Cardiac Imaging Biomarkers in Chronic Kidney Disease

Silvia C Valbuena-López, Giovanni Camastra, Luca Cacciotti, Eike Nagel, Valentina O Puntmann, Luca Arcari, Silvia C Valbuena-López, Giovanni Camastra, Luca Cacciotti, Eike Nagel, Valentina O Puntmann, Luca Arcari

Abstract

Uremic cardiomyopathy (UC), the peculiar cardiac remodeling secondary to the systemic effects of renal dysfunction, is characterized by left ventricular (LV) diffuse fibrosis with hypertrophy (LVH) and stiffness and the development of heart failure and increased rates of cardiovascular mortality. Several imaging modalities can be used to obtain a non-invasive assessment of UC by different imaging biomarkers, which is the focus of the present review. Echocardiography has been largely employed in recent decades, especially for the determination of LVH by 2-dimensional imaging and diastolic dysfunction by pulsed-wave and tissue Doppler, where it retains a robust prognostic value; more recent techniques include parametric assessment of cardiac deformation by speckle tracking echocardiography and the use of 3D-imaging. Cardiac magnetic resonance (CMR) imaging allows a more accurate assessment of cardiac dimensions, including the right heart, and deformation by feature-tracking imaging; however, the most evident added value of CMR remains tissue characterization. T1 mapping demonstrated diffuse fibrosis in CKD patients, increasing with the worsening of renal disease and evident even in early stages of the disease, with few, but emerging, prognostic data. Some studies using T2 mapping highlighted the presence of subtle, diffuse myocardial edema. Finally, computed tomography, though rarely used to specifically assess UC, might provide incidental findings carrying prognostic relevance, including information on cardiac and vascular calcification. In summary, non-invasive cardiovascular imaging provides a wealth of imaging biomarkers for the characterization and risk-stratification of UC; integrating results from different imaging techniques can aid a better understanding of the physiopathology of UC and improve the clinical management of patients with CKD.

Keywords: Chronic kidney disease; T1 mapping; T2 mapping; cardiac magnetic resonance; myocardial fibrosis; uremic cardiomyopathy.

Conflict of interest statement

Eike Nagel and Valentina O. Puntmann have received grant support and speaker honoraria from Bayer Healthcare.

Figures

Figure 1
Figure 1
Pulsed-wave Doppler (A) and tissue-Doppler (B) imaging of the left ventricular basal septum for a 4-chamber apical view in a patient with CKD. This shows a second-degree diastolic dysfunction pattern in A; the E/e’ ratio indicates a likely rise in left ventricular filling pressures.
Figure 2
Figure 2
54-year-old male, with stage III CKD secondary to nefroangiosclerosis, who presents with CMR concentric LVH in cine images (A), mildly increased native T1 (B) with normal T2, probably reflecting appropriate volume status with some degree of diffuse fibrosis. A previously unknown myocardial infarction is present as a subendocardial scar in mid-basal segments of the inferolateral wall (arrows in C,D).
Figure 3
Figure 3
Typical findings of uremic cardiomyopathy with CMR. The patient presents with mild pericardial effusion, severe concentric LVH with hypertrophy of papillary muscles (A), diffuse intramyocardial LGE (B), and diffuse fibrosis, as shown by high values of native T1 (C) and ECV (post contrast T1, D).
Figure 4
Figure 4
Cardiac and vascular calcification by computed tomography. Coronary calcification is present in bright white (A) and pink after post-processing (B). There is calcification of the aortic valve (C) and posterior mitral anulus (D) and vascular calcification of the abdominal aorta and iliac arteries (E).

References

    1. Go A.S., Chertow G.M., Fan D., McCulloch C.E., Hsu C.-Y. Chronic Kidney Disease and the Risks of Death, Cardiovascular Events, and Hospitalization. N. Engl. J. Med. 2004;351:1296–1305. doi: 10.1056/nejmoa041031.
    1. Visseren F.L.J., Mach F., Smulders Y.M., Carballo D., Koskinas K.C., Bäck M., Benetos A., Biffi A., Boavida J.-M., Capodanno D., et al. ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021;42:3227–3337. doi: 10.1093/eurheartj/ehab484.
    1. Sarnak M.J., Amann K., Bangalore S., Cavalcante J.L., Charytan D.M., Craig J.C., Gill J.S., Hlatky M.A., Jardine A.G., Landmesser U., et al. Chronic Kidney Disease and Coronary Artery Disease. J. Am. Coll. Cardiol. 2019;74:1823–1838. doi: 10.1016/j.jacc.2019.08.1017.
