Plasma metabolomic biomarkers accurately classify acute mild traumatic brain injury from controls

Massimo S Fiandaca, Mark Mapstone, Amin Mahmoodi, Thomas Gross, Fabio Macciardi, Amrita K Cheema, Kian Merchant-Borna, Jeffrey Bazarian, Howard J Federoff, Massimo S Fiandaca, Mark Mapstone, Amin Mahmoodi, Thomas Gross, Fabio Macciardi, Amrita K Cheema, Kian Merchant-Borna, Jeffrey Bazarian, Howard J Federoff

Abstract

Past and recent attempts at devising objective biomarkers for traumatic brain injury (TBI) in both blood and cerebrospinal fluid have focused on abundance measures of time-dependent proteins. Similar independent determinants would be most welcome in diagnosing the most common form of TBI, mild TBI (mTBI), which remains difficult to define and confirm based solely on clinical criteria. There are currently no consensus diagnostic measures that objectively define individuals as having sustained an acute mTBI. Plasma metabolomic analyses have recently evolved to offer an alternative to proteomic analyses, offering an orthogonal diagnostic measure to what is currently available. The purpose of this study was to determine whether a developed set of metabolomic biomarkers is able to objectively classify college athletes sustaining mTBI from non-injured teammates, within 6 hours of trauma and whether such a biomarker panel could be effectively applied to an independent cohort of TBI and control subjects. A 6-metabolite panel was developed from biomarkers that had their identities confirmed using tandem mass spectrometry (MS/MS) in our Athlete cohort. These biomarkers were defined at ≤6 hours following mTBI and objectively classified mTBI athletes from teammate controls, and provided similar classification of these groups at the 2, 3, and 7 days post-mTBI. The same 6-metabolite panel, when applied to a separate, independent cohort provided statistically similar results despite major differences between the two cohorts. Our confirmed plasma biomarker panel objectively classifies acute mTBI cases from controls within 6 hours of injury in our two independent cohorts. While encouraged by our initial results, we expect future studies to expand on these initial observations.

Conflict of interest statement

Competing Interests: MSF, MM, KM-B, JB, and HJF have filed intellectual property related to this research through Georgetown University. This does not alter our adherence to PLOS ONE policies on sharing data and materials. The other co-authors have declared no competing interests exist.

Figures

Fig 1. College Athlete cohort–metabolomic biomarker study…
Fig 1. College Athlete cohort–metabolomic biomarker study design.
In the college athlete cohort (Athletes), the mTBI (mild traumatic brain injury) and NC (non-concussed control) groups were definitively identified as a result of longitudinal clinical assessment of study participants throughout their sports seasons. Identification of mTBI during the Season allowed retrospective designation of group participants in the Preseason. Analytic timepoints following mTBI occurrence are indicated as ≤6h = ≤6 hours; 2d = 2 days; 3d = 3 days; and 7d = 7 days.
Fig 2. Athlete cohort preliminary multivariate ROC…
Fig 2. Athlete cohort preliminary multivariate ROC AUC analysis plots.
Example college athlete cohort (Athletes) receiver operating characteristic (ROC) area under the curve (AUC) analysis results from the MetaboAnalyst 3.0 Explorer function of Biomarker Analysis module, with plots of sensitivity (y-axis) and 1-specificity (x-axis). In A-C, the plots indicate no significant difference between the CAC Preseason mild traumatic brain injury (mTBI) and non-concussed subjects (NCS) groups using either (i) Linear support vector machine (SVM), (ii) partial least squares discriminant analysis (PLS-DA), or (iii) random forests methods. ROC AUC values in all three analyses are ~ 0.5. The legend at lower right of each graph indicates AUC and 95% confidence interval (CI) values for derived models using 5–100 analytes (Var.). Plots D-F provide examples of more significant differences between comparison groups, such as between Athlete Preseason NC (non-concussed teammate controls) and the Season NC groups, using the same analytic methods as A-C, but with ROC AUC results ranging from about 0.70 to 0.86.

