The Importance of Rhythmic Stimulation for Preterm Infants in the NICU

Joëlle Provasi, Loreline Blanc, Isabelle Carchon, Joëlle Provasi, Loreline Blanc, Isabelle Carchon

Abstract

The fetal environment provides the fetus with multiple potential sources of rhythmic stimulation that are not present in the NICU. Maternal breathing, heartbeats, walking, dancing, running, speaking, singing, etc., all bathe the fetus in an environment of varied rhythmic stimuli: vestibular, somatosensory, tactile, and auditory. In contrast, the NICU environment does not offer the same proportion of rhythmic stimulation. After analyzing the lack of rhythmic stimulation in the NICU, this review highlights the different proposals for vestibular and/or auditory rhythmic stimulation offered to preterm infants alone and with their parents. The focus is on the beneficial effects of auditory and vestibular stimulation involving both partners of the mother-infant dyad. A preliminary study on the influence of a skin-to-skin lullaby on the stability of maternal behavior and on the tonic emotional manifestations of the preterm infant is presented as an example. The review concludes with the importance of introducing rhythmic stimulations in the NICU.

Keywords: infant-directed singing; intrauterine; preterm infants; rhythm; rhythmical stimulation; sensorimotor synchronization.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Study protocol (T0: Start of skin-to-skin/recording).
Figure 2
Figure 2
Total duration of gestures involving contact of the mother’s active hand for the lullaby group and the no-lullaby group (* p < 0.05).
Figure 3
Figure 3
Total duration of the maternal gaze on preterm infants in the lullaby group and the no-lullaby group (* p < 0.05).
Figure 4
Figure 4
Total duration of closed eyes and disorganized gaze of the indicator “baby’s gaze” for the lullaby group and the no-lullaby group (* p < 0.05).

References

    1. Bonacina S., Krizman J., White-Schwoch T., Nicol T., Kraus N. How rhythmic skills relate and develop in school-age children. Glob. Pediatric Health. 2019;6 doi: 10.1177/2333794X19852045.
    1. Provasi J., Anderson D.I., Barbu-Roth M. Rhythm perception, production, and synchronization during the perinatal period. Front. Psychol. 2014;5:1048. doi: 10.3389/fpsyg.2014.01048.
    1. Iversen J.R. In the beginning was the beat: Evolutionary origins of musical rhythm in humans. In: Hartenberger R., editor. The Cambridge Companion to Percussion. Cambridge University Press; Cambridge, UK: 2016.
    1. Provasi J. Comment le rythme vient aux bébés? Spirale. 2016;76:50–63. doi: 10.3917/spi.076.0050.
    1. Parncutt R. The Child as Musician: A Handbook of Musical Development. Oxford University Press; Oxford, UK: 2006. Prenatal development; pp. 1–31.
    1. Graven S.N., Browne J.V. Auditory development in the fetus and infant. Newborn Infant Nurs. Rev. 2008;8:187–193. doi: 10.1053/j.nainr.2008.10.010.
    1. Querleu D., Renard X., Versyp F. Fetal hearing. Eur. J. Obstet. Gynecol. Reprod. Biol. 1988;28:191–212. doi: 10.1016/0028-2243(88)90030-5.
    1. Porcaro C., Zappasodi F., Barbati G., Salustri C., Pizzella V., Rossini R.P., Tecchio F. Fetal auditory responses to external sounds and mother’s heartbeat: Detection improved by Independent Component Analysis. Brain Res. 2006;1101:51–58. doi: 10.1016/j.brainres.2006.04.134.
    1. Monk C., Fifer W.P., Myers M.M., Sloan R.P., Trien L., Hurtado A. Maternal stress responses and anxiety during pregnancy: Effects on fetal heart rate. Dev. Psychobiol. 2000;36:67–77. doi: 10.1002/(SICI)1098-2302(200001)36:1<67::AID-DEV7>;2-C.
    1. Teie D.A. Comparative analysis of the universal elements of music and the fetal environment. Front. Psychol. 2016;7:1–8. doi: 10.3389/fpsyg.2016.01158.
