Targeting Plasmids to Limit Acquisition and Transmission of Antimicrobial Resistance

Corneliu Ovidiu Vrancianu, Laura Ioana Popa, Coralia Bleotu, Mariana Carmen Chifiriuc, Corneliu Ovidiu Vrancianu, Laura Ioana Popa, Coralia Bleotu, Mariana Carmen Chifiriuc

Abstract

Antimicrobial resistance (AMR) is a significant global threat to both public health and the environment. The emergence and expansion of AMR is sustained by the enormous diversity and mobility of antimicrobial resistance genes (ARGs). Different mechanisms of horizontal gene transfer (HGT), including conjugation, transduction, and transformation, have facilitated the accumulation and dissemination of ARGs in Gram-negative and Gram-positive bacteria. This has resulted in the development of multidrug resistance in some bacteria. The most clinically significant ARGs are usually located on different mobile genetic elements (MGEs) that can move intracellularly (between the bacterial chromosome and plasmids) or intercellularly (within the same species or between different species or genera). Resistance plasmids play a central role both in HGT and as support elements for other MGEs, in which ARGs are assembled by transposition and recombination mechanisms. Considering the crucial role of MGEs in the acquisition and transmission of ARGs, a potential strategy to control AMR is to eliminate MGEs. This review discusses current progress on the development of chemical and biological approaches for the elimination of ARG carriers.

Keywords: CRISPR; antibiotics; infection; plasmid curing; resistance.

Copyright © 2020 Vrancianu, Popa, Bleotu and Chifiriuc.

Figures

FIGURE 1
FIGURE 1
Schematic representation of the predominant HTG mechanisms involved in the acquisition and dissemination of genetic material such as ARG. From top to bottom: Conjugation, DNA transfer between a donor cell (left) and a recipient cell (right) mediated by plasmids; Transduction, transfer of bacterial DNA between a donor cell (left) and a recipient cell (right) mediated by phages; Transformation, release of DNA by a donor cell (left) and uptake by a recipient cell (right).
FIGURE 2
FIGURE 2
Schematic representation of the predominant MGEs involved in acquisition and dissemination of ARGs. (A), IS element (IR: inverted repeats; tnp: transposase gene). (B), Tn3 complex transposon (tnpB: resolvase gene; ARG-antibiotic resistance gene). (C), composite transposon. (D), class I integron and the acquisition of a gene cassette (Int1: integrase gene; att1: recombination site of the integron; qacEδ: truncated segment belonging to a gene that encodes resistance to quaternary ammonium compounds; sul1: sulfonamide resistance gene; orf5/orf6: open reading frames, attC: recombination site of the gene cassette). (E), the mechanism of acquiring adjacent DNA by ISCR elements (oriIS: origin of replication; terIS: end of replication; a second stop sign is located after the ARG, allowing transposition of the entire segment by recombination). (F), complex class 1 integrons (Int1: integrase gene, followed by the attI site; VR1/VR2: variable regions e.g., ARGs, followed by the attC site).
FIGURE 3
FIGURE 3
Schematic representation of CRISPR-based plasmid system capable of removing MGE-like resistance plasmids. This system contains two sgRNA transcripts, the cas9 nuclease, and other structural elements. Firstly, sgRNA forms a complex with cas nuclease. The sgRNA transcripts guide cas9 nuclease to introduce double-stranded breaks at the ends of the target DNA, leading to cleavage. Direct target recognition is achieved through recognition of protospacer adjacent motifs (PAM), short DNA sequences that are not found in CRISPR loci, so there is no risk of self-degradation (So et al., 2017). Subsequently, the gap is filled through homologous recombination by an editing template. This system can be used to edit the genome of several antibiotic-resistant bacterial strains, leading to the removal of resistance determinants.

References

    1. Abedon S. T., Kuhl S. J., Blasdel B. G., Kutter E. M. (2011). Phage treatment of human infections. Bacteriophage 1 66–85.
    1. Adetosoye A. I., Rotilu I. O. (1985). Infectious drug resistance and antibiotic resistance curing in Salmonella and Shigella isolates from cases of diarrhoea. Revue d’elevage Med. Vet. Pays Trop. 38 433–437.
    1. Altimira F., Yanez C., Bravo G., Gonzalez M., Rojas L. A., Seeger M. (2012). Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of central Chile. BMC Microbiol. 12:193. 10.1186/1471-2180-12-193
    1. Aminov R. I. (2011). Horizontal gene exchange in environmental microbiota. Front. Microbiol. 2:158. 10.3389/fmicb.2011.00158
    1. Antonoglou O., Lafazanis K., Mourdikoudis S., Vourlias G., Lialiaris T., Pantazaki A., et al. (2019). Biological relevance of CuFeO2 nanoparticles: antibacterial and anti-inflammatory activity, genotoxicity. DNA and protein interactions. Mater. Sci. Eng. C Mater. Biol. Appl. 99 264–274. 10.1016/j.msec.2019.01.112
    1. Azam A. H., Tanji Y. (2019). Bacteriophage-host arm race: an update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy. Appl. Microbiol. Biotechnol. 103 2121–2131. 10.1007/s00253-019-09629-x
    1. Babakhani S., Oloomi M. (2018). Transposons: the agents of antibiotic resistance in bacteria. J. Basic Microbiol. 58 905–917. 10.1002/jobm.201800204
    1. Baquero F., Coque T. M., de la Cruz F. (2011). Ecology and evolution as targets: the need for novel eco-evo drugs and strategies to fight antibiotic resistance. Antimicrob. Agents Chemother. 55 3649–3660. 10.1128/AAC.00013-11
    1. Bavya M. C., Vimal Rohan K., Gaurav G. B., Srivasatava R. (2019). Synergistic treatment strategies to combat resistant bacterial infections using Schiff base modified nanoparticulate - hydrogel system. Mater. Sci. Eng. C Mater. Biol. Appl. 95 226–235. 10.1016/j.msec.2018.10.080
    1. Becker K., van Alen S., Idelevich E. A., Schleimer N., Seggewiss J., Mellmann A., et al. (2018). Plasmid-Encoded Transferable mecB-mediated methicillin resistance in Staphylococcus aureus. Emerg. Infect. Dis. 24 242–248. 10.3201/eid2402.171074
    1. Bedzyk L. A., Shoemaker N. B., Young K. E., Salyers A. A. (1992). Insertion and excision of Bacteroides conjugative chromosomal elements. J. Bacteriol. 174 166–172. 10.1128/jb.174.1.166-172.1992
    1. Belaynehe K. M., Shin S. W., Yoo H. S. (2018). Interrelationship between tetracycline resistance determinants, phylogenetic group affiliation and carriage of class 1 integrons in commensal Escherichia coli isolates from cattle farms. BMC Vet. Res. 14:340. 10.1186/s12917-018-1661-3
    1. Bennett P. M. (1999). Integrons and gene cassettes: a genetic construction kit for bacteria. J. Antimicrob. Chemother. 43 1–4.
    1. Bennett P. M. (2004). “Genome plasticity Methods,” in Molecular Biology Vol 266 Genomics, Proteomics and Clinical Bacteriology, eds Woodford N., Johnson A. (Totowa: Human Press Inc; ), 71–113.