References

    1. Cassidy JD, Carroll LJ, Peloso PM, Borg J, von Holst H, Holm L, et al. Incidence, risk factors and prevention of mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J Rehabil Med. 2004;(43 Suppl):28–60. .
    1. Meaney DF, Morrison B, Dale Bass C. The mechanics of traumatic brain injury: a review of what we know and what we need to know for reducing its societal burden. J Biomech Eng. 2014;136(2):021008 doi: ; PubMed Central PMCID: PMCPMC4023660.
    1. Gill J, Merchant-Borna K, Jeromin A, Livingston W, Bazarian J. Acute plasma tau relates to prolonged return to play after concussion. Neurology. 2017;88(6):595–602. doi: ; PubMed Central PMCID: PMCPMC5304458.
    1. DVBIC. DoD TBI Worldwide Numbers Silver Spring, MD: Defense and Veterans Brain Injury Center; 2016. [2016 Q3]. Available from: ‎.
    1. Wilk JE, Herrell RK, Wynn GH, Riviere LA, Hoge CW. Mild traumatic brain injury (concussion), posttraumatic stress disorder, and depression in U.S. soldiers involved in combat deployments: association with postdeployment symptoms. Psychosom Med. 2012;74(3):249–57. doi: .
    1. Dambinova SA, Sowell RL, Maroon JC. Gradual Return to Play: Potential Role of Neurotoxicity Biomarkers in Assessment of Concussions Severity. J Mol Biomark Diagn. 2013;S3(003):1–11. doi:
    1. Agoston DV, Elsayed M. Serum-based protein biomarkers in blast-induced traumatic brain injury spectrum disorder. Front Neurol. 2012;3:107 doi: ; PubMed Central PMCID: PMCPMC3390892.
    1. Bahado-Singh RO, Graham SF, Han B, Turkoglu O, Ziadeh J, Mandal R, et al. Serum metabolomic markers for traumatic brain injury: a mouse model. Metabolomics. 2016;12(6). ARTN 100 doi: WOS:000378752900005.
    1. Viant MR, Lyeth BG, Miller MG, Berman RF. An NMR metabolomic investigation of early metabolic disturbances following traumatic brain injury in a mammalian model. NMR Biomed. 2005;18(8):507–16. Epub 2005/09/24. doi: .
    1. Sheth SA, Iavarone AT, Liebeskind DS, Won SJ, Swanson RA. Targeted Lipid Profiling Discovers Plasma Biomarkers of Acute Brain Injury. PLoS One. 2015;10(6):e0129735 Epub 2015/06/16. doi: ; PubMed Central PMCID: PMCPMC4468135.
    1. Bahado-Singh RO, Graham SF, Turkoglu O, Beauchamp K, Bjorndahl TC, Han B, et al. Identification of candidate biomarkers of brain damage in a mouse model of closed head injury: a metabolomic pilot study. Metabolomics. 2016;12(3). ARTN 4210.1007/s11306-016-0957-1. WOS:000372156000003. doi:
    1. Gonzalez-Dominguez R. Medium-chain Fatty Acids as Biomarkers of Mitochondrial Dysfunction in Traumatic Brain Injury. EBioMedicine. 2016;12:8–9. Epub 2016/10/26. doi: ; PubMed Central PMCID: PMCPMC5078626.
    1. Oresic M, Posti JP, Kamstrup-Nielsen MH, Takala RS, Lingsma HF, Mattila I, et al. Human Serum Metabolites Associate With Severity and Patient Outcomes in Traumatic Brain Injury. EBioMedicine. 2016;12:118–26. Epub 2016/10/26. doi: ; PubMed Central PMCID: PMCPMC5078571.
    1. McCrory P, Meeuwisse W, Johnston K, al. e. Consensusstatement on concussion in sport: the 3rd international conference on concussion in sport held in Zurich, November 2008. J Athletic Train. 2009;44:434–48.
    1. McCrory P, Meeuwisse WH, Aubry M, Cantu B, Dvorak J, Echemendia RJ, et al. Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport held in Zurich, November 2012. J Am Coll Surg. 2013;216(5):e55–71. Epub 2013/04/16. doi: .