    1. Shamseddin M.K., Parfrey P.S. Sudden cardiac death in chronic kidney disease: Epidemiology and prevention. Nat. Rev. Nephrol. 2011;7:145–154. doi: 10.1038/nrneph.2010.191.
    1. Remppis A., Ritz E. Non-Coronary Heart Disease in Dialysis Patients: Cardiac Problems in the Dialysis Patient: Beyond Coronary Disease. Semin. Dial. 2008;21:319–325. doi: 10.1111/j.1525-139x.2008.00457.x.
    1. Tonelli M., Karumanchi S.A., Thadhani R. Epidemiology and Mechanisms of Uremia-Related Cardiovascular Disease. Circulation. 2016;133:518–536. doi: 10.1161/circulationaha.115.018713.
    1. Wang X., Shapiro J.I. Evolving concepts in the pathogenesis of uraemic cardiomyopathy. Nat. Rev. Nephrol. 2019;15:159–175. doi: 10.1038/s41581-018-0101-8.
    1. Foley R.N., Parfrey P.S., Harnett J.D., Kent G.M., Martin C.J., Murray D.C., Barre P.E. Clinical and echocardiographic disease in patients starting end-stage renal disease therapy. Kidney Int. 1995;47:186–192. doi: 10.1038/ki.1995.22.
    1. Zuijdewijn C.L.D.R.V., Hansildaar R., Bots M.L., Blankestijn P.J., Dorpel M.A.V.D., Grooteman M.P., Kamp O., ter Wee P.M., Nubé M.J. Eccentric Left Ventricular Hypertrophy and Sudden Death in Patients with End-Stage Kidney Disease. Am. J. Nephrol. 2015;42:126–133. doi: 10.1159/000439447.
    1. Wang S., Xue H., Zou Y., Sun K., Fu C., Wang H., Hui R. Left ventricular hypertrophy, abnormal ventricular geometry and relative wall thickness are associated with increased risk of stroke in hypertensive patients among the Han Chinese. Hypertens. Res. 2014;37:870–874. doi: 10.1038/hr.2014.88.
    1. Christensen J., Landler N.E., Olsen F.J., Feldt-Rasmussen B., Hansen D., Kamper A.-L., Christoffersen C., Ballegaard E.L.F., Sørensen I.M.H., Bjergfelt S.S., et al. Left ventricular structure and function in patients with chronic kidney disease assessed by 3D echocardiography: The CPH-CKD ECHO study. Int. J. Cardiovasc. Imaging. 2021;38:1233–1244. doi: 10.1007/s10554-021-02507-6.
    1. Stewart G.A., Foster J., Cowan M., Rooney E., Mcdonagh T., Dargie H.J., Rodger R.S.C., Jardine A. Echocardiography overestimates left ventricular mass in hemodialysis patients relative to magnetic resonance imaging. Kidney Int. 1999;56:2248–2253. doi: 10.1046/j.1523-1755.1999.00786.x.
    1. Grothues F., Smith G.C., Moon J.C., Bellenger N.G., Collins P., Klein H.U., Pennell D.J. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am. J. Cardiol. 2002;90:29–34. doi: 10.1016/S0002-9149(02)02381-0.
    1. Badve S.V., Palmer S.C., Strippoli G.F., Roberts M.A., Teixeira-Pinto A., Boudville N., Cass A., Hawley C.M., Hiremath S.S., Pascoe E.M., et al. The Validity of Left Ventricular Mass as a Surrogate End Point for All-Cause and Cardiovascular Mortality Outcomes in People with CKD: A Systematic Review and Meta-Analysis. Am. J. Kidney Dis. 2016;68:554–563. doi: 10.1053/j.ajkd.2016.03.418.
    1. Odudu A., Eldehni M.T., McCann G.P., Horsfield M.A., Breidthardt T., McIntyre C.W. Characterisation of cardiomyopathy by cardiac and aortic magnetic resonance in patients new to hemodialysis. Eur. Radiol. 2016;26:2749–2761. doi: 10.1007/s00330-015-4096-2.
    1. Hayer M.K., Radhakrishnan A., Price A.M., Liu B., Baig S., Weston C.J., Biasiolli L., Ferro C.J., Townend J.N., Steeds R.P., et al. Defining Myocardial Abnormalities across the Stages of Chronic Kidney Disease. JACC Cardiovasc. Imaging. 2020;13:2357–2367. doi: 10.1016/j.jcmg.2020.04.021.
    1. Mark P., Johnston N., Groenning B., Foster J., Blyth K., Martin T., Steedman T., Dargie H., Jardine A. Redefinition of uremic cardiomyopathy by contrast-enhanced cardiac magnetic resonance imaging. Kidney Int. 2006;69:1839–1845. doi: 10.1038/sj.ki.5000249.