    1. Bennett P. M. (2008). Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br. J. Pharmacol. 153(Suppl. 1), S347–S357. 10.1038/sj.bjp.0707607
    1. Berglund B., Hoang N. T. B., Tarnberg M., Le N. K., Svartstrom O., Khu D. T. K., et al. (2018). Insertion sequence transpositions and point mutations in mgrB causing colistin resistance in a clinical strain of carbapenem-resistant Klebsiella pneumoniae from Vietnam. Int. J. Antimicrob. Agents 51 789–793. 10.1016/j.ijantimicag.2017.11.012
    1. Bikard D., Euler C. W., Jiang W., Nussenzweig P. M., Goldberg G. W., Duportet X., et al. (2014). Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 32 1146–1150. 10.1038/nbt.3043
    1. Bocharova Y., Savinova T., Shagin D. A., Shelenkov A. A., Mayanskiy N. A., Chebotar I. V. (2019). Inactivation of the oprD porin gene by a novel insertion sequence ISPa195 associated with large deletion in a carbapenem-resistant Pseudomonas aeruginosa clinical isolate. J. Glob. Antimicrob. Resistance 17 309–311. 10.1016/j.jgar.2019.01.016
    1. Bolotin A., Quinquis B., Sorokin A., Ehrlich S. D. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151(Pt 8), 2551–2561. 10.1099/mic.0.28048-0
    1. Bouanchaud D. H., Chabbert Y. A. (1971). The problems of drug-resistant pathogenic bacteria. Practical effectiveness of agents curing R factors and plasmids. Ann. N. Y. Acad. Sci. 182 305–311. 10.1111/j.1749-6632.1971.tb30666.x
    1. Bozkir A., Saka O. M. (2004). Chitosan-DNA nanoparticles: effect on DNA integrity, bacterial transformation and transfection efficiency. J. Drug Target. 12 281–288. 10.1080/10611860410001714162
    1. Bringel F., Frey L., Hubert J. C. (1989). Characterization, cloning, curing, and distribution in lactic acid bacteria of pLP1, a plasmid from Lactobacillus plantarum CCM 1904 and its use in shuttle vector construction. Plasmid 22 193–202. 10.1016/0147-619x(89)90002-4
    1. Brochet M., Da Cunha V., Couve E., Rusniok C., Trieu-Cuot P., Glaser P. (2009). Atypical association of DDE transposition with conjugation specifies a new family of mobile elements. Mol. Microbiol. 71 948–959. 10.1111/j.1365-2958.2008.06579.x
    1. Buckling A., Rainey P. B. (2002). Antagonistic coevolution between a bacterium and a bacteriophage. Proc. Biol. Sci. 269 931–936. 10.1098/rspb.2001.1945
    1. Buckner M. M. C., Ciusa M. L., Piddock L. J. V. (2018). Strategies to combat antimicrobial resistance: anti-plasmid and plasmid curing. FEMS Microbiol. Rev. 42 781–804. 10.1093/femsre/fuy031
    1. Burrus V. (2017). Mechanisms of stabilization of integrative and conjugative elements. Curr. Opin. Microbiol. 38 44–50. 10.1016/j.mib.2017.03.014
    1. Burrus V., Pavlovic G., Decaris B., Guedon G. (2002). Conjugative transposons: the tip of the iceberg. Mol. Microbiol. 46 601–610. 10.1046/j.1365-2958.2002.03191.x
    1. Burrus V., Waldor M. K. (2004). Shaping bacterial genomes with integrative and conjugative elements. Res. Microbiol. 155 376–386. 10.1016/j.resmic.2004.01.012
    1. Calero-Caceres W., Muniesa M. (2016). Persistence of naturally occurring antibiotic resistance genes in the bacteria and bacteriophage fractions of wastewater. Water Res. 95 11–18. 10.1016/j.watres.2016.03.006
    1. Cambray G., Guerout A. M., Mazel D. (2010). Integrons. Ann. Rev. Genet. 44 141–166. 10.1146/annurev-genet-102209-163504
    1. Cameranesi M. M., Moran-Barrio J., Limansky A. S., Repizo G. D., Viale A. M. (2018). Site-Specific Recombination at XerC/D Sites Mediates the Formation and Resolution of Plasmid Co-integrates Carrying a blaOXA-58- and TnaphA6-Resistance Module in Acinetobacter baumannii. Front. Microbiol. 9:66. 10.3389/fmicb.2018.00066
    1. Cannatelli A., Giani T., D’Andrea M. M., Di Pilato V., Arena F., Conte V., et al. (2014). MgrB inactivation is a common mechanism of colistin resistance in KPC-producing Klebsiella pneumoniae of clinical origin. Antimicrob. Agents Chemother. 58 5696–5703. 10.1128/AAC.03110-14
    1. Cao Q. H., Shao H. H., Qiu H., Li T., Zhang Y. Z., Tan X. M. (2017). Using the CRISPR/Cas9 system to eliminate native plasmids of Zymomonas mobilis ZM4. Biosci. Biotechnol. Biochem. 81 453–459. 10.1080/09168451.2016.1189312
    1. Carattoli A. (2013). Plasmids and the spread of resistance. IJMM 303 298–304.
    1. Cason J. S., Jackson D. M., Lowbury E. J., Ricketts C. R. (1966). Antiseptic and aseptic prophylaxis for burns: use of silver nitrate and of isolators. Br. Med. J. 2 1288–1294. 10.1136/bmj.2.5525.1288
    1. Castanheira M., Gales A., Walsh T. R., Campana E. H., Tolema M. A. (2007). “Association of blaSPM-1 with the transposon Tn4371,” in Proceedings od the 47th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy 17-20 September 2007, Chicago, IL.
    1. Chan B. K., Sistrom M., Wertz J. E., Kortright K. E., Narayan D., Turner P. E. (2016). Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci. Rep. 6:26717. 10.1038/srep26717
    1. Chan B. K., Turner P. E., Kim S., Mojibian H. R., Elefteriades J. A., Narayan D. (2018). Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol. Med. Public Health 2018 60–66. 10.1093/emph/eoy005
    1. Chassy B. M., Gibson E. M., Guiffrida A. (1978). Evidence for plasmid-associated lactose metabolism inLactobacillus casei subsp.casei. Curr. Microbiol. 1 141–144. 10.1007/BF02601666
    1. Chatterjee A. K., Chakraborty R., Basu T. (2014). Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25:135101. 10.1088/0957-4484/25/13/135101
    1. Cheow W. S., Hadinoto K. (2014). Antibiotic polymeric nanoparticles for biofilm-associated infection therapy. Methods Mol. Biol. 1147 227–238. 10.1007/978-1-4939-0467-9_16
    1. Citorik R. J., Mimee M., Lu T. K. (2014). Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 32 1141–1145. 10.1038/nbt.3011
    1. Cochetti I., Tili E., Mingoia M., Varaldo P. E., Montanari M. P. (2008). erm(B)-carrying elements in tetracycline-resistant pneumococci and correspondence between Tn1545 and Tn6003. Antimicrob. Agents Chemother. 52 1285–1290. 10.1128/AAC.01457-07
    1. Corbellino M., Kieffer N., Kutateladze M., Balarjishvili N., Leshkasheli L., Askilashvili L., et al. (2019). Eradication of a multi-drug resistant, carbapenemase-producing Klebsiella pneumoniae isolate following oral and intra-rectal therapy with a custom-made, lytic bacteriophage preparation. Clin. Infect. Dis. 70 1998–2001. 10.1093/cid/ciz782
    1. Costa S. S., Ntokou E., Martins A., Viveiros M., Pournaras S., Couto I., et al. (2010). Identification of the plasmid-encoded qacA efflux pump gene in meticillin-resistant Staphylococcus aureus (MRSA) strain HPV107, a representative of the MRSA Iberian clone. Int. J. Antimicrob. Agents 36 557–561. 10.1016/j.ijantimicag.2010.08.006
    1. Courtright J. B., Turowski D. A., Sonstein S. A. (1988). Alteration of bacterial DNA structure, gene expression, and plasmid encoded antibiotic resistance following exposure to enoxacin. J. Antimicrob. Chemother. 21(Suppl. B), 1–18. 10.1093/jac/21.suppl_b.1
    1. Crameri R., Davies J. E., Hutter R. (1986). Plasmid curing and generation of mutations induced with ethidium bromide in streptomycetes. J. Gen. Microbiol. 132 819–824. 10.1099/00221287-132-3-819
    1. Crawley A. B., Henriksen E. D., Stout E., Brandt K., Barrangou R. (2018). Characterizing the activity of abundant, diverse and active CRISPR-Cas systems in lactobacilli. Sci. Rep. 8:11544. 10.1038/s41598-018-29746-3
    1. D’Costa V. M., McGrann K. M., Hughes D. W., Wright G. D. (2006). Sampling the antibiotic resistome. Science 311 374–377.