    1. Mapstone M, Cheema AK, Fiandaca MS, Zhong X, Mhyre TR, MacArthur LH, et al. Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med. 2014;20(4):415–8. doi: .
    1. Fiandaca MS, Zhong X, Cheema AK, Orquiza MH, Chidambaram S, Tan MT, et al. Plasma 24-metabolite Panel Predicts Preclinical Transition to Clinical Stages of Alzheimer's Disease. Front Neurol. 2015;6:237 doi: ; PubMed Central PMCID: PMCPMC4642213.
    1. Mapstone M, Lin F, Nalls MA, Cheema AK, Singleton AB, Fiandaca MS, et al. What success can teach us about failure: the plasma metabolome of older adults with superior memory and lessons for Alzheimer's disease. Neurobiol Aging. 2017;51:148–55. doi: .
    1. Illig T, Gieger C, Zhai G, Romisch-Margl W, Wang-Sattler R, Prehn C, et al. A genome-wide perspective of genetic variation in human metabolism. Nat Genet. 2010;42(2):137–41. doi: .
    1. Romisch-Margl W, Prehn C, Bogumil R, Rohring C, Suhre K, Adamski J. Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics. 2012;8:133–42. Epub 12 March 2011. doi:
    1. Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem. 2009;81(16):6656–67. doi: .
    1. Zhao Z, Xu Y. An extremely simple method for extraction of lysophospholipids and phospholipids from blood samples. J Lipid Res. 2010;51(3):652–9. Epub 2009/09/29. doi: ; PubMed Central PMCID: PMCPMC2817595.
    1. Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G. XCMS Online: A Web-Based Platform to Process Untargeted Metabolomic Data. Anal Chem. 2012;84(11):5035–9. doi: WOS:000304783100056.
    1. Huan T, Forsberg EM, Rinehart D, Johnson CH, Ivanisevic J, Benton HP, et al. Systems biology guided by XCMS Online metabolomics. Nature methods. 2017;14(5):461–2. Epub 2017/04/28. doi: .
    1. 65th ASMS Conference on Mass Spectrometry and Allied Topics held in Indianapolis from 4th - 8th June 2017 at the Indiana Convention Center, Indianapolis, Indiana USA. [Internet]. 5 Jun 2017
    1. Xie W, Zhang H, Zeng J, Chen H, Zhao Z, Liang Z. Tissues-based chemical profiling and semi-quantitative analysis of bioactive components in the root of Salvia miltiorrhiza Bunge by using laser microdissection system combined with UPLC-q-TOF-MS. Chem Cent J. 2016;10:42 Epub 2016/07/16. doi: ; PubMed Central PMCID: PMCPMC4944434.
    1. Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Res. 2015;43(W1):W251–7. doi: ; PubMed Central PMCID: PMCPMC4489235.
    1. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36. doi: .
    1. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118–27. doi: .
    1. Holm S. A simple sequentially rejective multiple test procedure. Scand J Statistics. 1979;6(2):65–70.
    1. Xia J, Psychogios N, Young N, Wishart DS. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009;37(Web Server issue):W652–60. doi: ; PubMed Central PMCID: PMCPMC2703878.
    1. Cortes C, Vapnik V. Support-Vector Networks. Machine Learning. 1995;20(3):273–97. doi: WOS:A1995RX35400003.
    1. Worley B, Powers R. Multivariate Analysis in Metabolomics. Curr Metabolomics. 2013;1(1):92–107. Epub 2013/01/01. doi: ; PubMed Central PMCID: PMCPMC4465187.
