A Low-Glucose Eating Pattern Improves Biomarkers of Postmenopausal Breast Cancer Risk: An Exploratory Secondary Analysis of a Randomized Feasibility Trial

Susan M Schembre, Michelle R Jospe, Erin D Giles, Dorothy D Sears, Yue Liao, Karen M Basen-Engquist, Cynthia A Thomson, Susan M Schembre, Michelle R Jospe, Erin D Giles, Dorothy D Sears, Yue Liao, Karen M Basen-Engquist, Cynthia A Thomson

Abstract

Postmenopausal breast cancer is the most common obesity-related cancer death among women in the U.S. Insulin resistance, which worsens in the setting of obesity, is associated with higher breast cancer incidence and mortality. Maladaptive eating patterns driving insulin resistance represent a key modifiable risk factor for breast cancer. Emerging evidence suggests that time-restricted feeding paradigms (TRF) improve cancer-related metabolic risk factors; however, more flexible approaches could be more feasible and effective. In this exploratory, secondary analysis, we identified participants following a low-glucose eating pattern (LGEP), defined as consuming energy when glucose levels are at or below average fasting levels, as an alternative to TRF. Results show that following an LGEP regimen for at least 40% of reported eating events improves insulin resistance (HOMA-IR) and other cancer-related serum biomarkers. The magnitude of serum biomarkers changes observed here has previously been shown to favorably modulate benign breast tissue in women with overweight and obesity who are at risk for postmenopausal breast cancer. By comparison, the observed effects of LGEP were similar to results from previously published TRF studies in similar populations. These preliminary findings support further testing of LGEP as an alternative to TRF and a postmenopausal breast cancer prevention strategy. However, results should be interpreted with caution, given the exploratory nature of analyses.

Keywords: adherence; blood glucose; eating physiology; food intake regulation; metabolism; obesity; weight management.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Glucose eating patterns over 16 weeks. Error bars represent standard deviation.
Figure 2
Figure 2
Effect of a low- vs. high-glucose eating pattern on weight, energy intake, and metabolic outcomes at 16 weeks. Bars represented the mean value. IGF-1 = Insulin-like growth factor 1, MAGE = mean amplitude of glycemic excursions, CRP = c-reactive protein, HOMA-IR = homeostasis model assessment-estimated insulin resistance.
Figure 3
Figure 3
Changes in glucose levels between baseline and 16 weeks for one participant. Summary of 5 days of CGM data at baseline (orange) and 8 days of CGM data at week 8 (blue) after 16 weeks of following a low-glucose eating pattern for a woman with a normal range glycated hemoglobin level (HbA1c = 5.1%) at baseline. Solid lines represent the mean glucose; the shaded areas are standard deviations. This participant followed the low-glucose eating pattern for 18% of eating events at baseline, 91% at week 8, and 76% at week 16. Her baseline fasting glucose of 104 mg/dL and was 84 mg/dL at week 16, a 19% reduction. Her low-glucose eating was present for more eating events than other participants and thus is not representative of all participants, but shows the large change in 2-h glucose levels observed in an individual without prediabetes. low-glucose eating pattern (LGEP).