    1. de la Cruz F., Frost L. S., Meyer R. J., Zechner E. L. (2010). Conjugative DNA metabolism in Gram-negative bacteria. FEMS Microbiol. Rev. 34 18–40. 10.1111/j.1574-6976.2009.00195.x
    1. Dedrick R. M., Guerrero-Bustamante C. A., Garlena R. A., Russell D. A., Ford K., Harris K., et al. (2019). Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 25 730–733. 10.1038/s41591-019-0437-z
    1. Delavat F., Miyazaki R., Carraro N., Pradervand N., van der Meer J. R. (2017). The hidden life of integrative and conjugative elements. FEMS Microbiol. Rev. 41 512–537. 10.1093/femsre/fux008
    1. Diep B. A., Gill S. R., Chang R. F., Phan T. H., Chen J. H., Davidson M. G., et al. (2006). Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 367 731–739. 10.1016/S0140-6736(06)68231-7
    1. Dobrindt U., Hochhut B., Hentschel U., Hacker J. (2004). Genomic islands in pathogenic and environmental microorganisms. Nat. Rev. Microbiol. 2 414–424. 10.1038/nrmicro884
    1. Dong H., Xiang H., Mu D., Wang D., Wang T. (2019). Exploiting a conjugative CRISPR/Cas9 system to eliminate plasmid harbouring the mcr-1 gene from Escherichia coli. Int. J. Antimicrob. Agents 53 1–8. 10.1016/j.ijantimicag.2018.09.017
    1. Dow K. H. (1990). The enduring seasons in survival. Oncol. Nurs. Forum 17 511–516.
    1. Dupont C. L., Grass G., Rensing C. (2011). Copper toxicity and the origin of bacterial resistance–new insights and applications. Metallomics 3 1109–1118. 10.1039/c1mt00107h
    1. Faghri J., Nouri S., Jalalifar S., Zalipoor M., Halaji M. (2018). Investigation of antimicrobial susceptibility, class I and II integrons among Pseudomonas aeruginosa isolates from hospitalized patients in Isfahan. Iran. BMC Res. Notes 11:806. 10.1186/s13104-018-3901-9
    1. Fennewald M. A., Capobianco J. (1984). Isolation and analysis of inhibitors of transposon Tn3 site-specific recombination. J. Bacteriol. 159 404–406.
    1. Fernandez-Lopez R., Garcillan-Barcia M. P., Revilla C., Lazaro M., Vielva L., de la Cruz F. (2006). Dynamics of the IncW genetic backbone imply general trends in conjugative plasmid evolution. FEMS Microbiol. Rev. 30 942–966. 10.1111/j.1574-6976.2006.00042.x
    1. Fernandez-Lopez R., Machon C., Longshaw C. M., Martin S., Molin S., Zechner E. L., et al. (2005). Unsaturated fatty acids are inhibitors of bacterial conjugation. Microbiology 151(Pt 11), 3517–3526. 10.1099/mic.0.28216-0
    1. Fessler A., Kadlec K., Wang Y., Zhang W. J., Wu C., Shen J., et al. (2018). Small antimicrobial resistance plasmids in livestock-associated methicillin-resistant Staphylococcus aureus CC398. Front. Microbiol. 9:2063. 10.3389/fmicb.2018.02063
    1. Fonseca E. L., Marin M. A., Encinas F., Vicente A. C. (2015). Full characterization of the integrative and conjugative element carrying the metallo-beta-lactamase bla SPM-1 and bicyclomycin bcr1 resistance genes found in the pandemic Pseudomonas aeruginosa clone SP/ST277. J. Antimicrob. Chemother. 70 2547–2550. 10.1093/jac/dkv152
    1. Franke A. E., Clewell D. B. (1981). Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of “conjugal” transfer in the absence of a conjugative plasmid. J. Bacteriol. 145 494–502.
    1. Friedman N. D., Temkin E., Carmeli Y. (2016). The negative impact of antibiotic resistance. Clin. Microbiol. Infect. 22 416–422. 10.1016/j.cmi.2015.12.002
    1. Frost L. S., Leplae R., Summers A. O., Toussaint A. (2005). Mobile genetic elements: the agents of open source evolution. Nat. Rev. Microbiol. 3 722–732. 10.1038/nrmicro1235
    1. Fu K. P., Grace M. E., Hsiao C. L., Hung P. P. (1988). Elimination of antibiotic-resistant plasmids by quinolone antibiotics. Chemotherapy 34 415–418. 10.1159/000238601
    1. Gao P., Nie X., Zou M., Shi Y., Cheng G. (2011). Recent advances in materials for extended-release antibiotic delivery system. J. Antibiot. 64 625–634. 10.1038/ja.2011.58
    1. Garcillan-Barcia M. P., de la Cruz F. (2008). Why is entry exclusion an essential feature of conjugative plasmids? Plasmid 60 1–18. 10.1016/j.plasmid.2008.03.002
    1. Garcillan-Barcia M. P., Jurado P., Gonzalez-Perez B., Moncalian G., Fernandez L. A., de la Cruz F. (2007). Conjugative transfer can be inhibited by blocking relaxase activity within recipient cells with intrabodies. Mol. Microbiol. 63 404–416. 10.1111/j.1365-2958.2006.05523.x
    1. Genilloud O., Blazquez J., Mazodier P., Moreno F. (1988). A clinical isolate of transposon Tn5 expressing streptomycin resistance in Escherichia coli. J. Bacteriol. 170 1275–1278. 10.1128/jb.170.3.1275-1278.1988
    1. Giedraitiene A., Vitkauskiene A., Naginiene R., Pavilonis A. (2011). Antibiotic resistance mechanisms of clinically important bacteria. Medicina 47 137–146.
    1. Giordano C., Barnini S., Tsioutis C., Chlebowicz M. A., Scoulica E. V., Gikas A., et al. (2018). Expansion of KPC-producing Klebsiella pneumoniae with various mgrB mutations giving rise to colistin resistance: the role of ISL3 on plasmids. Int. J. Antimicrob. Agents 51 260–265. 10.1016/j.ijantimicag.2017.10.011
    1. Gonzalez-Candelas F., Francino M. P. (2012). “Barriers to horizontal gene transfer: fuzzy and evolvable boundaries Horizontal gene transfer,” in Microorganisms, ed. Francino M. (UnitedKingdom: Caister Academic Press; ), 47–75.
    1. Grindley N. D., Whiteson K. L., Rice P. A. (2006). Mechanisms of site-specific recombination. Ann. Rev. Biochem. 75 567–605.
    1. Grundmann H., Aires-de-Sousa M., Boyce J., Tiemersma E. (2006). Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet 368 874–885. 10.1016/S0140-6736(06)68853-3
    1. Guglielmini J., Neron B., Abby S. S., Garcillan-Barcia M. P., de la Cruz F., Rocha E. P. (2014). Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion. Nucleic Acids Res. 42 5715–5727. 10.1093/nar/gku194
    1. Guimaraes L. C., Florczak-Wyspianska J., de Jesus L. B., Viana M. V., Silva A., Ramos R. T., et al. (2015). Inside the Pan-genome - methods and software overview. Curr. Genomics 16 245–252. 10.2174/1389202916666150423002311
    1. Gupta A., Silver S. (1998). Silver as a biocide: will resistance become a problem? Nat. Biotechnol. 16:888. 10.1038/nbt1098-888
    1. Hacker J., Bender L., Ott M., Wingender J., Lund B., Marre R., et al. (1990). Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb. Pathog. 8 213–225. 10.1016/0882-4010(90)90048-u
    1. Hacker J., Knapp S., Goebel W. (1983). Spontaneous deletions and flanking regions of the chromosomally inherited hemolysin determinant of an Escherichia coli O6 strain. J. Bacteriol. 154 1145–1152.