    1. Chen T, Cao Y, Zhang Y, Liu J, Bao Y, Wang C, et al. Random forest in clinical metabolomics for phenotypic discrimination and biomarker selection. Evidence-based complementary and alternative medicine : eCAM. 2013;2013:298183 Epub 2013/04/11. doi: ; PubMed Central PMCID: PMCPMC3594909.
    1. Tibshirani R. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society, Series B (Methodological. 1996;58(1):267–88.
    1. Xi B, Gu H, Baniasadi H, Raftery D. Statistical analysis and modeling of mass spectrometry-based metabolomics data. Methods Mol Biol. 2014;1198:333–53. Epub 2014/10/02. doi: ; PubMed Central PMCID: PMCPMC4319703.
    1. Steyerberg EW, Harrell FE Jr., Borsboom GJ, Eijkemans MJ, Vergouwe Y, Habbema JD. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol. 2001;54(8):774–81. Epub 2001/07/27. .
    1. Kaur P, Rizk N, Ibrahim S, Luo Y, Younes N, Perry B, et al. Quantitative metabolomic and lipidomic profiling reveals aberrant amino acid metabolism in type 2 diabetes. Molecular bioSystems. 2013;9(2):307–17. Epub 2012/12/19. doi: .
    1. Bakay RA, Ward AA Jr. Enzymatic changes in serum and cerebrospinal fluid in neurological injury. J Neurosurg. 1983;58(1):27–37. Epub 1983/01/01. doi: .
    1. Posmantur R, Hayes RL, Dixon CE, Taft WC. Neurofilament 68 and neurofilament 200 protein levels decrease after traumatic brain injury. Journal of neurotrauma. 1994;11(5):533–45. Epub 1994/10/01. doi: .
    1. Ingebrigtsen T, Romner B. Serial S-100 protein serum measurements related to early magnetic resonance imaging after minor head injury. Case report. J Neurosurg. 1996;85(5):945–8. Epub 1996/11/01. doi: .
    1. Romner B, Ingebrigtsen T, Kongstad P, Borgesen SE. Traumatic brain damage: serum S-100 protein measurements related to neuroradiological findings. Journal of neurotrauma. 2000;17(8):641–7. Epub 2000/09/06. doi: .
    1. Pelinka LE, Kroepfl A, Leixnering M, Buchinger W, Raabe A, Redl H. GFAP versus S100B in serum after traumatic brain injury: relationship to brain damage and outcome. Journal of neurotrauma. 2004;21(11):1553–61. Epub 2005/02/03. doi: .
    1. Papa L, Akinyi L, Liu MC, Pineda JA, Tepas JJ 3rd, Oli MW, et al. Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury. Crit Care Med. 2010;38(1):138–44. Epub 2009/09/04. doi: ; PubMed Central PMCID: PMCPMC3445330.
    1. Vos PE, Jacobs B, Andriessen TM, Lamers KJ, Borm GF, Beems T, et al. GFAP and S100B are biomarkers of traumatic brain injury: an observational cohort study. Neurology. 2010;75(20):1786–93. Epub 2010/11/17. doi: .
    1. Papa L, Mittal MK, Ramirez J, Silvestri S, Giordano P, Braga CF, et al. Neuronal Biomarker Ubiquitin C-Terminal Hydrolase Detects Traumatic Intracranial Lesions on Computed Tomography in Children and Youth with Mild Traumatic Brain Injury. Journal of neurotrauma. 2017;34(13):2132–40. Epub 2017/02/06. doi: ; PubMed Central PMCID: PMCPMC5510668.
    1. Rubenstein R, Chang B, Yue JK, Chiu A, Winkler EA, Puccio AM, et al. Comparing Plasma Phospho Tau, Total Tau, and Phospho Tau-Total Tau Ratio as Acute and Chronic Traumatic Brain Injury Biomarkers. JAMA neurology. 2017;74(9):1063–72. Epub 2017/07/25. doi: .
    1. Shahim P, Zetterberg H, Tegner Y, Blennow K. Serum neurofilament light as a biomarker for mild traumatic brain injury in contact sports. Neurology. 2017;88(19):1788–94. Epub 2017/04/14. doi: ; PubMed Central PMCID: PMCPMC5419986.