    1. Ullal-Gupta S., Vanden Bosch der Nederlanden C.M., Tichko P., Lahav A., Hannon E.E. Linking prenatal experience to the emerging musical mind. Front. Syst. Neurosci. 2013;7:48. doi: 10.3389/fnsys.2013.00048.
    1. Pino O. Fetal memory: The effects of prenatal auditory experience on human development. BAOJ Med. Nurs. 2016;2:20. doi: 10.24947/baojmn/2/2/120.
    1. Brackbill Y., Adams G., Crowell D.H., Gray M.L. Arousal level in neonates and preschool children under continuous auditory stimulation. J. Exp. Child Psychol. 1966;4:178–188. doi: 10.1016/0022-0965(66)90018-X.
    1. Tan S.L., Pfordresher P., Harré R. Psychology of Music: From Sound to Significance. Psychology Press; London, UK: 2010.
    1. Parncutt R. Music that Works. Contributions of Biology, Neurophysiology, Psychology, Sociology, Medicine and Musicology. Springer; Vienna, Austria: 2009. Prenatal ‘experience’ and the phylogenesis and ontogenesis of music; pp. 185–194.
    1. Van Leeuwen P., Geue D., Thiel M., Cysarz D., Lange S., Romano M.C., Wessel N., Kurths J., Grönemeyer D.H. Influence of paced maternal breathing on fetal-maternal heart rate coordination. Proc. Natl. Acad. Sci. USA. 2009;106:13661–13666. doi: 10.1073/pnas.0901049106.
    1. Philbin K.M. The sound environments and auditory perceptions of the fetus and preterm newborn. In: Filippa M., Westrup B., Kuhn P., editors. Early Vocal Contact and Preterm Infant Brain Development: Bridging the Gaps Between Research and Practice. Springer; Cham, Switzerland: 2017. pp. 91–111.
    1. Lordier L., Loukas S., Grouiller F., Vollenweider A., Vasung L., Meskaldij D.E., Lejeune F., Pittet M.-P., Borradori-Tolsa C., Lazeyras F., et al. Music processing in preterm and full-term newborns: A psychophysiological interaction (PPI) approach in neonatal fMRI. Neuroimage. 2019;185:857–864. doi: 10.1016/j.neuroimage.2018.03.078.
    1. Masataka N. The origins of language and the evolution of music: A comparative perspective. Phys. Life Rev. 2009;6:11–22. doi: 10.1016/j.plrev.2008.08.003.
    1. Kisilevsky S., Hains S.M.J., Jacquet A.Y., Granier-Deferre C., Lecanuet J.P. Maturation of fetal responses to music. Dev. Sci. 2004;7:550–559. doi: 10.1111/j.1467-7687.2004.00379.x.
    1. Wöllner C., Hammerschmidt D. In sync with hip-hop: Effects of cognitive load, arousal, and musical meter on perceived time. Atten. Percept. Psychophys. 2020;36:1–17.
    1. Kisilevsky B., Hains S., Lee K. Effects of experience on fetal voice recognition. Psychol. Sci. 2003;14:220–224. doi: 10.1111/1467-9280.02435.
    1. Kisilevsky B.S., Hains S.M.J., Brown C.A., Lee C.T., Cowperthwaite B., Stutzman S.S., Swansburg M.L., Lee K., Xie X., Huang H., et al. Fetal sensitivity to properties of maternal speech and language. Infant Behav. Dev. 2009;32:59–71. doi: 10.1016/j.infbeh.2008.10.002.
    1. Nazzi T., Bertoncini J., Mehler J. Language discrimination by newborns: Toward an understanding of the role of rhythm. J. Exp. Psychol. Hum. Percept. Perform. 1998;24:756–766. doi: 10.1037/0096-1523.24.3.756.
    1. Háden G.P., Honing H., Török M., Winkler I. Detecting the temporal structure of sound sequences in newborn infants. Int. J. Psychophysiol. 2015;96:23–28. doi: 10.1016/j.ijpsycho.2015.02.024.
    1. Tudor-Locke C., Craig C.L., Brown W.J., Clemes S.A., De Cocker K., Giles-Corti B., Hatano Y., Inoue S., Matsudo S.M., Mutrie N., et al. How many steps/day are enough? For adults. Int. J. Behav. Nutr. Phys. Act. 2011;8:79. doi: 10.1186/1479-5868-8-79.