    1. Hahn F. E., Ciak J. (1976). Elimination of resistance determinants from R-factor R1 by intercalative compounds. Antimicrob. Agents Chemother. 9 77–80. 10.1128/aac.9.1.77
    1. Hale L., Lazos O., Haines A., Thomas C. (2010). An efficient stress-free strategy to displace stable bacterial plasmids. Biotechniques 48 223–228. 10.2144/000113366
    1. Hamidian M., Ambrose S. J., Hall R. M. (2016). A large conjugative Acinetobacter baumannii plasmid carrying the sul2 sulphonamide and strAB streptomycin resistance genes. Plasmid 8 43–50. 10.1016/j.plasmid.2016.09.001
    1. Harada S., Ishii Y., Saga T., Tateda K., Yamaguchi K. (2010). Chromosomally encoded blaCMY-2 located on a novel SXT/R391-related integrating conjugative element in a Proteus mirabilis clinical isolate. Antimicrob. Agents Chemother. 54 3545–3550. 10.1128/AAC.00111-10
    1. Harrison E., Wood A. J., Dytham C., Pitchford J. W., Truman J., Spiers A., et al. (2015). Bacteriophages limit the existence conditions for conjugative plasmids. mBio 6:e00586-15. 10.1128/mBio.00586-15
    1. Hasan A., Morshed M., Memic A., Hassan S., Webster T. J., Marei H. E. (2018). Nanoparticles in tissue engineering: applications, challenges and prospects. Int. J. Nanomed. 13 5637–5655. 10.2147/IJN.S153758
    1. Hayes F. (2003). Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science 301 1496–1499. 10.1126/science.1088157
    1. Hochhut B., Jahreis K., Lengeler J. W., Schmid K. (1997). CTnscr94, a conjugative transposon found in enterobacteria. J. Bacteriol. 179 2097–2102. 10.1128/jb.179.7.2097-2102.1997
    1. Holmes A. H., Moore L. S., Sundsfjord A., Steinbakk M., Regmi S., Karkey A., et al. (2016). Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387 176–187. 10.1016/S0140-6736(15)00473-0
    1. Huang L., Dai T., Xuan Y., Tegos G. P., Hamblin M. R. (2011). Synergistic combination of chitosan acetate with nanoparticle silver as a topical antimicrobial: efficacy against bacterial burn infections. Antimicrob. Agents Chemother. 55 3432–3438. 10.1128/AAC.01803-10
    1. Hullahalli K., Rodrigues M., Palmer K. L. (2017). Exploiting CRISPR-Cas to manipulate Enterococcus faecalis populations. eLife 6:e26664. 10.7554/eLife.26664
    1. Ilangovan A., Connery S., Waksman G. (2015). Structural biology of the Gram-negative bacterial conjugation systems. Trends Microbiol. 23 301–310. 10.1016/j.tim.2015.02.012
    1. Irish D., Eltringham I., Teall A., Pickett H., Farelly H., Reith S., et al. (1998). Control of an outbreak of an epidemic methicillin-resistant Staphylococcus aureus also resistant to mupirocin. J. Hospital Infect. 39 19–26. 10.1016/s0195-6701(98)90239-0
    1. Ishino Y., Shinagawa H., Makino K., Amemura M., Nakata A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169 5429–5433. 10.1128/jb.169.12.5429-5433.1987
    1. Jacoby G. A., Strahilevitz J., Hooper D. C. (2014). Plasmid-mediated quinolone resistance. Microbiol. Spectr. 2. 10.1128/microbiolspec.PLAS-0006-2013
    1. Jaidane N., Naas T., Mansour W., Radhia B. B., Jerbi S., Boujaafar N., et al. (2018). Genomic analysis of in vivo acquired resistance to colistin and rifampicin in Acinetobacter baumannii. Int. J. Antimicrob. Agents 51 266–269. 10.1016/j.ijantimicag.2017.10.016
    1. Jalasvuori M., Friman V. P., Nieminen A., Bamford J. K., Buckling A. (2011). Bacteriophage selection against a plasmid-encoded sex apparatus leads to the loss of antibiotic-resistance plasmids. Biol. Lett. 7 902–905. 10.1098/rsbl.2011.0384
    1. Jault P., Leclerc T., Jennes S., Pirnay J. P., Que Y. A., Resch G., et al. (2019). Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis. 19 35–45. 10.1016/S1473-3099(18)30482-1
    1. Jiang W., Bikard D., Cox D., Zhang F., Marraffini L. A. (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31 233–239. 10.1038/nbt.2508
    1. Jiang X., Ellabaan M. M. H., Charusanti P., Munck C., Blin K., Tong Y., et al. (2017). Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat. Commun. 8:15784. 10.1038/ncomms15784
    1. Johnson C. M., Grossman A. D. (2015). Integrative and Conjugative Elements (ICEs): what they do and how they work. Ann. Rev. Genet. 49 577–601. 10.1146/annurev-genet-112414-055018
    1. Jones M. L., Ganopolsky J. G., Labbe A., Prakash S. (2010). A novel nitric oxide producing probiotic patch and its antimicrobial efficacy: preparation and in vitro analysis. Appl. Microbiol. Biotechnol. 87 509–516. 10.1007/s00253-010-2490-x
    1. Juhas M., Power P. M., Harding R. M., Ferguson D. J., Dimopoulou I. D., Elamin A. R., et al. (2007). Sequence and functional analyses of Haemophilus spp. genomic islands. Genome Biol. 8:R237. 10.1186/gb-2007-8-11-r237
    1. Juhas M., van der Meer J. R., Gaillard M., Harding R. M., Hood D. W., Crook D. W. (2009). Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol. Rev. 33 376–393. 10.1111/j.1574-6976.2008.00136.x
    1. Kado C. I. (2014). Historical events that spawned the field of plasmid biology. Microbiol. Spectr. 2:10.1128/microbiolspec.PLAS-0019-2013. 10.1128/microbiolspec.PLAS-0019-2013
    1. Kamruzzaman M., Shoma S., Thomas C. M., Partridge S. R., Iredell J. R. (2017). Plasmid interference for curing antibiotic resistance plasmids in vivo. PLoS One 12:e0172913. 10.1371/journal.pone.0172913
    1. Karthikeyan V., Santosh S. W. (2010). Comparing the efficacy of plasmid curing agents in Lactobacillus acidophilus. Benef. Microb. 1 155–158. 10.3920/BM2009.0038
    1. Kennedy I. (1981). The Unmasking of Medicine. London: Paladin, Granada Publishmg.
    1. Keyhani J., Keyhani E., Attar F., Haddadi A. (2006). Sensitivity to detergents and plasmid curing in Enterococcus faecalis. J. Indus. Microbiol. Biotechnol. 33 238–242. 10.1007/s10295-005-0261-y
    1. Kim J. S., Cho D. H., Park M., Chung W. J., Shin D., Ko K. S., et al. (2016). CRISPR/Cas9-Mediated re-sensitization of antibiotic-resistant Escherichia coli harboring extended-spectrum beta-lactamases. J. Microbiol. Biotechnol. 26 394–401. 10.4014/jmb.1508.08080
    1. Klockgether J., Wurdemann D., Reva O., Wiehlmann L., Tummler B. (2007). Diversity of the abundant pKLC102/PAGI-2 family of genomic islands in Pseudomonas aeruginosa. J. Bacteriol. 189 2443–2459. 10.1128/JB.01688-06
    1. Klumper U., Dechesne A., Riber L., Brandt K. K., Gulay A., Sorensen S. J., et al. (2017). Metal stressors consistently modulate bacterial conjugal plasmid uptake potential in a phylogenetically conserved manner. ISME J. 11 152–165. 10.1038/ismej.2016.98
