Residual Inflammation Indicated by High-Sensitivity C-Reactive Protein Predicts Worse Long-Term Clinical Outcomes in Japanese Patients after Percutaneous Coronary Intervention

Norihito Takahashi, Tomotaka Dohi, Hirohisa Endo, Takehiro Funamizu, Hideki Wada, Shinichiro Doi, Yoshiteru Kato, Manabu Ogita, Iwao Okai, Hiroshi Iwata, Shinya Okazaki, Kikuo Isoda, Katsumi Miyauchi, Kazunori Shimada, Norihito Takahashi, Tomotaka Dohi, Hirohisa Endo, Takehiro Funamizu, Hideki Wada, Shinichiro Doi, Yoshiteru Kato, Manabu Ogita, Iwao Okai, Hiroshi Iwata, Shinya Okazaki, Kikuo Isoda, Katsumi Miyauchi, Kazunori Shimada

Abstract

The aim of this study was to investigate the long-term clinical impact of residual inflammatory risk (RIR) by evaluating serial high-sensitivity C-reactive protein (hs-CRP) in Asian patients with coronary artery disease (CAD). We evaluated 2032 patients with stable CAD undergoing percutaneous coronary intervention (PCI) with serial hs-CRP measurements (2 measurements, 6-9 months apart) from the period 2000 to 2016. A high-RIR was defined as hs-CRP > 0.9 mg/L according to the median value. Patients were assigned to four groups: persistent-high-RIR, increased-RIR, attenuated-RIR, or persistent-low-RIR. Major adverse cardiac events (MACE) and all-cause death were evaluated. MACE rates in patients with persistent high, increased and attenuated RIR were significantly higher than in patients with persistent low RIR (p < 0.001). Moreover, the rate of all-cause death was significantly higher among patients with persistent high and increased RIR than among patients with attenuated and persistent low RIR (p < 0.001). After adjustment, the presence of persistent high RIR (hazard ratio (HR) 2.22; 95% confidence interval (CI) 1.37-3.67, p = 0.001), increased RIR (HR 2.25, 95%CI 1.09-4.37, p = 0.029), and attenuated RIR (HR 1.94, 95%CI 1.14-3.32, p = 0.015) were predictive for MACE. In addition, presence of persistent high RIR (HR 2.07, 95%CI 1.41-3.08, p < 0.001) and increased RIR (HR 1.94, 95%CI 1.07-3.36, p = 0.029) were predictive for all-cause death. A high RIR was significantly associated with MACE and all-cause death among Japanese CAD patients. An evaluation of changes in inflammation may carry important prognostic information and may guide the therapeutic approach.

Keywords: biomarker; coronary artery disease; hs-CRP; inflammation; percutaneous coronary intervention; residual risk.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Study flow chart. PCI, percutaneous coronary intervention; hs-CRP, high-sensitivity C-reactive protein; ACS, acute coronary syndrome; RIR, residual inflammatory risk.
Figure 2
Figure 2
Kaplan–Meier curve for major adverse cardiovascular events (MACE) and all-cause death. (A) Long-term major adverse cardiovascular events (MACE) (composite endpoint defined as cardiovascular death, non-fatal myocardial infarction, or non-fatal cerebral infarction). (B) Long-term all-cause mortality.

