Effect of Dipyridamole on Membrane Energization and Energy Transfer in Chromatophores of Rba. sphaeroides

Peter P Knox, Eugene P Lukashev, Boris N Korvatovskii, Nuranija Kh Seifullina, Sergey N Goryachev, Elvin S Allakhverdiev, Vladimir Z Paschenko, Peter P Knox, Eugene P Lukashev, Boris N Korvatovskii, Nuranija Kh Seifullina, Sergey N Goryachev, Elvin S Allakhverdiev, Vladimir Z Paschenko

Abstract

Effect of dipyridamole (DIP) at concentrations up to 1 mM on fluorescent characteristics of light-harvesting complexes LH2 and LH1, as well as on conditions of photosynthetic electron transport chain in the bacterial chromatophores of Rba. sphaeroides was investigated. DIP was found to affect efficiency of energy transfer from the light-harvesting complex LH2 to the LH1-reaction center core complex and to produce the long-wavelength ("red") shift of the absorption band of light-harvesting bacteriochlorophyll molecules in the IR spectral region at 840-900 nm. This shift is associated with the membrane transition to the energized state. It was shown that DIP is able to reduce the photooxidized bacteriochlorophyll of the reaction center, which accelerated electron flow along the electron transport chain, thereby stimulating generation of the transmembrane potential on the chromatophore membrane. The results are important for clarifying possible mechanisms of DIP influence on the activity of membrane-bound functional proteins. In particular, they might be significant for interpreting numerous therapeutic effects of DIP.

Keywords: chromatophores; dipyridamole; energy transfer; membrane energization.

Conflict of interest statement

The authors declare no conflict of interests in financial or any other sphere. This article does not contain any studies involving humans or animals performed by any of the authors.

Figures

https://www.ncbi.nlm.nih.gov/pmc/articles/instance/9568914/bin/10541_2022_2374_Sch1_HTML.jpg
The chemical structural formula of dipyridamole
Fig. 1.
Fig. 1.
Fluorescence spectra of a suspension of Rba. sphaeroides chromatophores (a) under control conditions and (b) in the presence of 1 mM DIP. Original spectra (dotted line 1) were approximated by the sum of two Gaussian components (solid black curve 4). The component with maximum near 855 nm (solid gray curve 2) represents fluorescence of the LH2 complex, and the band with maximum at 890 nm (solid gray line 3) displays fluorescence of the LH1 complex.
Fig. 2.
Fig. 2.
Differential (light-minus-dark) spectra of Rba. sphaeroides chromatophores. Curves: 1) under control conditions, 2) in the presence of 10 mM of electron transfer inhibitor orthophenanthroline, and 3) in the presence of 1 mM DIP. Differential “spectrum 3 minus spectrum 2” after normalization of both spectra to absorption at 790 nm is shown in inset.
Fig. 3.
Fig. 3.
Amplitudes of photoinduced absorbance changes in the chromatophores of Rba. sphaeroides in the presence of 1 mM DIP as a function of light intensity. Absorbance changes at 790 nm (curve 1) reflect redox transformations of the photoactive P and absorbance changes at 860 nm (curve 2) represent superposition of the redox conversions and energy-dependent red shift of the 850 nm band.
Fig. 4.
Fig. 4.
Kinetics of P+ dark reduction in the chromatophores of Rba. sphaeroides after activation with a single laser flash (532 nm, 7 ns) under control conditions (1), in the presence of 1 mM DIP (2), and in the presence of TMPD-H2 at concentrations of 1 µM (3) and 1 mM (4).
Fig. 5.
Fig. 5.
Rate constants of P+ dark reduction in the chromatophores of Rba. sphaeroides (black circles) after illuminating the sample with a laser flash (532 nm, 7 ns) in the presence of TMPD-H2 at various concentrations. Calculations are based on the time during which the light-induced absorbance change decreased 2.7-fold. The graph also shows effect of TMPD-H2 concentration on the decay time τ of the fast BChl fluorescence component (open circles) with amplitude of approximately 95%.
Fig. 6.
Fig. 6.
Fluorescence decay kinetics in the chromatophores of Rba. sphaeroides under control conditions (1), in the presence of 1 mM DIP (2), and in the presence of TMPD-H2 at concentrations of 1 µM (3) and 1 mM (4). Curve 5 is the instrumental function with width ~16 ps. Dots are experimental data; solid lines show the result of two-exponential approximation.