    1. Fell D.B., Joseph K.S., Armson B.A., Dodds L. The impact of pregnancy on physical activity level. Matern. Child Health J. 2009;13:597–603. doi: 10.1007/s10995-008-0404-7.
    1. Chandonnet N., Saey D., Alméras N., Marc I. French pregnancy physical activity questionnaire compared with an accelerometer cut point to classify physical activity among pregnant obese women. PLoS ONE. 2012;7:e38818. doi: 10.1371/journal.pone.0038818.
    1. Mottola M.F., Davenport M.H., Ruchat S.M., Davies G.A., Poitras V.J., Gray C.E., Garcia A.J., Barrowman N., Adamo K.B., Duggan M., et al. 2019 Canadian guideline for physical activity throughout pregnancy. Br. J. Sports Med. 2018;52:1339–1346. doi: 10.1136/bjsports-2018-100056.
    1. Polańska K., Muszyński P., Sobala W., Dziewirska E., Merecz-Kot D., Hanke W. Maternal lifestyle during pregnancy and child psychomotor development—Polish Mother and Child Cohort study. Early Hum. Dev. 2015;91:317–325. doi: 10.1016/j.earlhumdev.2015.03.002.
    1. Chasan-Taber L., Schmidt M.D., Roberts D.E., Hosmer D., Markenson G., Freedson P.S. Development and validation of a pregnancy physical activity questionnaire. Med. Sci. Sports Exerc. 2004;36:1750–1760. doi: 10.1249/01.MSS.0000142303.49306.0D.
    1. Lecanuet J.P., Schaal B. Sensory performances in the human foetus: A brief summary of research. Intellectica. 2002;1:29–56. doi: 10.3406/intel.2002.1072.
    1. Porton-Deterne I., Le Du A., Jacquet A.Y., Lecanuet J.P. Réactivité du foetus de fin de gestation a des pressions transabdominales en fonction de l’état de vigilance. Neuropsychiatr. Enfance. Adolesc. 1997;45:700–704.
    1. Lecanuet J.P., Jacquet A.Y. Fetal responsiveness to maternal passive swinging in low heart rate variability state: Effects of stimulation direction and duration. Dev. Psychobiol. 2002;40:57–67. doi: 10.1002/dev.10013.
    1. Cito G., Luisi S., Mezzesimi A., Cavicchioli C., Calonaci G., Petraglia F. Maternal position during non-stress test and fetal heart rate patterns: Editorial comment. Acta Obstet. Gynecol. Scand. 2005;60:500–501.
    1. Granier-Deferre C., Bassereau S., Ribeiro A., Jacquet A.-Y., Decasper A.J. A melodic contour repeatedly experienced by human near-term fetuses elicits a profound cardiac reaction one month after birth. PLoS ONE. 2011;6:e17304. doi: 10.1371/journal.pone.0017304.
    1. Vinall J., Riddell R.P., Greenberg S. The influence of culture on maternal soothing behaviours and infant pain expression in the immunization context. Pain Res. Manag. 2011;16:234–238. doi: 10.1155/2011/707615.
    1. Richter J., Ostovar R. “It don’t mean a thing if it ain’t got that swing”—An alternative concept for understanding the evolution of dance and music in human beings. Front. Hum. Neurosci. 2016;10:1–13. doi: 10.3389/fnhum.2016.00485.
    1. Lickliter R., Bahrick L.E. Using an animal model to explore the prenatal origins of social development. In: Reissland N., Kisilevsky B.S., editors. Fetal Development: Research on Brain and Behavior, Environmental Influences, and Emerging Technologie. Springer International Publishing; Cham, Switzerland: 2016.
    1. Lickliter R., Bahrick L.E. The salience of multimodal sensory stimulation in early development: Implications for the issue of ecological validity. Infancy. 2001;2:451–467. doi: 10.1207/S15327078IN0204_04.
    1. Lickliter R. The influence of prenatal experience on behavioral and social development: The benefits and limitations of an animal model. Dev. Psychopathol. 2018;30:871–880. doi: 10.1017/S0954579418000640.