    1. Knetsch M., Koole L. (2011). New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers 3 340–366.
    1. Kumarasamy K. K., Toleman M. A., Walsh T. R., Bagaria J., Butt F., Balakrishnan R., et al. (2010). Emergence of a new antibiotic resistance mechanism in India. Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect. Dis. 10 597–602. 10.1016/S1473-3099(10)70143-2
    1. Lakshmi V. V., Polasa H. (1991). Curing of pBR322 and pBR329 plasmids in Escherichia coli by cis-dichlorodiamine platinum(II) chloride (Cis-DDP). FEMS Microbiol. Lett. 62 281–284. 10.1016/0378-1097(91)90171-6
    1. Lakshmi V. V., Sridhar P., Khan B. T., Polasa H. (1988). Mixed-ligand complexes of platinum(II) as curing agents for pBR322 and pBR329 (ColE1) plasmids in Escherichia coli. J. Gen. Microbiol. 134 1977–1981. 10.1099/00221287-134-7-1977
    1. Landecker H. (2016). Antibiotic resistance and the biology of history. Body Soc. 22 19–52. 10.1177/1357034X14561341
    1. Lanka E., Wilkins B. M. (1995). DNA processing reactions in bacterial conjugation. Ann. Rev. Biochem. 64 141–169. 10.1038/sj.emboj.7601806
    1. Lauritsen I., Kim S. H., Porse A., Norholm M. H. H. (2018). Standardized cloning and curing of plasmids. Methods Mol. Biol. 1772 469–476. 10.1007/978-1-4939-7795-6_28
    1. Lauritsen I., Porse A., Sommer M. O. A., Norholm M. H. H. (2017). A versatile one-step CRISPR-Cas9 based approach to plasmid-curing. Microb. Cell Fact. 16:135. 10.1186/s12934-017-0748-z
    1. Law N., Logan C., Yung G., Furr C. L., Lehman S. M., Morales S., et al. (2019). Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient. Infection 47 665–668. 10.1007/s15010-019-01319-0
    1. Lederberg J., Tatum E. L. (1946). Gene recombination in Escherichia coli. Nature 158:558.
    1. Leungtongkam U., Thummeepak R., Tasanapak K., Sitthisak S. (2018). Acquisition and transfer of antibiotic resistance genes in association with conjugative plasmid or class 1 integrons of Acinetobacter baumannii. PLoS One 13:e0208468. 10.1371/journal.pone.0208468
    1. Lev A. I., Astashkin E. I., Shaikhutdinova R. Z., Platonov M. E., Kartsev N. N., Volozhantsev N. V., et al. (2017). Identification of IS1R and IS10R elements inserted into ompk36 porin gene of two multidrug-resistant Klebsiella pneumoniae hospital strains. FEMS Microbiol. Lett. 364:fnx072. 10.1093/femsle/fnx072
    1. Li H. Y., Kao C. Y., Lin W. H., Zheng P. X., Yan J. J., Wang M. C., et al. (2018). Characterization of CRISPR-Cas systems in clinical Klebsiella pneumoniae isolates uncovers its potential association with antibiotic susceptibility. Front. Microbiol. 9:1595. 10.3389/fmicb.2018.01595
    1. Li T., Liang W., Xiao X., Qian Y. (2018). Nanotechnology, an alternative with promising prospects and advantages for the treatment of cardiovascular diseases. Int. J. Nanomed. 13 7349–7362. 10.2147/IJN.S179678
    1. Lin A., Jimenez J., Derr J., Vera P., Manapat M. L., Esvelt K. M., et al. (2011). Inhibition of bacterial conjugation by phage M13 and its protein g3p: quantitative analysis and model. PLoS One 6:e19991. 10.1371/journal.pone.0019991
    1. Lin D. M., Koskella B., Lin H. C. (2017). Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest. Pharmacol. Therapeut. 8 162–173. 10.4292/wjgpt.v8.i3.162
    1. Liu J., Yang L., Chen D., Peters B. M., Li L., Li B., et al. (2018). Complete sequence of pBM413, a novel multidrug resistance megaplasmid carrying qnrVC6 and blaIMP-45 from pseudomonas aeruginosa. Int. J. Antimicrob. Agents 51 145–150. 10.1016/j.ijantimicag.2017.09.008
    1. Liu Q., Jiang Y., Shao L., Yang P., Sun B., Yang S., et al. (2017). CRISPR/Cas9-based efficient genome editing in Staphylococcus aureus. Acta Biochim. Biophys. Sin. 49 764–770. 10.1093/abbs/gmx074
    1. Liu X., Wang D., Wang H., Feng E., Zhu L., Wang H. (2012). Curing of plasmid pXO1 from Bacillus anthracis using plasmid incompatibility. PLoS One 7:e29875. 10.1371/journal.pone.0029875
    1. Liu Y. Y., Wang Y., Walsh T. R., Yi L. X., Zhang R., Spencer J., et al. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16 161–168. 10.1016/S1473-3099(15)00424-7
    1. Llosa M., Gomis-Ruth F. X., Coll M., de la Cruz F. F. (2002). Bacterial conjugation: a two-step mechanism for DNA transport. Mol. Microbiol. 45 1–8. 10.1046/j.1365-2958.2002.03014.x
    1. Lujan S. A., Guogas L. M., Ragonese H., Matson S. W., Redinbo M. R. (2007). Disrupting antibiotic resistance propagation by inhibiting the conjugative DNA relaxase. Proc. Natl. Acad. Sci. U.S.A. 104 12282–12287. 10.1073/pnas.0702760104
    1. Maddocks S., Fabijan A. P., Ho J., Lin R. C. Y., Ben Zakour N. L., Dugan C., et al. (2019). Bacteriophage therapy of ventilator-associated Pneumonia and Empyema caused by Pseudomonas aeruginosa. Am. J. Respir. Crit. Care Med. 200 1179–1181. 10.1164/rccm.201904-0839LE
    1. Magot M. (1983). MTransfer of antibiotic resistances from Clostridium innocuum to Clostridium perfringens in the absence of detectable plasmid DNA. FEMS Microbiol. Lett. 18 149–151.
    1. Mahillon J., Chandler M. (1998). Insertion sequences. Microbiol. Mol. Biol. Rev. 62 725–774.
    1. Maier L., Pruteanu M., Kuhn M., Zeller G., Telzerow A., Anderson E. E., et al. (2018). Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555 623–628. 10.1038/nature25979
    1. Makarova K. S., Koonin E. V. (2015). Annotation and classification of CRISPR-Cas systems. Methods Mol. Biol. 1311 47–75. 10.1007/978-1-4939-2687-9_4
    1. Marraffini L. A., Sontheimer E. J. (2008). CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322 1843–1845. 10.1126/science.1165771
    1. Marraffini L. A., Sontheimer E. J. (2010). CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet. 11 181–190. 10.1038/nrg2749
    1. Mata C., Navarro F., Miro E., Walsh T. R., Mirelis B., Toleman M. (2011). Prevalence of SXT/R391-like integrative and conjugative elements carrying blaCMY-2 in Proteus mirabilis. J. Antimicrob. Chemother. 66 2266–2270. 10.1093/jac/dkr286
    1. Mays T. D., Smith C. J., Welch R. A., Delfini C., Macrina F. L. (1982). Novel antibiotic resistance transfer in Bacteroides. Antimicrob. Agents Chemother. 21 110–118.