References

    1. Jensen B. O., Kleppe R., Kopperud R., Nygaard G. Dipyridamole synergizes with nitric oxide to prolong inhibition of thrombin-induced platelet shape change. Platelets. 2010;22:8–19. doi: 10.3109/09537104.2010.517581.
    1. Shalinsky D. R., Andreef M., Howell S. B. Modulation of drug sensitivity by dipyridamole in multidrug resistant tumor cells in vitro. Cancer Res. 1990;50:7537–7543.
    1. Iuliano L., Colavita A. R., Leo R., Praticò D., Violi F. Oxygen free radicals and platelet activation. Free Radic. Biol. Med. 1997;22:999–1006. doi: 10.1016/s0891-5849(96)00488-1.
    1. Wessler J. D., Grip L. T., Mendell J., Giugliano R. P. The P-glycoprotein transport system and cardiovascular drugs. J. Americ. Coll. Cardiol. 2013;61:2495–2502. doi: 10.1016/j.jacc.2013.02.058.
    1. Aliter K. F., Al-Horani R. A. Potential therapeutic benefits of dipyridamole in COVID-19 patients. Curr. Pharm. Des. 2021;27:866–875. doi: 10.2174/1381612826666201001125604.
    1. Liu X., Li Z., Liu S., Sun J., Chen Z., et al. Potential therapeutic effects of dipyridamole in the severely ill patients with COVID-19. Acta Pharm. Sin. B. 2020;10:1205–1215. doi: 10.1016/j.apsb.2020.04.008.
    1. Knox P. P., Churbanova I. Yu., Lukashev E. P., Zakharova N. I., Rubin A. B., et al. Dipyridamole and its derivatives modify the kinetics of the electron transport in reaction centers from Rhodobactersphaeroides. J. Photochem. Photobiol. 2000;56:68–77. doi: 10.1016/s1011-1344(00)00062-2.
    1. Knox P. P., Lukashev E. P., Mamedov M. D., Semenov A. Yu., Seifullina N. Kh., et al. Slowing of proton transport processes in the structure of bacterial reaction centers and bacteriorhodopsin in the presence of dipyridamole. Biochemistry (Moscow) 2000;65:213–217.
    1. Knox P. P., Lukashev E. P., Mamedov M. D., Semenov A. Yu., Borissevitch G. P. Proton transfer in bacterial reaction centers and bacteriorhodopsin in the presence of dipyridamole. Prog. React. Kinet. Mech. 2001;26:287–298. doi: 10.3184/007967401103165217.
    1. Iuliano L., Pratico D., Ghiselli A., Bonavita M. S., Violi F. Reaction of dipyridamole with the hydroxyl radical. Lipids. 1992;27:349–353. doi: 10.1007/BF02536149.
    1. Nepomuceno M. F., Alonso A., Pereira-Da-Silva L., Tabak M. Inhibitory effect of dipyridamole and its derivatives on lipid peroxidation in mitochondria. Free Radic. Biol. Med. 1997;23:1046–1054. doi: 10.1016/s0891-5849(97)00135-4.
    1. Almeida L. E., Castilho M., Mazo L. H., Tabak M. Voltammetric and spectroscopic studies of the oxidation of the anti-oxidant drug dipyridamole in acetonitrile and ethanol. Anal. Chim. Acta. 1998;375:223–231. doi: 10.1016/S0003-2670(98)00501-7.
    1. Barzegar A. Proton-coupled electron-transfer mechanism for the radical scavenging activity of cardiovascular drug dipyridamole. PLoS One. 2012;7:e39660. doi: 10.1371/journal.pone.0039660.
    1. Galati G., O’Brien P. J. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic. Biol. Med. 2004;37:287–303. doi: 10.1016/j.freeradbiomed.2004.04.034.
    1. Knox P. P., Timofeev K. N., Gorokhov V. V., Seifullina N. Kh., Rubin A. B. Generation of radical form of dipyridamole at illumination of photosynthetic reaction centers of Rb. sphaeroides. Dokl. Biochem. Biophys. 2017;473:118–121. doi: 10.1134/S1607672917020089.
    1. Knox P. P., Lukashev E. P., Seyfullina N. Kh., Gorokhov V. V., Rubin A. B. The influence of dipyridamole and its derivatives on the membrane energization state of Rhodobacter sphaeroides bacterial chromatophores. Biophysics. 2017;62:734–741. doi: 10.1134/S0006350917050153.
    1. Cartron M. L., Olsena J. D., Sener M., Jackson P. J., Brindley A. A., et al. Integration of energy and electron transfer processes in the photosynthetic membrane of Rhodobactersphaeroides. Biochim. Biophys. Acta. 2014;1837:1769–1780. doi: 10.1016/j.bbabio.2014.02.003.
    1. Sundström V., Pullerits T., van Grondelle R. Photosynthetic light harvesting: reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J. Phys. Chem. B. 1999;103:2327–2346. doi: 10.1021/jp983722+.
    1. Freiberg A., Allen J. P., Williams J. A. C., Woodbury N. W. Energy trapping and detrapping by wild type and mutant reaction centers of purple non-sulfur bacteria. Photosyn. Res. 1996;48:309–319. doi: 10.1007/BF00041022.