    1. Price A.M., Hayer M.K., Vijapurapu R., Fyyaz S.A., Moody W.E., Ferro C.J., Townend J.N., Steeds R.P., Edwards N.C. Myocardial characterization in pre-dialysis chronic kidney disease: A study of prevalence, patterns and outcomes. BMC Cardiovasc. Disord. 2019;19:295. doi: 10.1186/s12872-019-1256-3.
    1. Edwards N.C., Moody W.E., Yuan M., Hayer M.K., Ferro C.J., Townend J.N., Steeds R.P. Diffuse Interstitial Fibrosis and Myocardial Dysfunction in Early Chronic Kidney Disease. Am. J. Cardiol. 2015;115:1311–1317. doi: 10.1016/j.amjcard.2015.02.015.
    1. Graham-Brown M.P., March D.S., Churchward D.R., Stensel D.J., Singh A., Arnold R., Burton J.O., McCann G.P. Novel cardiac nuclear magnetic resonance method for noninvasive assessment of myocardial fibrosis in hemodialysis patients. Kidney Int. 2016;90:835–844. doi: 10.1016/j.kint.2016.07.014.
    1. Rutherford E., Talle M.A., Mangion K., Bell E., Rauhalammi S.M., Roditi G., McComb C., Radjenovic A., Welsh P., Woodward R., et al. Defining myocardial tissue abnormalities in end-stage renal failure with cardiac magnetic resonance imaging using native T1 mapping. Kidney Int. 2016;90:845–852. doi: 10.1016/j.kint.2016.06.014.
    1. Antlanger M., Aschauer S., Kammerlander A.A., Duca F., Säemann M.D., Bonderman D., Mascherbauer J. Impact of Systemic Volume Status on Cardiac Magnetic Resonance T1 Mapping. Sci. Rep. 2018;8:5572. doi: 10.1038/s41598-018-23868-4.
    1. Chen M., Arcari L., Engel J., Freiwald T., Platschek S., Zhou H., Zainal H., Buettner S., Zeiher A.M., Geiger H., et al. Aortic stiffness is independently associated with interstitial myocardial fibrosis by native T1 and accelerated in the presence of chronic kidney disease. IJC Heart Vasc. 2019;24:100389. doi: 10.1016/j.ijcha.2019.100389.
    1. Arcari L., Hinojar R., Engel J., Freiwald T., Platschek S., Zainal H., Zhou H., Vasquez M., Keller T., Rolf A., et al. Native T1 and T2 provide distinctive signatures in hypertrophic cardiac conditions—Comparison of uremic, hypertensive and hypertrophic cardiomyopathy. Int. J. Cardiol. 2020;306:102–108. doi: 10.1016/j.ijcard.2020.03.002.
    1. Han X., He F., Cao Y., Li Y., Gu J., Shi H. Associations of B-type natriuretic peptide (BNP) and dialysis vintage with CMRI-derived cardiac indices in stable hemodialysis patients with a preserved left ventricular ejection fraction. Int. J. Cardiovasc. Imaging. 2020;36:2265–2278. doi: 10.1007/s10554-020-01942-1.
    1. Lin L., Xie Q., Zheng M., Zhou X., Dekkers I.A., Tao Q., Lamb H.J. Identification of cardiovascular abnormalities by multiparametric magnetic resonance imaging in end-stage renal disease patients with preserved left ventricular ejection fraction. Eur. Radiol. 2021;31:7098–7109. doi: 10.1007/s00330-021-07752-w.
    1. Qin L., Gu S., Xiao R., Liu P., Yan F., Yu H., Yang W. Value of native T1 mapping in the prediction of major adverse cardiovascular events in hemodialysis patients. Eur. Radiol. 2022;32:6878–6890. doi: 10.1007/s00330-022-08839-8.
    1. Arcari L., Engel J., Freiwald T., Zhou H., Zainal H., Gawor M., Buettner S., Geiger H., Hauser I., Nagel E., et al. Cardiac biomarkers in chronic kidney disease are independently associated with myocardial edema and diffuse fibrosis by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2021;23:71. doi: 10.1186/s12968-021-00762-z.
    1. Kotecha T., Martinez-Naharro A., Yoowannakul S., Lambe T., Rezk T., Knight D.S., Hawkins P.N., Moon J.C., Muthurangu V., Kellman P., et al. Acute changes in cardiac structural and tissue characterisation parameters following haemodialysis measured using cardiovascular magnetic resonance. Sci. Rep. 2019;9:1388. doi: 10.1038/s41598-018-37845-4.