    1. Mazel D. (2006). Integrons: agents of bacterial evolution. Nat. Rev. Microbiol. 4 608–620. 10.1038/nrmicro1462
    1. Merril C. R., Scholl D., Adhya S. L. (2003). The prospect for bacteriophage therapy in Western medicine. Nat. Rev. Drug Discov. 2 489–497. 10.1038/nrd1111
    1. Mesas J. M., Rodriguez M. C., Alegre M. T. (2004). Plasmid curing of Oenococcus oeni. Plasmid 51 37–40.
    1. Michel-Briand Y., Laporte J. M. (1985). Inhibition of conjugal transfer of R plasmids by nitrofurans. J. Gen. Microbiol. 131 2281–2284. 10.1099/00221287-131-9-2281
    1. Michel-Briand Y., Uccelli V., Laporte J. M., Plesiat P. (1986). Elimination of plasmids from Enterobacteriaceae by 4-quinolone derivatives. J. Antimicrob. Chemother. 18 667–674. 10.1093/jac/18.6.667
    1. Million-Weaver S., Camps M. (2014). Mechanisms of plasmid segregation: have multicopy plasmids been overlooked? Plasmid 75 27–36. 10.1016/j.plasmid.2014.07.002
    1. Molnar J., Foldeak S., Nakamura M. J., Rausch H., Domonkos K., Szabo M. (1992). Antiplasmid activity: loss of bacterial resistance to antibiotics. APMIS Suppl. 30 24–31.
    1. Molnar J., Mandi Y., Kiraly J. (1976). Antibacterial effect of some phenothiazine compounds and R-factor elimination by chlorpromazine. Acta Microbiol. Acad. Sci. Hungar. 23 45–54.
    1. Mugnier P. D., Poirel L., Nordmann P. (2009). Functional analysis of insertion sequence ISAba1, responsible for genomic plasticity of Acinetobacter baumannii. J. Bacteriol. 191 2414–2418. 10.1128/JB.01258-08
    1. Nandi S., Maurer J. J., Hofacre C., Summers A. O. (2004). Gram-positive bacteria are a major reservoir of Class 1 antibiotic resistance integrons in poultry litter. Proc. Natl. Acad. Sci. U.S.A. 101 7118–7122. 10.1073/pnas.0306466101
    1. Nejdl L., Kudr J., Moulick A., Hegerova D., Ruttkay-Nedecky B., Gumulec J., et al. (2017). Platinum nanoparticles induce damage to DNA and inhibit DNA replication. PLoS One 12:e0180798. 10.1371/journal.pone.0180798
    1. Ni B., Du Z., Guo Z., Zhang Y., Yang R. (2008). Curing of four different plasmids in Yersinia pestis using plasmid incompatibility. Lett. Appl. Microbiol. 47 235–240. 10.1111/j.1472-765x.2008.02426.x
    1. Nishi A., Tominaga K., Furukawa K. (2000). A 90-kilobase conjugative chromosomal element coding for biphenyl and salicylate catabolism in Pseudomonas putida KF715. J. Bacteriol. 182 1949–1955. 10.1128/jb.182.7.1949-1955.2000
    1. Nordmann P., Poirel L. (2002). Emerging carbapenemases in Gram-negative aerobes. Clin. Microbiol. Infect. 8 321–331.
    1. Nordstrom K. (2006). Plasmid R1–replication and its control. Plasmid 55 1–26. 10.1016/j.plasmid.2005.07.002
    1. Novick R. P. (1987). Plasmid incompatibility. Microbiol. Rev. 51 381–395.
    1. Ojo S. K., Sargin B. O., Esumeh F. I. (2014). Plasmid curing analysis of antibiotic resistance in beta-lactamase producing Staphylococci from wounds and burns patients. PJBS 17 130–133. 10.3923/pjbs.2014.130.133
    1. Olliver A., Valle M., Chaslus-Dancla E., Cloeckaert A. (2005). Overexpression of the multidrug efflux operon acrEF by insertional activation with IS1 or IS10 elements in Salmonella enterica serovar typhimurium DT204 acrB mutants selected with fluoroquinolones. Antimicrob. Agents Chemother. 49 289–301. 10.1128/AAC.49.1.289-301.2005
    1. Onsea J., Soentjens P., Djebara S., Merabishvili M., Depypere M., Spriet I., et al. (2019). Bacteriophage application for difficult-to-treat musculoskeletal infections: development of a standardized multidisciplinary treatment protocol. Viruses 11:891. 10.3390/v11100891
    1. Partridge S. R. (2011). Analysis of antibiotic resistance regions in Gram-negative bacteria. FEMS Microbiol. Rev. 35 820–855. 10.1111/j.1574-6976.2011.00277.x
    1. Partridge S. R., Kwong S. M., Firth N., Jensen S. O. (2018). Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31:e00088-17. 10.1128/CMR.00088-17
    1. Partridge S. R., Tsafnat G., Coiera E., Iredell J. R. (2009). Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol. Rev. 33 757–784. 10.1111/j.1574-6976.2009.00175.x
    1. Pelgrift R. Y., Friedman A. J. (2013). Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev. 65 1803–1815. 10.1016/j.addr.2013.07.011
    1. Pembroke J. T., MacMahon C., McGrath B. (2002). The role of conjugative transposons in the Enterobacteriaceae. Cell. Mol. Life Sci. 59 2055–2064.
    1. Penes N. O., Muntean A. A., Moisoiu A., Muntean M. M., Chirca A., Bogdan M. A., et al. (2017). An overview of resistance profiles ESKAPE pathogens from 2010-2015 in a tertiary respiratory center in Romania. Roman. J. Morphol. Embryol. 58 909–922.
    1. Pinilla-Redondo R., Cyriaque V., Jacquiod S., Sorensen S. J., Riber L. (2018). Monitoring plasmid-mediated horizontal gene transfer in microbiomes: recent advances and future perspectives. Plasmid 99 56–67. 10.1016/j.plasmid.2018.08.002
    1. Ponce-Rivas E., Munoz-Marquez M. E., Khan A. A. (2012). Identification and molecular characterization of class 1 integrons in multiresistant Escherichia coli isolates from poultry litter. Appl. Environ. Microbiol. 78 5444–5447. 10.1128/AEM.00660-12
    1. Poole K. (2017). At the nexus of antibiotics and metals: the impact of Cu and Zn on antibiotic activity and resistance. Trends Microbiol. 25 820–832. 10.1016/j.tim.2017.04.010
    1. Posno M., Leer R. J., van Luijk N., van Giezen M. J., Heuvelmans P. T., Lokman B. C., et al. (1991). Incompatibility of Lactobacillus vectors with replicons derived from small cryptic Lactobacillus plasmids and segregational instability of the introduced vectors. Appl. Environ. Microbiol. 57 1822–1828.
    1. Pourcel C., Salvignol G., Vergnaud G. (2005). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151(Pt 3), 653–663. 10.1099/mic.0.27437-0
    1. Price V. J., McBride S. W., Hullahalli K., Chatterjee A., Duerkop B. A., Palmer K. L. (2019). Enterococcus faecalis CRISPR-Cas is a robust barrier to conjugative antibiotic resistance dissemination in the murine intestine. mSphere 4:e00464-19. 10.1128/mSphere.00464-19
    1. Pulcrano G., Pignanelli S., Vollaro A., Esposito M., Iula V. D., Roscetto E., et al. (2016). Isolation of Enterobacter aerogenes carrying blaTEM-1 and blaKPC-3 genes recovered from a hospital Intensive Care Unit. APMIS 124 516–521. 10.1111/apm.12528
    1. Rai M. K., Deshmukh S. D., Ingle A. P., Gade A. K. (2012). Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 112 841–852. 10.1111/j.1365-2672.2012.05253.x
    1. Raja C., Selvam G. (2009). Plasmid profile and curing analysis of Pseudomonas aeruginosa as metal resistant. Int. J. Environ. Sci. Technol. 6 259–266.
    1. Rajpara N., Nair M., Chowdhury G., Mukhopadhyay A. K., Ramamurthy T., Niyogi S. K., et al. (2018). Molecular analysis of multidrug resistance in clinical isolates of Shigella spp. from 2001-2010 in Kolkata. India: role of integrons, plasmids, and topoisomerase mutations. Infect. Drug Resist. 11 87–102. 10.2147/IDR.S148726
    1. Rankin D. J., Rocha E. P., Brown S. P. (2011). What traits are carried on mobile genetic elements, and why? Heredity 106 1–10. 10.1038/hdy.2010.24
    1. Ravatn R., Studer S., Springael D., Zehnder A. J., van der Meer J. R. (1998). Chromosomal integration, tandem amplification, and deamplification in Pseudomonas putida F1 of a 105-kilobase genetic element containing the chlorocatechol degradative genes from Pseudomonas sp. Strain B13. J. Bacteriol. 180 4360–4369.