    1. Driscoll B., Lunceford C., Lin S., Woronowicz K., Niederman R. A., Woodbury N. W. Energy transfer properties of Rhodobactersphaeroides chromatophores during adaptation to low light intensity. Phys. Chem. Chem. Phys. 2014;16:17133–17141. doi: 10.1039/C4CP01981D.
    1. Caycedo-Soler, F., Rodrigez, F. J., Quiroga, L., Zhao, G., and Johnson, N. F. (2011) Energy conversion in purple bacteria photosynthesis, in Photosynthesis (Najafpour, M., ed.) INTECH, London, pp. 1-27, 10.5772/26241.
    1. Strakhovskaya M. G., Lukashev E. P., Korvatovskiy B. N., Kholina E. G., Seifullina N. Kh., et al. The effect of some antiseptic drugs on the energy transfer in chromatophore photosynthetic membranes of purple non-sulfur bacteria Rhodobactersphaeroides. Photosyn. Res. 2021;147:197–209. doi: 10.1007/s11120-020-00807-x.
    1. Andersson, P. O., Gillbro, T., Ferguson, L., and Cogdell, R. J. (1990) Spectral shift of purple bacterial carotenoids related to solvent and protein polarizability, in Current Research in Photosynthesis (Baltscheffsky, M., ed.) Vol. II, Kluwer Academic Publishers, Dordrecht, pp. 117-120.
    1. Vredenberg V. J., Amesz J. Absorption bands of bacteriochlorophyll types in purple bacteria and their response to illumination. Biochim. Biophys. Acta. 1966;126:244–261. doi: 10.1016/0926-6585(66)90060-4.
    1. Barsky E. L., Samuilov V. D. Blue and red shifts of bacteriochlorophyll absorption band around 880 nm in Rhodospirillum rubrum. Biochim. Biophys. Acta. 1979;548:448–457. doi: 10.1016/0005-2728(79)90057-4.
    1. Kononenko A. A., Venediktov P. S., Chemeris Yu. K., Adamova N. P., Rubin A. B. Relation between electron transport-linked processes and delayed luminescence in photosynthesizing bacteria. Photosynthetica. 1974;8:176–183.
    1. Junge W. Membrane potentials in photosynthesis. Ann. Rev. Plant Physiol. 1977;28:503–536. doi: 10.1146/annurev.pp.28.060177.002443.
    1. McDermot G., Prince S. M., Freer A. A., Hawthornthwaite-Lawless A. M., Papiz M. Z., et al. Crystal-structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature. 1995;374:517–521. doi: 10.1038/374517a0.
    1. Poszak A. W., Howard T. D., Soutal J., Gurdiner A. T., Low C. J., et al. Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science. 2003;302:1969–1972. doi: 10.1126/science.1088892.
    1. Tabak M., Castilho M., Almeida L. E., Mazo L. H. Voltammetric studies of dipyridamole oxidation in aqueous micellar solutions. Free Radic. Biol. Med. 1998;25:S40. doi: 10.1016/S0891-5849(98)90119-8.
    1. Castilho M., Almeida L. E., Tabak M., Mazo L. H. Voltammetric oxidation of dipyridamole in aqueous acid solutions. J. Braz. Chem. Soc. 2000;11:148–153. doi: 10.1590/S0103-50532000000200008.
    1. David I. G., Iordache L., Popa D. E., Buleandra M., David V., et al. Novel voltammetric investigation of dipyridamole at a disposable pencil graphite electrode. Turk. J. Chem. 2019;43:1109–1122. doi: 10.3906/kim-1903-64.
    1. Crofts A. R., Wraight C. A. The electrochemical domain of photosynthesis. Biochim. Biophys. Acta. 1983;726:149–185. doi: 10.1016/0304-4173(83)90004-6.
    1. Mezzettia A., Leibla W., Breton J., Nabedryk E. Photoreduction of the quinone pool in the bacterial photosynthetic membrane: identifcation of infrared marker bands for quinol formation. FEBS Lett. 2003;537:161–165. doi: 10.1016/s0014-5793(03)00118-2.
    1. Yin Y., Yang S., Yu L., Yu C.-A. Reaction mechanism of superoxide generation during ubiquinol oxidation by the cytochrome bc1 complex. J. Biol. Chem. 2010;285:17038–17045. doi: 10.1074/jbc.M110.104364.
    1. Remennikov V. G., Samuilov V. D. Interaction of photosynthetic electron transport chain components Rhodospirillum rubrum with oxygen. Dokl. Akad. Nauk SSSR. 1980;252:491–494.
    1. Knox P. P., Lukashev E. P., Timofeev K. N., Seifullina N. Kh. Effects of oxygen on the dark recombination between photoreduced secondary quinone and oxidized bacteriochlorophyll in Rhodobacter sphaeroidesreaction centers. Biochemistry (Moscow) 2002;67:901–907. doi: 10.1023/a:1019966620850.
    1. Husen P., Solov’yov I. A. Spontaneous binding of molecular oxygen at the Qo-site of the bc1 complex could stimulate superoxide formation. J. Am. Chem. Soc. 2016;138:12150–12158. doi: 10.1021/jacs.6b04849.
    1. Michels P. A. M., Konings W. N. Structural and functional properties of chromatophores and membrane vesicles from Rhodepseudomonas sphaeroides. Biochim. Biophys. Acta. 1978;507:353–368. doi: 10.1016/0005-2736(78)90346-2.

Source: PubMed

3
Subskrybuj