    1. Rankin A.J., Mangion K., Lees J.S., Rutherford E., Gillis K.A., Edy E., Dymock L., Treibel T.A., Radjenovic A., Patel R.K., et al. Myocardial changes on 3T cardiovascular magnetic resonance imaging in response to haemodialysis with fluid removal. J. Cardiovasc. Magn. Reson. 2021;23:125. doi: 10.1186/s12968-021-00822-4.
    1. Graham-Brown M., Churchward D.R., Hull K.L., Preston R., Pickering W.P., Eborall H.C., McCann G.P., Burton J.O. Cardiac Remodelling in Patients Undergoing in-Centre Nocturnal Haemodialysis: Results from the MIDNIGHT Study, a Non-Randomized Controlled Trial. Blood Purif. 2017;44:301–310. doi: 10.1159/000481248.
    1. Ramchand J., Iskandar J.-P., Layoun H., Puri R., Chetrit M., Burrell L.M., Krishnaswamy A., Griffin B.P., Yun J.J., Flamm S.D., et al. Effect of Myocardial Tissue Characterization Using Native T1 to Predict the Occurrence of Adverse Events in Patients with Chronic Kidney Disease and Severe Aortic Stenosis. Am. J. Cardiol. 2022;183:85–92. doi: 10.1016/j.amjcard.2022.06.031.
    1. Magunia H., Dietrich C., Langer H.F., Schibilsky D., Schlensak C., Rosenberger P., Nowak-Machen M. 3D echocardiography derived right ventricular function is associated with right ventricular failure and mid-term survival after left ventricular assist device implantation. Int. J. Cardiol. 2018;272:348–355. doi: 10.1016/j.ijcard.2018.06.026.
    1. Jain V., Gupta K., Bhatia K., Rajapreyar I., Singh A., Zhou W., Klein A., Nanda N.C., Prabhu S.D., Bajaj N.S. Coronary flow abnormalities in chronic kidney disease: A systematic review and meta-analysis. Echocardiography. 2022;39:1382–1390. doi: 10.1111/echo.15445.
    1. Kashioulis P., Guron C.W., Svensson M.K., Hammarsten O., Saeed A., Guron G. Patients with moderate chronic kidney disease without heart disease have reduced coronary flow velocity reserve. ESC Heart Fail. 2020;7:2797–2806. doi: 10.1002/ehf2.12878.
    1. Arcari L., Ciavarella G.M., Altieri S., Limite L.R., Russo D., Luciani M., De Biase L., Mené P., Volpe M. Longitudinal changes of left and right cardiac structure and function in patients with end-stage renal disease on replacement therapy. Eur. J. Intern. Med. 2020;78:95–100. doi: 10.1016/j.ejim.2020.04.051.
    1. Liang H.-Y., Hsiao Y.-L., Yeh H.-C., Ting I.-W., Lin C.-C., Chiang H.-Y., Kuo C.-C. Associations between Myocardial Diastolic Dysfunction and Cardiovascular Mortality in Chronic Kidney Disease: A Large Single-Center Cohort Study. J. Am. Soc. Echocardiogr. 2022;35:395–407. doi: 10.1016/j.echo.2021.12.003.
    1. Kim M.K., Kim B., Lee J.Y., Kim J.S., Han B.-G., Choi S.O., Yang J.W. Tissue Doppler-derived E/e’ ratio as a parameter for assessing diastolic heart failure and as a predictor of mortality in patients with chronic kidney disease. Korean J. Intern. Med. 2013;28:35–44. doi: 10.3904/kjim.2013.28.1.35.
    1. Gan G.C., Bhat A., Chen H.H., Gu K.H., Fernandez F., Kadappu K.K., Byth K., Eshoo S., Thomas L. Left Atrial Reservoir Strain by Speckle Tracking Echocardiography: Association with Exercise Capacity in Chronic Kidney Disease. J. Am. Heart Assoc. 2021;10:e017840. doi: 10.1161/JAHA.120.017840.
    1. Ayer A., Banerjee U., Mills C., Donovan C., Nelson L., Shah S.J., Dubin R.F. Left atrial strain is associated with adverse cardiovascular events in patients with end-stage renal disease: Findings from the Cardiac, Endothelial Function and Arterial Stiffness in ESRD (CERES) study. Hemodial. Int. 2022;26:323–334. doi: 10.1111/hdi.13008.
    1. Garg P., Gosling R., Swoboda P., Jones R., Rothman A., Wild J.M., Kiely D.G., Condliffe R., Alabed S., Swift A.J. Cardiac magnetic resonance identifies raised left ventricular filling pressure: Prognostic implications. Eur. Heart J. 2022;43:2511–2522. doi: 10.1093/eurheartj/ehac207.
