Effect of Probiotic Supplementation on Cognitive Function and Metabolic Status in Alzheimer's Disease: A Randomized, Double-Blind and Controlled Trial

Elmira Akbari, Zatollah Asemi, Reza Daneshvar Kakhaki, Fereshteh Bahmani, Ebrahim Kouchaki, Omid Reza Tamtaji, Gholam Ali Hamidi, Mahmoud Salami, Elmira Akbari, Zatollah Asemi, Reza Daneshvar Kakhaki, Fereshteh Bahmani, Ebrahim Kouchaki, Omid Reza Tamtaji, Gholam Ali Hamidi, Mahmoud Salami

Abstract

Alzheimer's disease (AD) is associated with severe cognitive impairments as well as some metabolic defects. Scant studies in animal models indicate a link between probiotics and cognitive function. This randomized, double-blind, and controlled clinical trial was conducted among 60 AD patients to assess the effects of probiotic supplementation on cognitive function and metabolic status. The patients were randomly divided into two groups (n = 30 in each group) treating with either milk (control group) or a mixture of probiotics (probiotic group). The probiotic supplemented group took 200 ml/day probiotic milk containing Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium bifidum, and Lactobacillus fermentum (2 × 109 CFU/g for each) for 12 weeks. Mini-mental state examination (MMSE) score was recorded in all subjects before and after the treatment. Pre- and post-treatment fasting blood samples were obtained to determine the related markers. After 12 weeks intervention, compared with the control group (-5.03% ± 3.00), the probiotic treated (+27.90% ± 8.07) patients showed a significant improvement in the MMSE score (P <0.001). In addition, changes in plasma malondialdehyde (-22.01% ± 4.84 vs. +2.67% ± 3.86 μmol/L, P <0.001), serum high-sensitivity C-reactive protein (-17.61% ± 3.70 vs. +45.26% ± 3.50 μg/mL, P <0.001), homeostasis model of assessment-estimated insulin resistance (+28.84% ± 13.34 vs. +76.95% ± 24.60, P = 0.002), Beta cell function (+3.45% ± 10.91 vs. +75.62% ± 23.18, P = 0.001), serum triglycerides (-20.29% ± 4.49 vs. -0.16% ± 5.24 mg/dL, P = 0.003), and quantitative insulin sensitivity check index (-1.83 ± 1.26 vs. -4.66 ± 1.70, P = 0.006) in the probiotic group were significantly varied compared to the control group. We found that the probiotic treatment had no considerable effect on other biomarkers of oxidative stress and inflammation, fasting plasma glucose, and other lipid profiles. Overall, the current study demonstrated that probiotic consumption for 12 weeks positively affects cognitive function and some metabolic statuses in the AD patients.

Clinical trial registration: http://www.irct.ir/, IRCT201511305623N60.

Keywords: Alzheimer's disease; clinical trial; cognitive function; metabolic status; probiotic.

Figures

Figure 1
Figure 1
Summary of patient flow.