References

    1. Lozano R., Naghavi M., Foreman K., Lim S., Shibuya K., Aboyans V., Abraham J., Adair T., Aggarwal R., Ahn S.Y., et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–2128. doi: 10.1016/S0140-6736(12)61728-0.
    1. Nowbar A.N., Gitto M., Howard J.P., Francis D.P., Al-Lamee R. Mortality From Ischemic Heart Disease. Circ. Cardiovasc. Qual. Outcomes. 2019;12:e005375. doi: 10.1161/CIRCOUTCOMES.118.005375.
    1. Reith C., Armitage J. Management of residual risk after statin therapy. Atherosclerosis. 2016;245:161–170. doi: 10.1016/j.atherosclerosis.2015.12.018.
    1. Silverman M.G., Ference B.A., Im K., Wiviott S.D., Giugliano R.P., Grundy S.M., Braunwald E., Sabatine M.S. Association Between Lowering LDL-C and Cardiovascular Risk Reduction Among Different Therapeutic Interventions. JAMA. 2016;316:1289–1297. doi: 10.1001/jama.2016.13985.
    1. Ridker P.M. Residual inflammatory risk: Addressing the obverse side of the atherosclerosis prevention coin. Eur. Heart J. 2016;37:1720–1722. doi: 10.1093/eurheartj/ehw024.
    1. Ross R. Atherosclerosis—An Inflammatory Disease. N. Engl. J. Med. 1999;340:115–126. doi: 10.1056/NEJM199901143400207.
    1. Ridker P.M., Cushman M., Stampfer M.J., Tracy R.P., Hennekens C.H. Inflammation, Aspirin, and the Risk of Cardiovascular Disease in Apparently Healthy Men. N. Engl. J. Med. 1997;336:973–979. doi: 10.1056/NEJM199704033361401.
    1. Buckley D.I., Fu R., Freeman M., Rogers K., Helfand M. C-reactive protein as a risk factor for coronary heart disease: A systematic review and meta-analyses for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2009;151:483–495. doi: 10.7326/0003-4819-151-7-200910060-00009.
    1. Ridker P.M., Hennekens C.H., Buring J.E., Rifai N. C-Reactive Protein and Other Markers of Inflammation in the Prediction of Cardiovascular Disease in Women. N. Engl. J. Med. 2000;342:836–843. doi: 10.1056/NEJM200003233421202.
    1. Ridker P.M., Rifai N., Pfeffer M.A., Sacks F.M., Moye L.A., Goldman S., Flaker G.C., Braunwald E. Inflammation, Pravastatin, and the Risk of Coronary Events After Myocardial Infarction in Patients With Average Cholesterol Levels. Circulation. 1998;98:839–844. doi: 10.1161/01.CIR.98.9.839.
    1. Ridker P.M., Rifai N., Clearfield M., Downs J.R., Weis S.E., Miles J.S., Gotto A.M. Measurement of C-Reactive Protein for the Targeting of Statin Therapy in the Primary Prevention of Acute Coronary Events. N. Engl. J. Med. 2001;344:1959–1965. doi: 10.1056/NEJM200106283442601.
    1. Ridker P.M., Cannon C.P., Morrow D., Rifai N., Rose L.M., McCabe C.H., Pfeffer M.A., Braunwald E. C-Reactive Protein Levels and Outcomes after Statin Therapy. N. Engl. J. Med. 2005;352:20–28. doi: 10.1056/NEJMoa042378.
    1. Arima H., Kubo M., Yonemoto K., Doi Y., Ninomiya T., Tanizaki Y., Hata J., Matsumura K., Iida M., Kiyohara Y. High-sensitivity C-reactive protein and coronary heart disease in a general population of Japanese: The Hisayama study. Arterioscler. Thromb. Vasc. Biol. 2008;28:1385–1391. doi: 10.1161/ATVBAHA.107.157164.
    1. Kelley-Hedgepeth A., Lloyd-Jones D.M., Colvin A., Matthews K.A., Johnston J., Sowers M.R., Sternfeld B., Pasternak R.C., Chae C.U. Ethnic differences in C-reactive protein concentrations. Clin. Chem. 2008;54:1027–1037. doi: 10.1373/clinchem.2007.098996.