    1. Recchia G. D., Hall R. M. (1995). Gene cassettes: a new class of mobile element. Microbiology 141(Pt 12), 3015–3027. 10.1099/13500872-141-12-3015
    1. Riber L., Burmolle M., Alm M., Milani S. M., Thomsen P., Hansen L. H., et al. (2016). Enhanced plasmid loss in bacterial populations exposed to the antimicrobial compound irgasan delivered from interpenetrating polymer network silicone hydrogels. Plasmid 8 72–78. 10.1016/j.plasmid.2016.10.001
    1. Roberts A. P., Chandler M., Courvalin P., Guedon G., Mullany P., Pembroke T., et al. (2008). Revised nomenclature for transposable genetic elements. Plasmid 60 167–173. 10.1016/j.plasmid.2008.08.001
    1. Roberts A. P., Mullany P. (2009). A modular master on the move: the Tn916 family of mobile genetic elements. Trends Microbiol. 17 251–258. 10.1016/j.tim.2009.03.002
    1. Roberts M. C., Smith A. L. (1980). Molecular characterization of “plasmid-free” antibiotic-resistant Haemophilus influenzae. J. Bacteriol. 144 476–479.
    1. Roche D., Flechard M., Lallier N., Reperant M., Bree A., Pascal G., et al. (2010). ICEEc2, a new integrative and conjugative element belonging to the pKLC102/PAGI-2 family, identified in Escherichia coli strain BEN374. J. Bacteriol. 192 5026–5036. 10.1128/JB.00609-10
    1. Rosenberg C., Boistard P., Denarie J., Casse-Delbart F. (1981). Genes controlling early and late functions in symbiosis are located on a megaplasmid in Rhizobium meliloti. Mol. Gen. Genet. 184 326–333. 10.1007/bf00272926
    1. Ruiz-Martinez L., Lopez-Jimenez L., d’Ostuni V., Fuste E., Vinuesa T., Vinas M. (2011). A mechanism of carbapenem resistance due to a new insertion element (ISPa133) in Pseudomonas aeruginosa. Int. Microbiol. 14 51–58. 10.2436/20.1501.01.135
    1. Santajit S., Indrawattana N. (2016). Mechanisms of Antimicrobial Resistance in ESKAPE pathogens. Biomed Res. Int. 2016:2475067. 10.1155/2016/2475067
    1. Santo C. E., Morais P. V., Grass G. (2010). Isolation and characterization of bacteria resistant to metallic copper surfaces. Appl. Environ. Microbiol. 76 1341–1348. 10.1128/AEM.01952-09
    1. Sarker S. A., Sultana S., Reuteler G., Moine D., Descombes P., Charton F., et al. (2016). Oral phage therapy of acute bacterial diarrhea with two Coliphage preparations: a randomized trial in children from Bangladesh. EBiomedicine 4 124–137. 10.1016/j.ebiom.2015.12.023
    1. Schairer D. O., Chouake J. S., Nosanchuk J. D., Friedman A. J. (2012). The potential of nitric oxide releasing therapies as antimicrobial agents. Virulence 3 271–279. 10.4161/viru.20328
    1. Schmidt H., Hensel M. (2004). Pathogenicity islands in bacterial pathogenesis. Clin. Microbiol. Rev. 17 14–56.
    1. Schooley R. T., Biswas B., Gill J. J., Hernandez-Morales A., Lancaster J., Lessor L., et al. (2017). Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 61 10.1128/AAC.02221-18
    1. Seal B. S., Drider D., Oakley B. B., Brussow H., Bikard D., Rich J. O., et al. (2018). Microbial-derived products as potential new antimicrobials. Vet. Res. 49:66. 10.1186/s13567-018-0563-5
    1. Selan L., Scazzocchio F., Oliva B., Schippa S., Allocati N., Renzini G. (1988). Plasmid “curing” by some recently synthetized 4-quinolone compounds. Chemioterapia 7 292–294.
    1. Shapiro J. A. (1985). Mechanisms of DNA reorganization in bacteria. Int. Rev. Cytol. 93 25–56.
    1. Shariati A., Azimi T., Ardebili A., Chirani A. S., Bahramian A., Pormohammad A., et al. (2018). Insertional inactivation of oprD in carbapenem-resistant Pseudomonas aeruginosa strains isolated from burn patients in Tehran. Iran. New Microbes New Infect. 21 75–80. 10.1016/j.nmni.2017.10.013
    1. Shi L., Liang Q., Feng J., Zhan Z., Zhao Y., Yang W., et al. (2018). Coexistence of two novel resistance plasmids, blaKPC-2-carrying p14057A and tetA(A) -carrying p14057B, in Pseudomonas aeruginosa. Virulence 9 306–311. 10.1080/21505594.2017.1372082
    1. Shintani M., Sanchez Z. K., Kimbara K. (2015). Genomics of microbial plasmids: classification and identification based on replication and transfer systems and host taxonomy. Front. Microbiol. 6:242. 10.3389/fmicb.2015.00242
    1. Shlaes D. M., Gerding D. N., John J. F., Jr., Craig W. A., Bornstein D. L., Duncan R. A., et al. (1997). Society for Healthcare Epidemiology of America and Infectious Diseases Society of America Joint Committee on the Prevention of Antimicrobial Resistance: guidelines for the prevention of antimicrobial resistance in hospitals. Clin. Infect. Dis. 25 584–599. 10.1086/513766
    1. Shoemaker N. B., Smith M. D., Guild W. R. (1980). DNase-resistant transfer of chromosomal cat and tet insertions by filter mating in Pneumococcus. Plasmid 3 80–87. 10.1016/s0147-619x(80)90036-0
    1. Shokoohizadeh L., Mobarez A. M., Zali M. R., Ranjbar R., Alebouyeh M., Sakinc T., et al. (2013). High frequency distribution of heterogeneous vancomycin resistant Enterococcous faecium (VREfm) in Iranian hospitals. Diagn. Pathol. 8:163. 10.1186/1746-1596-8-163
    1. Siguier P., Gourbeyre E., Varani A., Ton-Hoang B., Chandler M. (2015). Everyman’s guide to bacterial insertion sequences. Microbiol. Spectr. 3:MDNA3-0030-2014. 10.1128/microbiolspec.MDNA3-0030-2014
    1. Siguier P., Perochon J., Lestrade L., Mahillon J., Chandler M. (2006). ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 34 D32–D36. 10.1093/nar/gkj014
    1. Silva L., Mourao J., Grosso F., Peixe L. (2018). Uncommon carbapenemase-encoding plasmids in the clinically emergent Acinetobacter pittii. J. Antimicrob. Chemother. 73 52–56. 10.1093/jac/dkx364
    1. Smillie C., Garcillan-Barcia M. P., Francia M. V., Rocha E. P., de la Cruz F. (2010). Mobility of plasmids. Microbiology and molecular biology reviews. MMBR 74 434–452.
    1. So Y., Park S. Y., Park E. H., Park S. H., Kim E. J., Pan J. G., et al. (2017). A Highly efficient CRISPR-Cas9-mediated large genomic deletion in Bacillus subtilis. Front. Microbiol. 8:1167. 10.3389/fmicb.2017.01167
    1. Sonstein S. A., Baldwin J. N. (1972). Nature of the elimination of the penicillinase plasmid from Staphylococcus aureus by surface-active agents. J. Bacteriol. 111 152–155.
    1. Stanisich V. A. (1988). “Identification and analysus of plasmids at the genetic level,” in Methods in Microbiology Vol 21 Plasmid Technology, 2nd Edn, eds Grinsted J., Bennett P. M. (London: Academic Press; ), 11–47.