    1. Wali R.K., Wang G.S., Gottlieb S.S., Bellumkonda L., Hansalia R., Ramos E., Drachenberg C., Papadimitriou J., Brisco M.A., Blahut S., et al. Effect of kidney transplantation on left ventricular systolic dysfunction and congestive heart failure in patients with end-stage renal disease. J. Am. Coll. Cardiol. 2005;45:1051–1060. doi: 10.1016/j.jacc.2004.11.061.
    1. Hensen L.C., Goossens K., Delgado V., Abou R., Rotmans J.I., Jukema J.W., Bax J.J. Prevalence of left ventricular systolic dysfunction in pre-dialysis and dialysis patients with preserved left ventricular ejection fraction. Eur. J. Heart Fail. 2018;20:560–568. doi: 10.1002/ejhf.1077.
    1. Hayer M.K., Price A.M., Liu B., Baig S., Ferro C.J., Townend J.N., Steeds R.P., Edwards N.C. Diffuse Myocardial Interstitial Fibrosis and Dysfunction in Early Chronic Kidney Disease. Am. J. Cardiol. 2018;121:656–660. doi: 10.1016/j.amjcard.2017.11.041.
    1. Sulemane S., Panoulas V.F., Bratsas A., Grapsa J., Brown E.A., Nihoyannopoulos P. Subclinical markers of cardiovascular disease predict adverse outcomes in chronic kidney disease patients with normal left ventricular ejection fraction. Int. J. Cardiovasc. Imaging. 2017;33:687–698. doi: 10.1007/s10554-016-1059-x.
    1. Prasad G.V.R., Yan A.T., Nash M.M., Kim S.J., Wald R., Wald R., Lok C., Gunaratnam L., Karur G.R., Kirpalani A., et al. Determinants of Left Ventricular Characteristics Assessed by Cardiac Magnetic Resonance Imaging and Cardiovascular Biomarkers Related to Kidney Transplantation. Can. J. Kidney Health Dis. 2018;5:2054358118809974. doi: 10.1177/2054358118809974.
    1. Barbosa M.F., Contti M.M., de Andrade L.G.M., Mauricio A.D.C.V., Ribeiro S.M., Szarf G. Feature-tracking cardiac magnetic resonance left ventricular global longitudinal strain improves 6 months after kidney transplantation associated with reverse remodeling, not myocardial tissue characteristics. Int. J. Cardiovasc. Imaging. 2021;37:3027–3037. doi: 10.1007/s10554-021-02284-2.
    1. Paneni F., Gregori M., Ciavarella G.M., Sciarretta S., De Biase L., Marino L., Tocci G., Principe F., Domenici A., Luciani R., et al. Right Ventricular Dysfunction in Patients with End-Stage Renal Disease. Am. J. Nephrol. 2010;32:432–438. doi: 10.1159/000320755.
    1. Hickson L.J., Negrotto S.M., Onuigbo M., Scott C.G., Rule A.D., Norby S.M., Albright R.C., Casey E.T., Dillon J.J., Pellikka P.A., et al. Echocardiography Criteria for Structural Heart Disease in Patients with End-Stage Renal Disease Initiating Hemodialysis. J. Am. Coll. Cardiol. 2016;67:1173–1182. doi: 10.1016/j.jacc.2015.12.052.
    1. Matsuo H., Dohi K., Machida H., Takeuchi H., Aoki T., Nishimura H., Yasutomi M., Senga M., Ichikawa T., Kakuta K., et al. Echocardiographic Assessment of Cardiac Structural and Functional Abnormalities in Patients with End-Stage Renal Disease Receiving Chronic Hemodialysis. Circ. J. 2018;82:586–595. doi: 10.1253/circj.cj-17-0393.
    1. Sin H., Wong P., Lo K., Lo M., Chan S., Lo K., Wong Y., Ho L., Kwok W., Chan K., et al. Evaluation of the relationship between cardiac calcification and cardiovascular disease using the echocardiographic calcium score in patients undergoing peritoneal dialysis: A cross-sectional study. Singap. Med. J. 2022 doi: 10.11622/smedj.2022052.
    1. Bai J., Zhang X., Zhang A., Zhang Y., Ren K., Ren Z., Zhao C., Wang Q., Cao N. Cardiac valve calcification is associated with mortality in hemodialysis patients: A retrospective cohort study. BMC Nephrol. 2022;23:43. doi: 10.1186/s12882-022-02670-5.
    1. Zhu J., Tang C., Ouyang H., Shen H., You T., Hu J. Prediction of All-Cause Mortality Using an Echocardiography-Based Risk Score in Hemodialysis Patients. Cardiorenal Med. 2021;11:33–43. doi: 10.1159/000507727.