    1. Ridker P.M., Everett B.M., Thuren T., Macfadyen J.G., Chang W.H., Ballantyne C., Fonseca F., Nicolau J., Koenig W., Anker S.D., et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017;377:1119–1131. doi: 10.1056/NEJMoa1707914.
    1. Kalkman D.N., Aquino M., Claessen B.E., Baber U., Guedeney P., Sorrentino S., Vogel B., de Winter R.J., Sweeny J., Kovacic J.C., et al. Residual inflammatory risk and the impact on clinical outcomes in patients after percutaneous coronary interventions. Eur. Heart J. 2018;39:4101–4108. doi: 10.1093/eurheartj/ehy633.
    1. Hansson G.K., Holm J., Jonasson L. Detection of activated T lymphocytes in the human atherosclerotic plaque. Am. J. Pathol. 1989;135:169–175.
    1. Frostegard J., Ulfgren A.K., Nyberg P., Hedin U., Swedenborg J., Andersson U., Hansson G.K. Cytokine expression in advanced human atherosclerotic plaques: Dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis. 1999;145:33–43. doi: 10.1016/S0021-9150(99)00011-8.
    1. Kovanen P.T., Kaartinen M., Paavonen T. Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation. 1995;92:1084–1088. doi: 10.1161/01.CIR.92.5.1084.
    1. Van der Wal A.C., Becker A.E., van der Loos C.M., Das P.K. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation. 1994;89:36–44. doi: 10.1161/01.CIR.89.1.36.
    1. Ridker P.M., Danielson E., Fonseca F.A.H., Genest J., Gotto A.M., Kastelein J.J.P., Koenig W., Libby P., Lorenzatti A.J., Macfadyen J.G., et al. Rosuvastatin to Prevent Vascular Events in Men and Women with Elevated C-Reactive Protein. N. Engl. J. Med. 2008;359:2195–2207. doi: 10.1056/NEJMoa0807646.
    1. Ridker P.M. High-Sensitivity C-Reactive Protein: Potential Adjunct for Global Risk Assessment in the Primary Prevention of Cardiovascular Disease. Circulation. 2001;103:1813–1818. doi: 10.1161/01.CIR.103.13.1813.
    1. Danesh J., Wheeler J.G., Hirschfield G.M., Eda S., Eiriksdottir G., Rumley A., Lowe G.D.O., Pepys M.B., Gudnason V. C-Reactive Protein and Other Circulating Markers of Inflammation in the Prediction of Coronary Heart Disease. N. Engl. J. Med. 2004;350:1387–1397. doi: 10.1056/NEJMoa032804.
    1. Blake G.J., Ridker P.M. Inflammatory bio-markers and cardiovascular risk prediction. J. Intern. Med. 2002;252:283–294. doi: 10.1046/j.1365-2796.2002.01019.x.
    1. Mani P., Puri R., Schwartz G.G., Nissen S.E., Shao M., Kastelein J.J.P., Menon V., Lincoff A.M., Nicholls S.J. Association of Initial and Serial C-Reactive Protein Levels With Adverse Cardiovascular Events and Death After Acute Coronary Syndrome. JAMA Cardiology. 2019;4:314–320. doi: 10.1001/jamacardio.2019.0179.
    1. Delhaye C., Maluenda G., Wakabayashi K., Ben-Dor I., Lemesle G., Collins S.D., Syed A.I., Torguson R., Kaneshige K., Xue Z., et al. Long-Term Prognostic Value of Preprocedural C-Reactive Protein After Drug-Eluting Stent Implantation. Am. J. Cardiol. 2010;105:826–832. doi: 10.1016/j.amjcard.2009.10.064.
    1. Razzouk L., Muntner P., Bansilal S., Kini A.S., Aneja A., Mozes J., Ivan O., Jakkula M., Sharma S., Farkouh M.E. C-reactive protein predicts long-term mortality independently of low-density lipoprotein cholesterol in patients undergoing percutaneous coronary intervention. Am. Heart J. 2009;158:277–283. doi: 10.1016/j.ahj.2009.05.026.