    1. Thelin EP, Nelson DW, Bellander BM. A review of the clinical utility of serum S100B protein levels in the assessment of traumatic brain injury. Acta Neurochir (Wien). 2017;159(2):209–25. Epub 2016/12/14. doi: ; PubMed Central PMCID: PMCPMC5241347.
    1. Welch RD, Ellis M, Lewis LM, Ayaz SI, Mika VH, Millis S, et al. Modeling the Kinetics of Serum Glial Fibrillary Acidic Protein, Ubiquitin Carboxyl-Terminal Hydrolase-L1, and S100B Concentrations in Patients with Traumatic Brain Injury. Journal of neurotrauma. 2017;34(11):1957–71. Epub 2016/12/30. doi: .
    1. Adrian H, Marten K, Salla N, Lasse V. Biomarkers of Traumatic Brain Injury: Temporal Changes in Body Fluids. eNeuro. 2016;3(6). doi: ; PubMed Central PMCID: PMCPMC5175263.
    1. Aylward LL, Hays SM, Smolders R, Koch HM, Cocker J, Jones K, et al. Sources of variability in biomarker concentrations. J Toxicol Environ Health B Crit Rev. 2014;17(1):45–61. doi: .
    1. O'Bryant SE, Gupta V, Henriksen K, Edwards M, Jeromin A, Lista S, et al. Guidelines for the standardization of preanalytic variables for blood-based biomarker studies in Alzheimer's disease research. Alzheimer's & dementia : the journal of the Alzheimer's Association. 2015;11(5):549–60. doi: ; PubMed Central PMCID: PMCPMC4414664.
    1. McMahon P, Hricik A, Yue JK, Puccio AM, Inoue T, Lingsma HF, et al. Symptomatology and functional outcome in mild traumatic brain injury: results from the prospective TRACK-TBI study. Journal of neurotrauma. 2014;31(1):26–33. doi: ; PubMed Central PMCID: PMCPMC3880097.
    1. McKee AC, Cantu RC, Nowinski CJ, Hedley-Whyte ET, Gavett BE, Budson AE, et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. Journal of neuropathology and experimental neurology. 2009;68(7):709–35. doi: ; PubMed Central PMCID: PMCPMC2945234.
    1. Bailes JE, Petraglia AL, Omalu BI, Nauman E, Talavage T. Role of subconcussion in repetitive mild traumatic brain injury. J Neurosurg. 2013;119(5):1235–45. doi: .
    1. Vagnozzi R, Marmarou A, Tavazzi B, Signoretti S, Di Pierro D, del Bolgia F, et al. Changes of cerebral energy metabolism and lipid peroxidation in rats leading to mitochondrial dysfunction after diffuse brain injury. Journal of neurotrauma. 1999;16(10):903–13. doi: .
    1. Cristofori L, Tavazzi B, Gambin R, Vagnozzi R, Vivenza C, Amorini AM, et al. Early onset of lipid peroxidation after human traumatic brain injury: a fatal limitation for the free radical scavenger pharmacological therapy? J Investig Med. 2001;49(5):450–8. doi: .
    1. Pratico D, Reiss P, Tang LX, Sung S, Rokach J, McIntosh TK. Local and systemic increase in lipid peroxidation after moderate experimental traumatic brain injury. J Neurochem. 2002;80(5):894–8. .
    1. Alderson NL, Rembiesa BM, Walla MD, Bielawska A, Bielawski J, Hama H. The human FA2H gene encodes a fatty acid 2-hydroxylase. J Biol Chem. 2004;279(47):48562–8. doi: .
    1. Foulon V, Sniekers M, Huysmans E, Asselberghs S, Mahieu V, Mannaerts GP, et al. Breakdown of 2-hydroxylated straight chain fatty acids via peroxisomal 2-hydroxyphytanoyl-CoA lyase: a revised pathway for the alpha-oxidation of straight chain fatty acids. J Biol Chem. 2005;280(11):9802–12. doi: .
    1. Hama H. Fatty acid 2-Hydroxylation in mammalian sphingolipid biology. Biochim Biophys Acta. 2010;1801(4):405–14. doi: ; PubMed Central PMCID: PMCPMC2826524.