References

    1. Amemori T., Jendelova P., Ruzicka J., Urdzikova L. M., Sykova E. (2015). Alzheimer's disease: mechanism and approach to cell therapy. Int. J. Mol. Sci. 16, 26417–26451. 10.3390/ijms161125961
    1. Arrieta-Cruz I., Gutierrez-Juarez R. (2016). The role of insulin resistance and glucose metabolism dysregulation in the development of Alzheimer′s disease. Rev. Invest. Clin. 68, 53–58.
    1. Aziz Q., Doré J., Emmanuel A., Guarner F., Quigley E. M. (2013). Gut microbiota and gastrointestinal health: current concepts and future directions. Neurogastroenterol. Motil. 25, 4–15. 10.1111/nmo.12046
    1. Benton D., Williams C., Brown A. (2007). Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur. J. Clin. Nutr. 61, 355–361. 10.1038/sj.ejcn.1602546
    1. Benzie I. F., Strain J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239, 70–76. 10.1006/abio.1996.0292
    1. Beutler E., Gelbart T. (1985). Plasma glutathione in health and in patients with malignant disease. J. Lab. Clin. Med. 105, 581–584.
    1. Bhattacharjee S., Lukiw W. J. (2013). Alzheimer's disease and the microbiome. Front. Cell. Neurosci. 7:153. 10.3389/fncel.2013.00153
    1. Cervellati C., Wood P. L., Romani A., Valacchi G., Squerzanti M., Sanz J. M., et al. . (2016). Oxidative challenge in Alzheimer's disease: state of knowledge and future needs. J. Investig. Med. 64, 21–32. 10.1136/jim-2015-000017
    1. Cho I., Yamanishi S., Cox L., Methé B. A., Zavadil J., Li K., et al. . (2012). Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488, 621–626. 10.1038/nature11400
    1. Collins S. M., Surette M., Bercik P. (2012). The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol. 10, 735–742. 10.1038/nrmicro2876
    1. Cryan J. F., Dinan T. G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712. 10.1038/nrn3346
    1. Davari S., Talaei S. A., Alaei H., Salami M. (2013). Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: behavioral and electrophysiological proofs for microbiome–gut–brain axis. Neuroscience 240, 287–296. 10.1016/j.neuroscience.2013.02.055
    1. de Souza-Talarico J. N., de Carvalho A. P., Brucki S. M., Nitrini R., Ferretti-Rebustini R. E. (2016). Dementia and cognitive impairment prevalence and associated factors in indigenous populations: a systematic review. Alzheimer Dis. Assoc. Disord. 30, 281–287. 10.1097/WAD.0000000000000140
    1. Dinan T. G., Cryan J. F. (2013). Melancholic microbes: a link between gut microbiota and depression? Neurogastroenterol. Motil. 25, 713–719. 10.1111/nmo.12198
    1. Drago L., Toscano M., Rodighiero V., De Vecchi E., Mogna G. (2012). Cultivable and pyrosequenced fecal microflora in centenarians and young subjects. J. Clin. Gastroenterol. 46(Suppl.), S81–S84. 10.1097/MCG.0b013e3182693982
    1. Ejtahed H. S., Mohtadi-Nia J., Homayouni-Rad A., Niafar M., Asghari-Jafarabadi M., Mofid V. (2012). Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutrition 28, 539–543. 10.1016/j.nut.2011.08.013
    1. Folstein M. F., Folstein S. E., McHugh P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198. 10.1016/0022-3956(75)90026-6
    1. Furman R., Murray I. V., Schall H. E., Liu Q., Ghiwot Y., Axelsen P. H. (2016). Amyloid plaque-associated oxidative degradation of uniformly radiolabeled arachidonic acid. ACS Chem. Neurosci. 7, 367–377. 10.1021/acschemneuro.5b00316
    1. Gareau M. G. (2014). Microbiota-gut-brain axis and cognitive function. Adv. Exp. Med. Biol. 817, 357–371. 10.1007/978-1-4939-0897-4_16
    1. Hufeldt M. R., Nielsen D. S., Vogensen F. K., Midtvedt T., Hansen A. K. (2010). Variation in the gut microbiota of laboratory mice is related to both genetic and environmental factors. Comp. Med. 60, 336–347.
    1. Jack C. R., Jr., Albert M. S., Knopman D. S., McKhann G. M., Sperling R. A., Carrillo M. C., et al. . (2011). Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 7, 257–262. 10.1016/j.jalz.2011.03.004
    1. Janero D. R. (1990). Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic. Biol. Med. 9, 515–540. 10.1016/0891-5849(90)90131-2