References

    1. World Cancer Research Fund. American Institute for Cancer Research . Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective. The American Institute for Cancer Research; Washington, DC, USA: 2007.
    1. American Cancer Society . Breast Cancer Facts & Figures 2019–2020. American Cancer Society; Atlanta, GA, USA: 2019.
    1. Harvie M., Howell A., Vierkant R.A., Kumar N., Cerhan J.R., Kelemen L.E., Folsom A.R., Sellers T.A. Association of gain and loss of weight before and after menopause with risk of postmenopausal breast cancer in the Iowa women’s health study. Cancer Epidemiol. Biomark. Prev. 2005;14:656–661. doi: 10.1158/1055-9965.EPI-04-0001.
    1. Lahmann P.H., Schulz M., Hoffmann K., Boeing H., Tjonneland A., Olsen A., Overvad K., Key T.J., Allen N.E., Khaw K.T., et al. Long-term weight change and breast cancer risk: The European prospective investigation into cancer and nutrition (EPIC) Br. J. Cancer. 2005;93:582–589. doi: 10.1038/sj.bjc.6602763.
    1. Eliassen A.H., Colditz G.A., Rosner B., Willett W.C., Hankinson S.E. Adult weight change and risk of postmenopausal breast cancer. JAMA. 2006;296:193–201. doi: 10.1001/jama.296.2.193.
    1. Ahn J., Schatzkin A., Lacey J.V., Jr., Albanes D., Ballard-Barbash R., Adams K.F., Kipnis V., Mouw T., Hollenbeck A.R., Leitzmann M.F. Adiposity, adult weight change, and postmenopausal breast cancer risk. Arch. Intern. Med. 2007;167:2091–2102. doi: 10.1001/archinte.167.19.2091.
    1. Manders P., Pijpe A., Hooning M.J., Kluijt I., Vasen H.F., Hoogerbrugge N., van Asperen C.J., Meijers-Heijboer H., Ausems M.G., van Os T.A., et al. Body weight and risk of breast cancer in BRCA1/2 mutation carriers. Breast Cancer Res. Treat. 2011;126:193–202. doi: 10.1007/s10549-010-1120-8.
    1. Huang Z., Hankinson S.E., Colditz G.A., Stampfer M.J., Hunter D.J., Manson J.E., Hennekens C.H., Rosner B., Speizer F.E., Willett W.C. Dual effects of weight and weight gain on breast cancer risk. JAMA. 1997;278:1407–1411. doi: 10.1001/jama.1997.03550170037029.
    1. Ballard-Barbash R., Hunsberger S., Alciati M.H., Blair S.N., Goodwin P.J., McTiernan A., Wing R., Schatzkin A. Physical activity, weight control, and breast cancer risk and survival: Clinical trial rationale and design considerations. J. Natl. Cancer Inst. 2009;101:630–643. doi: 10.1093/jnci/djp068.
    1. Byers T., Sedjo R.L. Does intentional weight loss reduce cancer risk? Diabetes Obes. Metab. 2011;13:1063–1072. doi: 10.1111/j.1463-1326.2011.01464.x.
    1. Reeves M.M., Terranova C.O., Eakin E.G., Demark-Wahnefried W. Weight loss intervention trials in women with breast cancer: A systematic review. Obes. Rev. 2014;15:749–768. doi: 10.1111/obr.12190.
    1. Fabian C.J., Kimler B.F., Donnelly J.E., Sullivan D.K., Klemp J.R., Petroff B.K., Phillips T.A., Metheny T., Aversman S., Yeh H.W., et al. Favorable modulation of benign breast tissue and serum risk biomarkers is associated with >10% weight loss in postmenopausal women. Breast Cancer Res. Treat. 2013;142:119–132. doi: 10.1007/s10549-013-2730-8.
    1. Fabian C.J., Klemp J.R., Marchello N.J., Vidoni E.D., Sullivan D.K., Nydegger J.L., Phillips T.A., Kreutzjans A.L., Hendry B., Befort C.A., et al. Rapid Escalation of High-Volume Exercise during Caloric Restriction; Change in Visceral Adipose Tissue and Adipocytokines in Obese Sedentary Breast Cancer Survivors. Cancers. 2021;13:4871. doi: 10.3390/cancers13194871.
    1. Playdon M., Thomas G., Sanft T., Harrigan M., Ligibel J., Irwin M. Weight Loss Intervention for Breast Cancer Survivors: A Systematic Review. Curr. Breast Cancer Rep. 2013;5:222–246. doi: 10.1007/s12609-013-0113-0.
    1. Birks S., Peeters A., Backholer K., O’Brien P., Brown W. A systematic review of the impact of weight loss on cancer incidence and mortality. Obes. Rev. 2012;13:868–891. doi: 10.1111/j.1467-789X.2012.01010.x.
    1. Burgess E., Hassmen P., Pumpa K.L. Determinants of adherence to lifestyle intervention in adults with obesity: A systematic review. Clin. Obes. 2017;7:123–135. doi: 10.1111/cob.12183.
    1. Leung A.W.Y., Chan R.S.M., Sea M.M.M., Woo J. An Overview of Factors Associated with Adherence to Lifestyle Modification Programs for Weight Management in Adults. Int. J. Environ. Res. Public Health. 2017;14:922. doi: 10.3390/ijerph14080922.
    1. Diabetes Prevention Program Research G., Knowler W.C., Fowler S.E., Hamman R.F., Christophi C.A., Hoffman H.J., Brenneman A.T., Brown-Friday J.O., Goldberg R., Venditti E., et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet. 2009;374:1677–1686. doi: 10.1016/S0140-6736(09)61457-4.