    1. Norton W, Cammer W. Isolation and characterization of myelin In: Morell P, editor. Myelin. New York: Plenum; 1984. p. 147–80.
    1. Hoshi M, Kishimoto Y. Synthesis of cerebronic acid from lignoceric acid by rat brain preparation. Some properties and distribution of the -hydroxylation system. J Biol Chem. 1973;248(11):4123–30. .
    1. Rapoport SI. In vivo fatty acid incorporation into brain phospholipids in relation to signal transduction and membrane remodeling. Neurochem Res. 1999;24(11):1403–15. .
    1. Lancaster MA, Olson DV, McCrea MA, Nelson LD, LaRoche AA, Muftuler LT. Acute white matter changes following sport-related concussion: A serial diffusion tensor and diffusion kurtosis tensor imaging study. Human brain mapping. 2016;37(11):3821–34. doi: .
    1. Abdelmagid SA, Clarke SE, Nielsen DE, Badawi A, El-Sohemy A, Mutch DM, et al. Comprehensive profiling of plasma fatty acid concentrations in young healthy Canadian adults. PLoS One. 2015;10(2):e0116195 Epub 2015/02/13. doi: ; PubMed Central PMCID: PMCPMC4326172.
    1. Dhillon HS, Donaldson D, Dempsey RJ, Prasad MR. Regional levels of free fatty acids and Evans blue extravasation after experimental brain injury. Journal of neurotrauma. 1994;11(4):405–15. doi: .
    1. Gronbeck KR, Rodrigues CM, Mahmoudi J, Bershad EM, Ling G, Bachour SP, et al. Application of Tauroursodeoxycholic Acid for Treatment of Neurological and Non-neurological Diseases: Is There a Potential for Treating Traumatic Brain Injury? Neurocrit Care. 2016;25(1):153–66. doi: .
    1. Wood PL. Lipidomics of Alzheimer's disease: current status. Alzheimer's research & therapy. 2012;4(1):5 doi: ; PubMed Central PMCID: PMC3471525.
    1. Braverman NE, Moser AB. Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta. 2012;1822(9):1442–52. doi: .
    1. Abdullah L, Evans JE, Ferguson S, Mouzon B, Montague H, Reed J, et al. Lipidomic analyses identify injury-specific phospholipid changes 3 mo after traumatic brain injury. FASEB J. 2014;28(12):5311–21. doi: .
    1. Pasvogel AE, Miketova P, Moore IM. Cerebrospinal fluid phospholipid changes following traumatic brain injury. Biol Res Nurs. 2008;10(2):113–20. Epub 2008/10/03. doi: .
    1. Croset M, Brossard N, Polette A, Lagarde M. Characterization of plasma unsaturated lysophosphatidylcholines in human and rat. Biochem J. 2000;345 Pt 1:61–7. ; PubMed Central PMCID: PMCPMC1220730.
    1. Lands WE. Metabolism of glycerolipides; a comparison of lecithin and triglyceride synthesis. J Biol Chem. 1958;231(2):883–8. Epub 1958/04/01. .
    1. Farooqui AA, Horrocks LA, Farooqui T. Deacylation and reacylation of neural membrane glycerophospholipids. J Mol Neurosci. 2000;14(3):123–35. Epub 2000/09/13. .
    1. Vandal M, Alata W, Tremblay C, Rioux-Perreault C, Salem N Jr., Calon F, et al. Reduction in DHA transport to the brain of mice expressing human APOE4 compared to APOE2. J Neurochem. 2014;129(3):516–26. Epub 2013/12/19. doi: .
    1. PRESS RELEASE: Philips and Banyan Biomarkers partner to develop and commercialize new handheld blood test to detect and evaluate concussions [Internet]. Amsterdam, the Netherlands; San Diego, CA: Philips Media; 2016; January 7, 2016. Available from:

Source: PubMed

3
Subskrybuj