adverse outcome in COVID-19 pneumonia. Radiology. 2020;296(2):E86–96. doi: 10.1148/radiol.2020201433.
    1. Sáenz Morales OA, Rubio AM, Yomayusa N, Gamba N, Garay Fernández M (2020) Coagulopatía en la infección por el virus SARS-CoV-2 (COVID-19): de los mecanismos fisiopatológicos al diagnóstico y tratamiento. Acta Colombiana de Cuidado Intensivo
    1. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi: 10.1016/S0140-6736(20)30566-3.
    1. Singh K, Valley TS, Tang S, Li BY, Kamran F, Sjoding MW, et al. Validating a widely implemented deterioration index model among hospitalized COVID-19 patients. medRxiv. 2020 doi: 10.1101/2020.04.24.20079012.
    1. Simonnet A, Chetboun M, Poissy J, Raverdy V, Noulette J, Duhamel A, et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity. 2020;28(7):1195–1199. doi: 10.1002/oby.22831.
    1. Jiménez-Ruiz CA, López-Padilla D, Alonso-Arroyo A, Aleixandre-Benavent R, Solano-Reina S, de Granda-Orive JI. COVID-19 y tabaquismo: revisión sistemática y metaanálisis de la evidencia. Arch Bronconeumol. 2021;57:21–34. doi: 10.1016/j.arbres.2020.06.024.
    1. Osasun Saila—Departamento de Salud. Campaña de vacunación antigripal 2019 [Internet]. Available from:
    1. WHO (2020) Manejo clínico de la infección respiratoria aguda grave (IRAG) en caso de sospecha de COVID-19. Mar 13 [Cited 2 Sep 2021]; Available from:
    1. Ministerio de Sanidad—Gobierno de España (2020) Manejo en urgencias del COVID-19. Jun 26 [Cited 2 Sep 2021]; Available from:

Source: PubMed

3
Subskrybuj