    1. Sharma R., Pellerin D., Gaze D.C., Mehta R.L., Gregson H., Streather C.P., Collinson P.O., Brecker S.J. Mitral annular calcification predicts mortality and coronary artery disease in end stage renal disease. Atherosclerosis. 2007;191:348–354. doi: 10.1016/j.atherosclerosis.2006.03.033.
    1. Hensen L.C., el Mahdiui M., van Rosendael A.R., Smit J.M., Jukema J.W., Bax J.J., Delgado V. Prevalence and Prognostic Implications of Mitral and Aortic Valve Calcium in Patients with Chronic Kidney Disease. Am. J. Cardiol. 2018;122:1732–1737. doi: 10.1016/j.amjcard.2018.08.009.
    1. Braun J., Oldendorf M., Moshage W., Heidler R., Zeitler E., Luft F.C. Electron beam computed tomography in the evaluation of cardiac calcifications in chronic dialysis patients. Am. J. Kidney Dis. 1996;27:394–401. doi: 10.1016/S0272-6386(96)90363-7.
    1. Goodman W.G., Goldin J., Kuizon B.D., Yoon C., Gales B., Sider D., Wang Y., Chung J., Emerick A., Greaser L., et al. Coronary-Artery Calcification in Young Adults with End-Stage Renal Disease Who Are Undergoing Dialysis. N. Engl. J. Med. 2000;342:1478–1483. doi: 10.1056/NEJM200005183422003.
    1. Kramer H., Toto R., Peshock R., Cooper R., Victor R. Association between Chronic Kidney Disease and Coronary Artery Calcification. J. Am. Soc. Nephrol. 2005;16:507–513. doi: 10.1681/ASN.2004070610.
    1. Mukai H., Dai L., Chen Z., Lindholm B., Ripsweden J., Brismar T.B., Heimbürger O., Barany P., Qureshi A.R., Söderberg M., et al. Inverse J-shaped relation between coronary arterial calcium density and mortality in advanced chronic kidney disease. Nephrol. Dial. Transplant. 2020;35:1202–1211. doi: 10.1093/ndt/gfy352.
    1. Havel M., Kaminek M., Metelkova I., Budikova M., Henzlova L., Koranda P., Zadražil J., Kincl V. Prognostic value of myocardial perfusion imaging and coronary artery calcium measurements in patients with end-stage renal disease. Hell. J. Nucl. Med. 2015;18:199–206. doi: 10.1967/s002449910303.
    1. Russo D., Corrao S., Battaglia Y., Andreucci M., Caiazza A., Carlomagno A., Lamberti M., Pezone N., Pota A., Russo L., et al. Progression of coronary artery calcification and cardiac events in patients with chronic renal disease not receiving dialysis. Kidney Int. 2011;80:112–118. doi: 10.1038/ki.2011.69.
    1. Fujiu A., Ogawa T., Matsuda N., Ando Y., Nitta K. Aortic Arch Calcification and Arterial Stiffness Are Independent Factors for Diastolic Left Ventricular Dysfunction in Chronic Hemodialysis Patients. Circ. J. 2008;72:1768–1772. doi: 10.1253/circj.CJ-08-0308.
    1. Furusawa K., Takeshita K., Suzuki S., Tatami Y., Morimoto R., Okumura T., Yasuda Y., Murohara T. Assessment of abdominal aortic calcification by computed tomography for prediction of latent left ventricular stiffness and future cardiovascular risk in pre-dialysis patients with chronic kidney disease: A single center cross-sectional study. Int. J. Med. Sci. 2019;16:939–948. doi: 10.7150/ijms.32629.
    1. Edwards N.C., Ferro C., Townend J., Steeds R. Aortic distensibility and arterial-ventricular coupling in early chronic kidney disease: A pattern resembling heart failure with preserved ejection fraction. Heart. 2008;94:1038–1043. doi: 10.1136/hrt.2007.137539.
    1. Chue C.D., Edwards N.C., Ferro C.J., Townend J., Steeds R. Effects of age and chronic kidney disease on regional aortic distensibility: A cardiovascular magnetic resonance study. Int. J. Cardiol. 2013;168:4249–4254. doi: 10.1016/j.ijcard.2012.08.007.
    1. Lang R.M., Badano L.P., Mor-Avi V., Afilalo J., Armstrong A., Ernande L., Flachskampf F.A., Foster E., Goldstein S.A., Kuznetsova T., et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015;28:412. doi: 10.1016/j.echo.2014.10.003.