    1. Sabatine M.S., Morrow D.A., Jablonski K.A., Rice M.M., Warnica J.W., Domanski M.J., Hsia J., Gersh B.J., Rifai N., Ridker P.M., et al. Prognostic Significance of the Centers for Disease Control/American Heart Association High-Sensitivity C-Reactive Protein Cut Points for Cardiovascular and Other Outcomes in Patients With Stable Coronary Artery Disease. Circulation. 2007;115:1528–1536. doi: 10.1161/CIRCULATIONAHA.106.649939.
    1. Shah T., Newcombe P., Smeeth L., Addo J., Casas J.P., Whittaker J., Miller M.A., Tinworth L., Jeffery S., Strazzullo P., et al. Ancestry as a determinant of mean population C-reactive protein values: Implications for cardiovascular risk prediction. Circ. Cardiovasc. Genet. 2010;3:436–444. doi: 10.1161/CIRCGENETICS.110.957431.
    1. Otsuka T., Kawada T., Katsumata M., Ibuki C., Kusama Y. High-sensitivity C-reactive protein is associated with the risk of coronary heart disease as estimated by the Framingham Risk Score in middle-aged Japanese men. Int. J. Cardiol. 2008;129:245–250. doi: 10.1016/j.ijcard.2007.07.099.
    1. Nazmi A., Victora C.G. Socioeconomic and racial/ethnic differentials of C-reactive protein levels: A systematic review of population-based studies. BMC Public Health. 2007;7:212. doi: 10.1186/1471-2458-7-212.
    1. Yousuf O., Mohanty B.D., Martin S.S., Joshi P.H., Blaha M.J., Nasir K., Blumenthal R.S., Budoff M.J. High-Sensitivity C-Reactive Protein and Cardiovascular Disease. J. Am. Coll. Cardiol. 2013;62:397–408. doi: 10.1016/j.jacc.2013.05.016.
    1. Bohula E.A., Giugliano R.P., Leiter L.A., Verma S., Park J.-G., Sever P.S., Lira Pineda A., Honarpour N., Wang H., Murphy S.A., et al. Inflammatory and Cholesterol Risk in the FOURIER Trial. Circulation. 2018;138:131–140. doi: 10.1161/CIRCULATIONAHA.118.034032.
    1. Oesterle A., Laufs U., Liao J.K. Pleiotropic Effects of Statins on the Cardiovascular System. Circ. Res. 2017;120:229–243. doi: 10.1161/CIRCRESAHA.116.308537.
    1. Shapiro M.D., Fazio S. From Lipids to Inflammation. Circ. Res. 2016;118:732–749. doi: 10.1161/CIRCRESAHA.115.306471.
    1. Ridker P.M., Macfadyen J.G., Everett B.M., Libby P., Thuren T., Glynn R.J., Ridker P.M., Macfadyen J.G., Everett B.M., Libby P., et al. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: A secondary analysis from the CANTOS randomised controlled trial. Lancet. 2018;391:319–328. doi: 10.1016/S0140-6736(17)32814-3.
    1. Tardif J.-C., Kouz S., Waters D.D., Bertrand O.F., Diaz R., Maggioni A.P., Pinto F.J., Ibrahim R., Gamra H., Kiwan G.S., et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N. Engl. J. Med. 2019;381:2497–2505. doi: 10.1056/NEJMoa1912388.
    1. Ridker P.M., Everett B.M., Pradhan A., Macfadyen J.G., Solomon D.H., Zaharris E., Mam V., Hasan A., Rosenberg Y., Iturriaga E., et al. Low-Dose Methotrexate for the Prevention of Atherosclerotic Events. N. Engl. J. Med. 2019;380:752–762. doi: 10.1056/NEJMoa1809798.
    1. Ray K.K., Nicholls S.J., Ginsberg H.D., Johansson J.O., Kalantar-Zadeh K., Kulikowski E., Toth P.P., Wong N., Cummings J.L., Sweeney M., et al. Effect of selective BET protein inhibitor apabetalone on cardiovascular outcomes in patients with acute coronary syndrome and diabetes: Rationale, design, and baseline characteristics of the BETonMACE trial. Am. Heart J. 2019;217:72–83. doi: 10.1016/j.ahj.2019.08.001.

Source: PubMed

3
Subskrybuj