    1. Changizi M. Harnessed: How Language and Music Mimicked Nature and Transformed Ape to Man. BenBella Books, Inc; Dallas, TX, USA: 2011.
    1. Provasi J., Granier-Deferre C. Apprentissages et mémoire au cours de la période périnatale. In: Devouche E., Provasi J., editors. Le Développement du Bébé de la vie Foetale à la Marche. Elsevier Masson; Paris, France: 2019. pp. 43–58.
    1. Fraisse P. Traitement d’informations successives dans la reconnaissance de l’identité de noms et de dessins. Année Psychol. 1974;74:403–417. doi: 10.3406/psy.1974.28053.
    1. Ravignani A., Dalla Bella S., Falk S., Kello C.T., Noriega F., Kotz S.A. Rhythm in speech and animal vocalizations: A cross-species perspective. Ann. N. Y. Acad. Sci. 2019;1453:79–98. doi: 10.1111/nyas.14166.
    1. Honing H. Without it no music: Beat induction as a fundamental musical trait. Ann. N. Y. Acad. Sci. 2012;1252:85–91. doi: 10.1111/j.1749-6632.2011.06402.x.
    1. Gingras J.L., Mitchell E.A., Grattan K.E. Fetal homologue of infant crying. Arch. Dis. Child. Fetal Neonatal Ed. 2005;90:F415–F418. doi: 10.1136/adc.2004.062257.
    1. Ravignani A., Dalla Bella S., Falk S., Kello C., Noriega F., Kotz S.A. Evolution of speech rhythm: A cross-species perspective. PeerJ Prepr. 2019 doi: 10.7287/peerj.preprints.27539v1.
    1. Condon W., Sander L. Neonate movement is synchronized with adult speech: Interactional participation and language acquisition. Science. 1974;74:99–101. doi: 10.1126/science.183.4120.99.
    1. Dominguez S., Devouche E., Apter G., Gratier M. The roots of turn-taking in the neonatal period. Infant Child Dev. 2016;25:240–255. doi: 10.1002/icd.1976.
    1. Schachner A. The origins of human and avian auditory-motor entrainment. Nova Acta Leopold. 2013;111:243–253.
    1. Bobin-Bègue A. Le tempo, fondement des compétences musicales et support du développement sociocognitif. Enfance. 2020;5:109–129. doi: 10.3917/enf2.201.0109.
    1. Bobin-Bègue A. Rhythms in early development. In: Apter G., Devouche E., Gratier M., editors. Early Interaction and Developmental Psychopathology. Springer; Cham, Switzerland: 2019. pp. 55–86.
    1. Zimmerman E., Barlow S.M. The effects of vestibular stimulation rate and magnitude of acceleration on central pattern generation for chest wall kinematics in preterm infants. J. Perinatol. 2012;32:614–620. doi: 10.1038/jp.2011.177.
    1. Lahav A., Skoe E. An acoustic gap between the NICU and womb: A potential risk for compromised neuroplasticity of the auditory system in preterm infants. Front. Neurosci. 2014;8:381. doi: 10.3389/fnins.2014.00381.
    1. Caskey M., Vohr B. Assessing language and language environment of high-risk infants and children: A new approach. Acta Paediatr. 2013;102:451–461. doi: 10.1111/apa.12195.
    1. Schaefer M., Hatcher R.P., Barglow P.D. Prematurity and infant stimulation: A review of research. Child Psychiatry Hum. Dev. 1980;10:199–212. doi: 10.1007/BF01433680.
    1. Korner A.F. Infant stimulation. Issues of theory and research. Clin. Perinatol. 1990;17:173–184. doi: 10.1016/S0095-5108(18)30596-7.
    1. Cramer S.J.E., Dekker J., Dankelman J., Pauws S.C., Hooper S.B., Te Pas A.B. Effect of tactile stimulation on termination and prevention of apnea of prematurity: A systematic review. Front. Pediatrics. 2018;6:1–11. doi: 10.3389/fped.2018.00045.
    1. Korner A.F., Schneider P., Forrest T. Effects of vestibular-proprioceptive stimulation on the neurobehavioral development of preterm infants: A pilot study. Neuropediatrics. 1983;14:170–175. doi: 10.1055/s-2008-1059573.