    1. Kasińska M. A., Drzewoski J. (2015). Effectiveness of probiotics in type 2 diabetes: a meta-analysis. Pol. Arch. Med. Wewn. 125, 803–813.
    1. Kim G. H., Kim J. E., Rhie S. J., Yoon S. (2015). The role of oxidative stress in neurodegenerative diseases. Exp. Neurobiol. 24, 325–340. 10.5607/en.2015.24.4.325
    1. Kouchaki E., Tamtaji O. R., Salami M., Bahmani F., Daneshvar Kakhaki R., Akbari E., et al. . (2016). Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled trial. Clin. Nutr. [Epub ahead of print]. 10.1016/j.clnu.2016.08.015.
    1. Lachin J. M. (2016). Fallacies of last observation carried forward analyses. Clin. Trials 13, 161–168. 10.1177/1740774515602688
    1. Leszek J., Barreto G. E., Gasiorowski K., Koutsouraki E., Ávila-Rodrigues M., Aliev G. (2016). Inflammatory mechanisms and oxidative stress as key factors responsible for progression of neurodegeneration: role of brain innate immune system. CNS Neurol. Disord. Drug Targets 15, 329–336. 10.2174/1871527315666160202125914
    1. Liang S., Wang T., Hu X., Luo J., Li W., Wu X., et al. . (2015). Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 310, 561–577. 10.1016/j.neuroscience.2015.09.033
    1. Ma L., Feng M., Qian Y., Yang W., Liu J., Han R., et al. . (2015). Insulin resistance is an important risk factor for cognitive impairment in elderly patients with primary hypertension. Yonsei Med. J. 56, 89–94. 10.3349/ymj.2015.56.1.89
    1. Malaguarnera M., Greco F., Barone G., Gargante M. P., Toscano M. A. (2007). Bifidobacterium longum with fructo-oligosaccharide (FOS) treatment in minimal hepatic encephalopathy: a randomized, double-blind, placebo-controlled study. Dig. Dis. Sci. 52, 3259–3265. 10.1007/s10620-006-9687-y
    1. Mazloom Z., Yousefinejad A., Dabbaghmanesh M. H. (2013). Effect of probiotics on lipid profile, glycemic control, insulin action, oxidative stress, and inflammatory markers in patients with type 2 diabetes: a clinical trial. Iran. J. Med. Sci. 38, 38–43.
    1. McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E. M. (1984). Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 34, 939–944. 10.1212/WNL.34.7.939
    1. Mitew S., Kirkcaldie M. T., Dickson T. C., Vickers J. C. (2013). Altered synapses and gliotransmission in Alzheimer's disease and AD model mice. Neurobiol. Aging 34, 2341–2351. 10.1016/j.neurobiolaging.2013.04.010
    1. Mohammadi A. A., Jazayeri S., Khosravi-Darani K., Solati Z., Mohammadpour N., Asemi Z., et al. . (2015). The effects of probiotics on mental health and hypothalamic-pituitary-adrenal axis: a randomized, double-blind, placebo-controlled trial in petrochemical workers. Nutr. Neurosci. [Epub ahead of print]. 10.1179/1476830515Y.0000000023.
    1. Pisprasert V., Ingram K. H., Lopez-Davila M. F., Munoz A. J., Garvey W. T. (2013). Limitations in the use of indices using glucose and insulin levels to predict insulin sensitivity: impact of race and gender and superiority of the indices derived from oral glucose tolerance test in African Americans. Diabetes Care 36, 845–853. 10.2337/dc12-0840
    1. Presecki P., Muck-Seler D., Mimica N., Pivac N., Mustapic M., Stipcevic T., et al. . (2011). Serum lipid levels in patients with Alzheimer's disease. Coll. Antropol. 35(Suppl. 1), 115–120.
    1. Qiu C., De Ronchi D., Fratiglioni L. (2007). The epidemiology of the dementias: an update. Curr. Opin. Psychiatry 20, 380–385. 10.1097/YCO.0b013e32816ebc7b
    1. Reitz C., Tang M. X., Schupf N., Manly J. J., Mayeux R., Luchsinger J. A. (2010). A summary risk score for the prediction of Alzheimer disease in elderly persons. Arch. Neurol. 67, 835–841. 10.1001/archneurol.2010.136
    1. Salami M., Fathollahi Y., Esteky H., Motamedi F., Atapour N. (2000). Effects of ketamine on synaptic transmission and long-term potentiation in layer II/III of rat visual cortex in vitro. Eur. J. Pharmacol. 390, 287–293. 10.1016/S0014-2999(00)00034-0
    1. Schelke M. W., Hackett K., Chen J. L., Shih C., Shum J., Montgomery M. E., et al. . (2016). Nutritional interventions for Alzheimer's prevention: a clinical precision medicine approach. Ann. N.Y. Acad. Sci. 1367, 50–56. 10.1111/nyas.13070