    1. Sultan I., Rahman S., Jan A. T., Siddiqui M. T., Mondal A. H., Haq Q. M. R. (2018). Antibiotics, resistome and resistance mechanisms: a bacterial perspective. Front. Microbiol. 9:2066. 10.3389/fmicb.2018.02066
    1. Summers W. C. (2004). “Bacteriophage research: early history,” in Bacteriophages: Biology And Applications, 1 Edn, eds Kutter E., Sulakvelidze A. (Boca Raton, FL: CRC Press; ), 5–27.
    1. Sun L., He T., Zhang L., Pang M., Zhang Q., Zhou Y., et al. (2017). Generation of newly discovered resistance gene mcr-1 Knockout in Escherichia coli using the CRISPR/Cas9 system. J. Microbiol. Biotechnol. 27 1276–1280. 10.4014/jmb.1611.11021
    1. Taylor V. L., Fitzpatrick A. D., Islam Z., Maxwell K. L. (2019). The diverse impacts of phage morons on bacterial fitness and virulence. Adv. Virus Res. 103 1–31. 10.1016/bs.aivir.2018.08.001
    1. Thaden J. T., Li Y., Ruffin F., Maskarinec S. A., Hill-Rorie J. M., Wanda L. C., et al. (2017). Increased costs associated with bloodstream infections caused by multidrug-resistant gram-negative bacteria are due primarily to patients with hospital-acquired infections. Antimicrob. Agents Chemother. 61:e0170916. 10.1128/AAC.01709-16
    1. Thompson J. N. (1994). The Coevolutionary Process. Chicago, IL: University of Chicago Press.
    1. Tkhilaishvili T., Winkler T., Muller M., Perka C., Trampuz A. (2019). Bacteriophages as adjuvant to antibiotics for the treatment of periprosthetic joint infection caused by multidrug-resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 64:AAC.00924-19. 10.1128/AAC.00924-19
    1. Toleman M. A., Walsh T. R. (2008). Evolution of the ISCR3 group of ISCR elements. Antimicrob. Agents Chemother. 52 3789–3791. 10.1128/AAC.00479-08
    1. Toleman M. A., Walsh T. R. (2011). Combinatorial events of insertion sequences and ICE in Gram-negative bacteria. FEMS Microbiol. Rev. 35 912–935. 10.1111/j.1574-6976.2011.00294.x
    1. Torres-Barcelo C. (2018). The disparate effects of bacteriophages on antibiotic-resistant bacteria. Emerg. Microb. Infect. 7:168. 10.1038/s41426-018-0169-z
    1. Upadhyay S., Khyriem A. B., Bhattacharya P., Bhattacharjee A., Joshi S. R. (2018). High-level aminoglycoside resistance in Acinetobacter baumannii recovered from Intensive Care Unit patients in Northeastern India. Indian J. Med. Microbiol. 36 43–48. 10.4103/ijmm.IJMM_17_225
    1. Uraji M., Suzuki K., Yoshida K. (2002). A novel plasmid curing method using incompatibility of plant pathogenic Ti plasmids in Agrobacterium tumefaciens. Genes Genet. Syst. 77 1–9. 10.1266/ggs.77.1
    1. Uz Zaman T., Albladi M., Siddique M. I., Aljohani S. M., Balkhy H. H. (2018). Insertion element mediated mgrB disruption and presence of ISKpn28 in colistin-resistant Klebsiella pneumoniae isolates from Saudi Arabia. Infect. Drug Resist. 11 1183–1187. 10.2147/IDR.S161146
    1. Van Boeckel T. P., Gandra S., Ashok A., Caudron Q., Grenfell B. T., Levin S. A., et al. (2014). Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect. Dis. 14 742–750. 10.1016/S1473-3099(14)70780-7
    1. Van Boeckel T. P., Glennon E. E., Chen D., Gilbert M., Robinson T. P., Grenfell B. T., et al. (2017). Reducing antimicrobial use in food animals. Science 357 1350–1352.
    1. van der Zee A., Kraak W. B., Burggraaf A., Goessens W. H. F., Pirovano W., Ossewaarde J. M., et al. (2018). Spread of carbapenem resistance by transposition and conjugation among Pseudomonas aeruginosa. Front. Microbiol. 9:2057. 10.3389/fmicb.2018.02057
    1. van Elsas J. D., Bailey M. J. (2002). The ecology of transfer of mobile genetic elements. FEMS Microbiol. Ecol. 42 187–197. 10.1111/j.1574-6941.2002.tb01008.x
    1. Vandecraen J., Chandler M., Aertsen A., Van Houdt R. (2017). The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit. Rev. Microbiol. 43 709–730. 10.1080/1040841X.2017.1303661
    1. Ventola C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. PT 40 277–283.
    1. Walker F. C., Hatoum-Aslan A. (2017). Conjugation assay for testing CRISPR-Cas anti-plasmid immunity in Staphylococci. Bio Protoc. 7:e2293. 10.21769/BioProtoc.2293
    1. Wang H., Liu X., Feng E., Zhu L., Wang D., Liao X., et al. (2011). Curing the plasmid pXO2 from Bacillus anthracis A16 using plasmid incompatibility. Curr. Microbiol. 62 703–709. 10.1007/s00284-010-9767-2
    1. Wang L., Hu C., Shao L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12 1227–1249. 10.2147/IJN.S121956
    1. Wang P., He D., Li B., Guo Y., Wang W., Luo X., et al. (2019). Eliminating mcr-1-harbouring plasmids in clinical isolates using the CRISPR/Cas9 system. J. Antimicrob. Chemother. 74 2559–2565. 10.1093/jac/dkz246
    1. Weisser J., Wiedemann B. (1985). Elimination of plasmids by new 4-quinolones. Antimicrob. Agents Chemother. 28 700–702. 10.1128/aac.28.5.700
    1. Wigle T. J., Sexton J. Z., Gromova A. V., Hadimani M. B., Hughes M. A., Smith G. R., et al. (2009). Inhibitors of RecA activity discovered by high-throughput screening: cell-permeable small molecules attenuate the SOS response in Escherichia coli. J. Biomol. Screen. 14 1092–1101. 10.1177/1087057109342126
    1. World Health Organization [WHO] (2017). Global Priority list of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. Geneva: WHO.
    1. Wozniak R. A., Waldor M. K. (2010). Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat. Rev. Microbiol. 8 552–563. 10.1038/nrmicro2382
    1. Xu Y., Xu J., Mao D., Luo Y. (2017). Effect of the selective pressure of sub-lethal level of heavy metals on the fate and distribution of ARGs in the catchment scale. Environ. Pollut. 220(Pt B), 900–908. 10.1016/j.envpol.2016.10.074
    1. Yazdankhah S., Rudi K., Bernhoft A. (2014). Zinc and copper in animal feed - development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin. Microb. Ecol. Health Dis. 25:25862. 10.3402/mehd.v25.25862
    1. Yosef I., Manor M., Kiro R., Qimron U. (2015). Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc. Natl. Acad. Sci. U.S.A. 112 7267–7272. 10.1073/pnas.1500107112
    1. Yuan Y., Wang L., Li X., Tan D., Cong C., Xu Y. (2019). Efficacy of a phage cocktail in controlling phage resistance development in multidrug resistant Acinetobacter baumannii. Virus Res. 272:197734. 10.1016/j.virusres.2019.197734
    1. Zaman M., Pasha M., Akhter M. (2010). Plasmid curing of Escherichia coli cells with ethidium bromide, sodium dodecyl sulfate and acridine orange. Bangladesh J. Microbiol. 1 28–31.
    1. Zhang L., Pornpattananangku D., Hu C. M., Huang C. M. (2010). Development of nanoparticles for antimicrobial drug delivery. Curr. Med. Chem. 17 585–594. 10.2174/092986710790416290

Source: PubMed

3
Subskrybuj