    1. Korner A.F., Guilleminault C., Van Den Hoed J., Baldwin R.B. Reduction of sleep apnea and bradycardia in preterm infants on oscillating water beds: A controlled polygraphic study. Pediatrics. 1978;61:528–533.
    1. Groswasser J., Sottiaux M., Rebuffat E. Reduction in obstructive breathing events during body rocking: A controlled polygraphic study in preterm and full-term infants. Pediatrics. 1995;96:64–68.
    1. Jones R.A.K. A controlled trial of a regularly cycled oscillating waterbed and a non-oscillating waterbed in the prevention of apnoea in the preterm infant. Arch. Dis. Child. 1981;56:889–891. doi: 10.1136/adc.56.11.889.
    1. Saigal S., Watts J., Campbell D. Randomized clinical trial of an oscillating air mattress in preterm infants: Effect on apnea, growth, and development. J. Pediatrics. 1986;109:857–864. doi: 10.1016/S0022-3476(86)80714-4.
    1. Freedman D., Boverman H., Freedman N. Effects of kinesthetic stimulation on certain aspects of development in premature infants; Presented at the Meeting of the American Orthopsychiatric Association; San Francisco, CA, USA. 29–30 April 1966; Unpublished Paper.
    1. Clark D.L., Cordero L., Goss K.C., Manos D. Effects of rocking on neuromuscular development in the premature. Biol. Neonate. 1989;56:306–314. doi: 10.1159/000243139.
    1. Sammon M.P., Darnall R.A. Entrainment of respiration to rocking in premature infants: Coherence analysis. J. Appl. Physiol. 1994;77:1548–1554. doi: 10.1152/jappl.1994.77.3.1548.
    1. Tuck S.J., Monin P., Duvivier C., May T., Vert P. Effect of a rocking bed on apnoea of prematurity. Arch. Dis. Child. 1982;57:475–477. doi: 10.1136/adc.57.6.475.
    1. Barlow S.M., Finan D.S., Lee J., Chu S. Synthetic orocutaneous stimulation entrains preterm infants with feeding difficulties to suck. J. Perinatol. 2008;28:541–548. doi: 10.1038/jp.2008.57.
    1. Perrault A.A., Khani A., Quairiaux C., Kompotis K., Franken P., Muhlethaler M., Schwartz S., Bayer L. Whole-night continuous rocking entrains spontaneous neural oscillations with benefits for sleep and memory. Curr. Biol. 2019;29:402–411.e3. doi: 10.1016/j.cub.2018.12.028.
    1. Thoman E.B., Ingersoll E.W., Acebo C. Premature infants seek rhythmic stimulation, and the experience facilitates neurobehavioral development. J. Dev. Behav. Pediatrics. 1991;12:11–18. doi: 10.1097/00004703-199102000-00004.
    1. Thoman E.B., Graham S.E. Self-regulation of stimulation by premature infants. Pediatrics. 1986;78:855–860.
    1. Song D., Jegatheesan P., Nafday S., Ahmad K.A., Nedrelow J., Wearden M., Nemerofsky S., Pooley S., Thompson D., Vail D., et al. Patterned frequency-modulated oral stimulation in preterm infants: A multicenter randomized controlled trial. PLoS ONE. 2019;14:1–15. doi: 10.1371/journal.pone.0212675.
    1. Kramer L.I., Pierpont M.E. Rocking waterbeds and auditory stimuli to enhance growth of preterm infants. Preliminary report. J. Pediatrics. 1976;88:297–299. doi: 10.1016/S0022-3476(76)81005-0.
    1. Barnard K.E., Bee H.L. The impact of temporally patterned stimulation on the development of preterm infants. Child Dev. 1983;54:1156–1167. doi: 10.2307/1129671.
    1. Barnard K. The effect of stimulation on the sleep behavior of the premature infant. Commun. Nurs. Res. 1973;6:12–33.
    1. Rice R.D. Neurophysiological development in premature infants following stimulation. Dev. Psychol. 1977;13:69–76. doi: 10.1037/0012-1649.13.1.69.