    1. Selvarajah D., Wilkinson I. D., Davies J., Gandhi R., Tesfaye S. (2011). Central nervous system involvement in diabetic neuropathy. Curr. Diab. Rep. 11, 310–322. 10.1007/s11892-011-0205-z
    1. Shakeri H., Hadaegh H., Abedi F., Tajabadi-Ebrahimi M., Mazroii N., Ghandi Y., et al. . (2014). Consumption of synbiotic bread decreases triacylglycerol and VLDL levels while increasing HDL levels in serum from patients with type-2 diabetes. Lipids 49, 695–701. 10.1007/s11745-014-3901-z
    1. Shewale R. N., Sawale P. D., Khedkar C. D., Singh A. (2014). Selection criteria for probiotics: a review. Int. J. Probiotics Prebiotics 9, 17–22.
    1. Shi H., Kokoeva M. V., Inouye K., Tzameli I., Yin H., Flier J. S. (2006). TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 116, 3015–3025. 10.1172/JCI28898
    1. Sridhar G. R., Lakshmi G., Nagamani G. (2015). Emerging links between type 2 diabetes and Alzheimer's disease. World J. Diabetes 6, 744–751. 10.4239/wjd.v6.i5.744
    1. Sudo N., Chida Y., Aiba Y., Sonoda J., Oyama N., Yu X. N., et al. . (2004). Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol. 558(Pt 1), 263–275. 10.1113/jphysiol.2004.063388
    1. Sultana R., Mecocci P., Mangialasche F., Cecchetti R., Baglioni M., Butterfield D. A. (2011). Increased protein and lipid oxidative damage in mitochondria isolated from lymphocytes from patients with Alzheimer's disease: insights into the role of oxidative stress in Alzheimer's disease and initial investigations into a potential biomarker for this dementing disorder. J. Alzheimers Dis. 24, 77–84. 10.3233/JAD-2011-101425
    1. Taghizadeh M., Talaei S. A., Djazayeri A., Salami M. (2014). Vitamin D supplementation restores suppressed synaptic plasticity in Alzheimer's disease. Nutr. Neurosci. 17, 172–177. 10.1179/1476830513Y.0000000080
    1. Talaei S. A., Azami A., Salami M. (2016). Postnatal development and sensory experience synergistically underlie the excitatory/inhibitory features of hippocampal neural circuits: glutamatergic and GABAergic neurotransmission. Neuroscience 318, 230–243. 10.1016/j.neuroscience.2016.01.024
    1. Tan J. L., Li Q. X., Ciccotosto G. D., Crouch P. J., Culvenor J. G., White A. R., et al. . (2013). Mild oxidative stress induces redistribution of BACE1 in non-apoptotic conditions and promotes the amyloidogenic processing of Alzheimer's disease amyloid precursor protein. PLoS ONE 8:e61246. 10.1371/journal.pone.0061246
    1. Tatsch E., Bochi G. V., Pereira Rda S., Kober H., Agertt V. A., de Campos M. M., et al. . (2011). A simple and inexpensive automated technique for measurement of serum nitrite/nitrate. Clin. Biochem. 44, 348–350. 10.1016/j.clinbiochem.2010.12.011
    1. Vaghef-Mehrabany E., Homayouni-Rad A., Alipour B., Sharif S. K., Vaghef-Mehrabany L., Alipour-Ajiry S. (2015). Effects of probiotic supplementation on oxidative stress indices in women with rheumatoid arthritis: a randomized double-blind clinical trial. J. Am. Coll. Nutr. 35, 291–299. 10.1080/07315724.2014.959208
    1. Wall R., Cryan J. F., Ross R. P., Fitzgerald G. F., Dinan T. G., Stanton C. (2014). Bacterial neuroactive compounds produced by psychobiotics. Adv. Exp. Med. Biol. 817, 221–239. 10.1007/978-1-4939-0897-4_10
    1. Wang S. H., Huang Y., Yuan Y., Xia W. Q., Wang P., Huang R. (2014). LDL receptor knock-out mice show impaired spatial cognition with hippocampal vulnerability to apoptosis and deficits in synapses. Lipids Health Dis. 13:175. 10.1186/1476-511X-13-175
    1. Yadav H., Lee J. H., Lloyd J., Walter P., Rane S. G. (2013). Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J. Biol. Chem. 288, 25088–25097. 10.1074/jbc.M113.452516
    1. Zarrati M., Salehi E., Nourijelyani K., Mofid V., Zadeh M. J., Najafi F., et al. . (2014). Effects of probiotic yogurt on fat distribution and gene expression of proinflammatory factors in peripheral blood mononuclear cells in overweight and obese people with or without weight-loss diet. J. Am. Coll. Nutr. 33, 417–425. 10.1080/07315724.2013.874937

Source: PubMed

3
Subskrybuj