    1. Eckardt K.-U., Scherhag A., Macdougall I.C., Tsakiris D., Clyne N., Locatelli F., Zaug M.F., Burger H.U., Drueke T.B. Left Ventricular Geometry Predicts Cardiovascular Outcomes Associated with Anemia Correction in CKD. J. Am. Soc. Nephrol. 2009;20:2651–2660. doi: 10.1681/ASN.2009060631.
    1. Lieb W., Gona P., Larson M.G., Aragam J., Zile M.R., Cheng S., Benjamin E.J., Vasan R.S. The Natural History of Left Ventricular Geometry in the Community. JACC Cardiovasc. Imaging. 2014;7:870–878. doi: 10.1016/j.jcmg.2014.05.008.
    1. Nagueh S.F., Smiseth O.A., Appleton C.P., Byrd B.F., 3rd, Dokainish H., Edvardsen T., Flachskampf F.A., Gillebert T.C., Klein A.L., Lancellotti P., et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016;29:277–314. doi: 10.1016/j.echo.2016.01.011.
    1. Dayco J.S., Kherallah R.Y., Epstein J., Adegbala O., Reji C., Dirani K., Oviedo C., Afonso L. Correlation between Echocardiographic Diastolic Parameters and Invasive Measurements of Left Ventricular Filling Pressure in Patients with Takotsubo Cardiomyopathy. J. Am. Soc. Echocardiogr. :2022. doi: 10.1016/j.echo.2022.11.007. in press.
    1. Wu V.C.-C., Takeuchi M., Kuwaki H., Iwataki M., Nagata Y., Otani K., Haruki N., Yoshitani H., Tamura M., Abe H., et al. Prognostic Value of LA Volumes Assessed by Transthoracic 3D Echocardiography. JACC Cardiovasc. Imaging. 2013;6:1025–1035. doi: 10.1016/j.jcmg.2013.08.002.
    1. Ma C., Liao Y., Fan J., Zhao X., Su B., Zhou B. The novel left atrial strain parameters in diagnosing of heart failure with preserved ejection fraction. Echocardiography. 2022;39:416. doi: 10.1111/echo.15304.
    1. Saha S.A., Beatty A.L., Mishra R.K., Whooley M.A., Schiller N.B. Usefulness of an Echocardiographic Composite Cardiac Calcium Score to Predict Death in Patients with Stable Coronary Artery Disease (from the Heart and Soul Study) Am. J. Cardiol. 2015;116:50–58. doi: 10.1016/j.amjcard.2015.03.041.
    1. Laurent S., Cockcroft J., Van Bortel L., Boutouyrie P., Giannattasio C., Hayoz D., Pannier B., Vlachopoulos C., Wilkinson I., Struijker-Boudier H. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur. Heart J. 2006;27:2588–2605. doi: 10.1093/eurheartj/ehl254.
    1. Teixeira R., Vieira M.J., Gonçalves A., Cardim N., Gonçalves L. Ultrasonographic vascular mechanics to assess arterial stiffness: A review. Eur. Heart J. Cardiovasc. Imaging. 2016;17:233–246. doi: 10.1093/ehjci/jev287.
    1. Suh S.Y., Kim E.J., Choi C.U., Na J.O., Kim S.H., Kim H.J., Han S.W., Chung S.M., Ryu K.H., Park C.G., et al. Aortic Upper Wall Tissue Doppler Image Velocity: Relation to Aortic Elasticity and Left Ventricular Diastolic Function. Echocardiography. 2009;26:1069–1074. doi: 10.1111/j.1540-8175.2009.00910.x.
    1. Carluccio E., Biagioli P., Zuchi C., Bardelli G., Murrone A., Lauciello R., D’addario S., Mengoni A., Alunni G., Ambrosio G. Fibrosis assessment by integrated backscatter and its relationship with longitudinal deformation and diastolic function in heart failure with preserved ejection fraction. Int. J. Cardiovasc. Imaging. 2016;32:1071–1080. doi: 10.1007/s10554-016-0881-5.
    1. Weinreb J.C., Rodby R.A., Yee J., Wang C.L., Fine D., McDonald R.J., Perazella M.A., Dillman J.R., Davenport M.S. Use of Intravenous Gadolinium-Based Contrast Media in Patients with Kidney Disease: Consensus Statements from the American College of Radiology and the National Kidney Foundation. Kidney Med. 2021;3:142–150. doi: 10.1016/j.xkme.2020.10.001.
    1. Schieda N., Maralani P.J., Hurrell C., Tsampalieros A.K., Hiremath S. Updated Clinical Practice Guideline on Use of Gadolinium-Based Contrast Agents in Kidney Disease Issued by the Canadian Association of Radiologists. Can. Assoc. Radiol. J. 2019;70:226–232. doi: 10.1016/j.carj.2019.04.001.