    1. Burns K., Cunningham N., White-Traut R., Silvestri J., Nelson M. Infant stimulation: Modification of an intervention based on physiologic and behavioral cues. J. Obstet. Gynecol. Neonatal Nurs. 1994;23:581–589. doi: 10.1111/j.1552-6909.1994.tb01924.x.
    1. White-Traut R., Norr K.F., Fabiyi C., Rankin K.M., Li Z., Liu L. Mother-infant interaction improves with a developmental intervention for mother-preterm infant dyads. Infant Behav. Dev. 2013;36:694–706. doi: 10.1016/j.infbeh.2013.07.004.
    1. White-Traut R. Providing a nurturing environment for infants in adverse situations: Multisensory strategies for newborn care. J. Midwifery Women’s Health. 2004;49:36–41. doi: 10.1016/j.jmwh.2004.05.004.
    1. Holditch-Davis D., Santos H., Levy J., White-Traut R.C., O’Shea T.M., Geraldo V., David R. Patterns of psychological distress in mothers of preterm infants. Infant Behav. Dev. 2015;41:154–163. doi: 10.1016/j.infbeh.2015.10.004.
    1. White-Traut R., Wink T., Minehart T., Holditch-Davis D. Frequency of premature infant engagement and disengagement behaviors during two maternally administered interventions. Newborn Infant Nurs. Rev. 2012;12:124–131. doi: 10.1053/j.nainr.2012.06.005.
    1. White-Traut R.C., Nelson M.N. Maternally administered tactile, auditory, visual, and vestibular stimulation: Relationship to later interactions between mothers and premature infants. Res. Nurs. Health. 1988;11:31–39. doi: 10.1002/nur.4770110106.
    1. White-Traut R.C., Nelson M.N., Silvestri J.M., Vasan U., Littau S., Meleedy-Rey P., Gu G., Patel M. Effect of auditory, tactile, visual, and vestibular intervention on length of stay, alertness, and feeding progression in preterm infants. Dev. Med. Child Neurol. 2002;44:91–97. doi: 10.1017/S0012162201001736.
    1. Holditch-Davis D., White-Traut R.C., Levy J.A., O’Shea T.M., Geraldo V., David R.J. Maternally administered interventions for preterm infants in the NICU: Effects on maternal psychological distress and mother-infant relationship. Infant Behav. Dev. 2014;37:695–710. doi: 10.1016/j.infbeh.2014.08.005.
    1. Holditch-Davis D., White-Traut R., Levy J., Williams K.L., Ryan D., Vonderheid S. Maternal satisfaction with administering infant interventions in the NICU. J. Obs. Gynecol. Neonatal Nurs. 2013;42:641–654. doi: 10.1111/1552-6909.12255.
    1. White-Traut R.C., Nelson M.N., Silvestri J.M., Cunningham N., Patel M. Responses of preterm infants to unimodal and multimodal sensory intervention. Pediatric Nurs. 1997;23:169–177.
    1. Pineda R., Wallendorf M., Smith J. A pilot study demonstrating the impact of the supporting and enhancing NICU sensory experiences (SENSE) program on the mother and infant. Early Hum. Dev. 2020;144:105000. doi: 10.1016/j.earlhumdev.2020.105000.
    1. Doheny L., Hurwitz S., Insoft R., Ringer S., Lahav A. Exposure to biological maternal sounds improves cardiorespiratory regulation in extremely preterm infants. J. Matern. Neonatal Med. 2012;25:1591–1594. doi: 10.3109/14767058.2011.648237.
    1. Webb A.R., Heller H.T., Benson C.B., Lahav A. Mother’s voice and heartbeat sounds elicit auditory plasticity in the human brain before full gestation. Proc. Natl. Acad. Sci. USA. 2015;112:3152–3157. doi: 10.1073/pnas.1414924112.
    1. Filippa M., Panza C., Ferrari F., Frassoldati R., Kuhn P., Balduzzi S., D’Amico R. Systematic review of maternal voice interventions demonstrates increased stability in preterm infants. Acta Paediatr. 2017:1–10. doi: 10.1111/apa.13832.
    1. Rickard N.S., Toukhsati S.R., Field S.E. The effect of music on cognitive performance: Insight from neurobiological and animal studies. Behav. Cogn. Neurosci. Rev. 2005;4:235–261. doi: 10.1177/1534582305285869.
    1. Haslbeck F.B. Music therapy for premature infants and their parents: An integrative review. Nord. J. Music Ther. 2012;21:203–226. doi: 10.1080/08098131.2011.648653.
    1. Robb S.L., Hanson-Abromeit D., May L., Hernandez-Ruiz E., Allison M., Beloat A., Daugherty S., Kurtz R., Ott A., Oladimeji Oyedele O., et al. Reporting quality of music intervention research in healthcare: A systematic review. Complementary Ther. Med. 2018;38:24–41. doi: 10.1016/j.ctim.2018.02.008.
    1. Lordier L., Meskaldjia D.E., Grouillerd F., Pitteta M.P., Vollenweidera A., Vasunga L., Borradori-Tolsaa C., Lazeyrase F., Grandjean D., Van De Ville D., et al. Music in premature infants enhances high-level cognitive brain networks. Proc. Natl. Acad. Sci. USA. 2019;116:12103–12108. doi: 10.1073/pnas.1817536116.
    1. Rand K., Lahav A. Maternal sounds elicit lower heart rate in preterm newborns in the first month of life. Early Hum. Dev. 2014;90:679–683. doi: 10.1016/j.earlhumdev.2014.07.016.
    1. Malloch S., Shoemark H., Crncec R., Newnham C., Paul C., Prior M., Coward S., Burnham D. Music therapy with hospitalized infants-the art and science of communicative musicality. Infant Ment. Health J. 2012;33:386–399. doi: 10.1002/imhj.21346.
    1. Bieleninik L., Ghetti C., Gold C. Music therapy for preterm infants and their parents: A meta-analysis. Pediatrics. 2016;138:e20160971. doi: 10.1542/peds.2016-0971.
    1. Standley J.M. The effect of contingent music to increase non-nutritive sucking of premature infants. Pediatric Nurs. 2000;26:43.
    1. Standley J.M. The effect of music-reinforced nonnutritive sucking on feeding rate of premature infants. J. Pediatric Nurs. 2003;18:169–173. doi: 10.1053/jpdn.2003.34.
    1. Standley J.M., Cassidy J., Grant R., Cevasco A., Szuch C., Nguyen J., Walworth D., Procelli D., Jarred J., Adams K. The effect of music reinforcement for non-nutritive sucking on nipple feeding of premature infants. Pediatric Nurs. 2010;36:138–145.
    1. Bigelow A.E., Power M. Mother–infant skin-to-skin contact: Short- and long-term effects for mothers and their children born full-term. Front. Psychol. 2020;11:1921. doi: 10.3389/fpsyg.2020.01921.
    1. Cooper R.P., Aslin R.N. The language environment of the young infant: Implications for early perceptual development. Can. J. Psychol. 1989;43:247–265. doi: 10.1037/h0084216.
    1. Trehub S.E., Unyk A.M., Kamenetsky S.B., Hill D.S., Trainor L.J., Henderson J.L., Saraza M. Mothers’ and fathers’ singing to infants. Dev. Psychol. 1997;33:500–507. doi: 10.1037/0012-1649.33.3.500.
    1. Feldman R., Weller A., Sirota L., Eidelman A.I. Skin-to-Skin contact (Kangaroo care) promotes self-regulation in premature infants: Sleep-wake cyclicity, arousal modulation, and sustained exploration. Dev. Psychol. 2002;38:194–207. doi: 10.1037/0012-1649.38.2.194.
    1. Arnon S., Diamant C., Bauer S., Regev R., Sirota G., Litmanovitz I. Department Maternal singing during kangaroo care led to autonomic stability in preterm infants and reduced maternal anxiety. Acta Paediatr. 2014;103:1039–1044. doi: 10.1111/apa.12744.
    1. Roa E., Ettenberger M. Music therapy self-care group for parents of preterm infants in the neonatal intensive care unit: A clinical pilot intervention. Medicines. 2018;5:134. doi: 10.3390/medicines5040134.