    1. Arcari L., Camastra G., Ciolina F., Danti M., Cacciotti L. T1 and T2 Mapping in Uremic Cardiomyopathy: An Update. Card. Fail. Rev. 2022;8:e02. doi: 10.15420/cfr.2021.19.
    1. Aoki J., Ikari Y., Nakajima H., Mori M., Sugimoto T., Hatori M., Tanimoto S., Amiya E., Hara K. Clinical and pathologic characteristics of dilated cardiomyopathy in hemodialysis patients. Kidney Int. 2005;67:333–340. doi: 10.1111/j.1523-1755.2005.00086.x.
    1. Izumaru K., Hata J., Nakano T., Nakashima Y., Nagata M., Fukuhara M., Oda Y., Kitazono T., Ninomiya T. Reduced Estimated GFR and Cardiac Remodeling: A Population-Based Autopsy Study. Am. J. Kidney Dis. 2019;74:373–381. doi: 10.1053/j.ajkd.2019.02.013.
    1. Hayer M.K., Radhakrishnan A., Price A.M., Baig S., Liu B., Ferro C., Captur G., Townend J., Moon J., Edwards N.C., et al. Early effects of kidney transplantation on the heart—A cardiac magnetic resonance multi-parametric study. Int. J. Cardiol. 2019;293:272–277. doi: 10.1016/j.ijcard.2019.06.007.
    1. Pedrizzetti G., Claus P., Kilner P.J., Nagel E. Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use. J. Cardiovasc. Magn. Reson. 2016;18:51. doi: 10.1186/s12968-016-0269-7.
    1. Khatri P.J., Tandon V., Chen L., Yam Y., Chow B.J. Can left ventricular end-diastolic volumes be estimated with prospective ECG-gated CT coronary angiography? Eur. J. Radiol. 2012;81:226–229. doi: 10.1016/j.ejrad.2010.12.034.
    1. Walpot J., Inácio J.R., Massalha S., Hossain A., Small G.R., Crean A.M., Yam Y., Rybicki F., Dwivedi G., Chow B. Determining Early Remodeling Patterns in Diabetes and Hypertension Using Cardiac Computed Tomography: The Feasibility of Assessing Early LV Geometric Changes. Am. J. Hypertens. 2020;33:496–504. doi: 10.1093/ajh/hpaa002.
    1. Boczar K.E., Alam M., Chow B.J., Dwivedi G. Incremental Prognostic Value of Estimated LV End-Diastolic Volume by Cardiac CT. JACC Cardiovasc. Imaging. 2014;7:1280–1281. doi: 10.1016/j.jcmg.2014.04.026.
    1. Klein R., Ametepe E.S., Yam Y., Dwivedi G., Chow B.J. Cardiac CT assessment of left ventricular mass in mid-diastasis and its prognostic value. Eur. Heart J. Cardiovasc. Imaging. 2017;18:95–102. doi: 10.1093/ehjci/jev357.
    1. Kang D.K., Thilo C., Schoepf U.J., Barraza J.M., Nance J.W., Bastarrika G., Abro J.A., Ravenel J.G., Costello P., Goldhaber S.Z. CT Signs of Right Ventricular Dysfunction: Prognostic Role in Acute Pulmonary Embolism. JACC Cardiovasc. Imaging. 2011;4:841–849. doi: 10.1016/j.jcmg.2011.04.013.
    1. Kurita Y., Kitagawa K., Kurobe Y., Nakamori S., Nakajima H., Dohi K., Ito M., Sakuma H. Estimation of myocardial extracellular volume fraction with cardiac CT in subjects without clinical coronary artery disease: A feasibility study. J. Cardiovasc. Comput. Tomogr. 2016;10:237–241. doi: 10.1016/j.jcct.2016.02.001.
    1. Gama F., Rosmini S., Bandula S., Patel K.P., Massa P., Tobon-Gomez C., Ecke K., Stroud T., Condron M., Thornton G.D., et al. Extracellular Volume Fraction by Computed Tomography Predicts Long-Term Prognosis among Patients with Cardiac Amyloidosis. JACC Cardiovasc. Imaging. 2022;15:2082–2094. doi: 10.1016/j.jcmg.2022.08.006.
    1. Faucon A.-L., Bobrie G., Clément O. Nephrotoxicity of iodinated contrast media: From pathophysiology to prevention strategies. Eur. J. Radiol. 2019;116:231–241. doi: 10.1016/j.ejrad.2019.03.008.

Source: PubMed

3
Subskrybuj