    1. Loewy J. NICU music therapy: Song of kin as critical lullaby in research and practice. Ann. N. Y. Acad. Sci. 2015;1337:178–185. doi: 10.1111/nyas.12648.
    1. Ettenberger M. Music therapy in the neonatal intensive care unit: Putting the families at the center of care. Br. J. Music Ther. 2017;31:12–17. doi: 10.1177/1359457516685881.
    1. Ettenberger M., Odell-Miller H., Rojas Cárdenas C., Torres Serrano S., Parker M., Camargo Llanos S.M. Music therapy with premature infants and their caregivers in Colombia—A mixed methods pilot study including a randomized trial. Voices A World Forum Music Ther. 2014;14:1–28. doi: 10.15845/voices.v14i2.756.
    1. Kehl S.M., La Marca-Ghaemmaghami P., Haller M., Pichler-Stachl E., Bucher H.U., Bassler D., Haslbeck F.B. Creative music therapy with premature infants and their parents: A mixed-method pilot study on parents’ anxiety, stress and depressive symptoms and parent—Infant attachment. Int. J. Environ. Res. Public Health. 2021;18:265
    1. Kostilainen K., Mikkola K., Erkkilä J., Huotilainen M. Effects of maternal singing during kangaroo care on maternal anxiety, wellbeing, and mother-infant relationship after preterm birth: A mixed methods study. Nord. J. Music Ther. 2020;30:1–20.
    1. Prechtl H.F.R. The behavioural states of the newborn infant (a review) Brain Res. 1974;76:185–212. doi: 10.1016/0006-8993(74)90454-5.
    1. Buil A., Carchon I., Apter G., Laborne F.X., Granier M., Devouche E. Kangaroo supported diagonal flexion positioning: New insights into skin-to-skin contact for communication between mothers and very preterm infants. Archives de Pédiatrie. 2016;23:913–920. doi: 10.1016/j.arcped.2016.04.023.
    1. Croy I., Luong A., Triscoli C., Hofmann E., Olausson H., Sailer U. Interpersonal stroking touch is targeted to C tactile afferent activation. Behav. Brain Res. 2016;297:37–40. doi: 10.1016/j.bbr.2015.09.038.
    1. Van Puyvelde M., Gorissen A.-S., Pattyn N., McGlone F.P. Does touch matter? The impact of stroking versus non-stroking maternal touch on cardio-respiratory processes in mothers and infants. Physiol. Behav. 2019;207:55–63. doi: 10.1016/j.physbeh.2019.04.024.
    1. Manzotti A., Cerritellia F., Esteves J.E., Lista G., Lombardi E., La Rocca S., Gallace A., McGlone F.P., Walker S.C. Dynamic touch reduces physiological arousal in preterm infants: A role for c-tactile afferents? Dev. Cogn. Neurosci. 2019;39:1–7. doi: 10.1016/j.dcn.2019.100703.
    1. Brovetto E. Collection 1001 Bébés. Érès; Toulouse, France: 2008. La chanson: Dans le lien primaire mère-bébé et dans le domaine thérapeutique. La berceuse; pp. 127–151.
    1. Nadel J., Carchon I., Kervella C., Marcelli D., Râ D. Expectancies for social contingency in 2-month-olds. Dev. Sci. 1999;2:164–173. doi: 10.1111/1467-7687.00065.
    1. Gottlieb G. Experiential canalization of behavioral development: Results. Dev. Psychol. 1991;27:35–39. doi: 10.1037/0012-1649.27.1.35.
    1. Markova G., Nguyen T., Hoehl S. Neurobehavioral interpersonal synchrony in early development: The role of interactional rhythms. Front. Psychol. 2019;10:2078. doi: 10.3389/fpsyg.2019.02078.
    1. Trevarthen C. The musical art of infant conversation: Narrating in the time of sympathetic experience, without rational interpretation, before words. Musicae Sci. 2008:15–46. doi: 10.1177/1029864908012001021.
    1. Provasi J. Parent-Preterm Infant Interaction. In: Apter G., Devouche E., Gratier M., editors. Early Interaction and Developmental Psychopathology. Springer; Cham, Switzerland: 2019. pp. 123–149.

Source: PubMed

3
Subskrybuj