    1. Chaix A., Manoogian E.N.C., Melkani G.C., Panda S. Time-Restricted Eating to Prevent and Manage Chronic Metabolic Diseases. Ann. Rev. Nutr. 2019;39:291–315. doi: 10.1146/annurev-nutr-082018-124320.
    1. Manoogian E.N.C., Panda S. Circadian rhythms, time-restricted feeding, and healthy aging. Ageing Res. Rev. 2017;39:59–67. doi: 10.1016/j.arr.2016.12.006.
    1. Morris C.J., Yang J.N., Garcia J.I., Myers S., Bozzi I., Wang W., Buxton O.M., Shea S.A., Scheer F.A. Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans. Proc. Natl. Acad. Sci. USA. 2015;112:E2225–E2234. doi: 10.1073/pnas.1418955112.
    1. Turek F.W., Joshu C., Kohsaka A., Lin E., Ivanova G., McDearmon E., Laposky A., Losee-Olson S., Easton A., Jensen D.R., et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 2005;308:1043–1045. doi: 10.1126/science.1108750.
    1. Buxton O.M., Cain S.W., O’Connor S.P., Porter J.H., Duffy J.F., Wang W., Czeisler C.A., Shea S.A. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci. Transl. Med. 2012;4:129ra43. doi: 10.1126/scitranslmed.3003200.
    1. Gale J.E., Cox H.I., Qian J., Block G.D., Colwell C.S., Matveyenko A.V. Disruption of circadian rhythms accelerates development of diabetes through pancreatic beta-cell loss and dysfunction. J. Biol. Rhythm. 2011;26:423–433. doi: 10.1177/0748730411416341.
    1. Melkani G.C., Panda S. Time-restricted feeding for prevention and treatment of cardiometabolic disorders. J. Physiol. 2017;595:3691–3700. doi: 10.1113/JP273094.
    1. Moon S., Kang J., Kim S.H., Chung H.S., Kim Y.J., Yu J.M., Cho S.T., Oh C.M., Kim T. Beneficial Effects of Time-Restricted Eating on Metabolic Diseases: A Systemic Review and Meta-Analysis. Nutrients. 2020;12:1267. doi: 10.3390/nu12051267.
    1. Pellegrini M., Cioffi I., Evangelista A., Ponzo V., Goitre I., Ciccone G., Ghigo E., Bo S. Effects of time-restricted feeding on body weight and metabolism. A systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 2020;21:17–33. doi: 10.1007/s11154-019-09524-w.
    1. Wilhelmi de Toledo F., Buchinger A., Burggrabe H., Holz G., Kuhn C., Lischka E., Lischka N., Lutzner H., May W., Ritzmann-Widderich M., et al. Fasting therapy—An expert panel update of the 2002 consensus guidelines. Forsch. Komplementmed. 2013;20:434–443. doi: 10.1159/000357602.
    1. Parr E.B., Devlin B.L., Radford B.E., Hawley J.A. A Delayed Morning and Earlier Evening Time-Restricted Feeding Protocol for Improving Glycemic Control and Dietary Adherence in Men with Overweight/Obesity: A Randomized Controlled Trial. Nutrients. 2020;12:505. doi: 10.3390/nu12020505.
    1. Trepanowski J.F., Kroeger C.M., Barnosky A., Klempel M.C., Bhutani S., Hoddy K.K., Gabel K., Freels S., Rigdon J., Rood J., et al. Effect of Alternate-Day Fasting on Weight Loss, Weight Maintenance, and Cardioprotection Among Metabolically Healthy Obese Adults A Randomized Clinical Trial. JAMA Intern. Med. 2017;177:930–938. doi: 10.1001/jamainternmed.2017.0936.
    1. French S.A., Epstein L.H., Jeffery R.W., Blundell J.E., Wardle J. Eating behavior dimensions. Associations with energy intake and body weight. A review. Appetite. 2012;59:541–549. doi: 10.1016/j.appet.2012.07.001.
    1. Schembre S.M., Liao Y., Huh J., Keller S. Using pre-prandial blood glucose to assess eating in the absence of hunger in free-living individuals. Eat. Behav. 2020;38:101411. doi: 10.1016/j.eatbeh.2020.101411.
    1. Jospe M.R., Brown R.C., Roy M., Taylor R.W. Adherence to hunger training using blood glucose monitoring: A feasibility study. Nutr. Metab. 2015;12:22. doi: 10.1186/s12986-015-0017-2.
    1. Ciampolini M., Lovell-Smith D., Sifone M. Sustained self-regulation of energy intake. Loss of weight in overweight subjects. Maintenance of weight in normal-weight subjects. Nutr. Metab. 2010;7:4. doi: 10.1186/1743-7075-7-4.
    1. Ciampolini M., Bianchi R. Training to estimate blood glucose and to form associations with initial hunger. Nutr. Metab. 2006;3:42. doi: 10.1186/1743-7075-3-42.
    1. Jospe M.R., de Bruin W.E., Haszard J.J., Mann J.I., Brunton M., Taylor R.W. Teaching people to eat according to appetite—Does the method of glucose measurement matter? Appetite. 2020;151:104691. doi: 10.1016/j.appet.2020.104691.
    1. Ciampolini M., Lovell-Smith D., Bianchi R., de Pont B., Sifone M., van Weeren M., de Hahn W., Borselli L., Pietrobelli A. Sustained self-regulation of energy intake: Initial hunger improves insulin sensitivity. J. Nutr. Metab. 2010;2010:286952. doi: 10.1155/2010/286952.
    1. Jospe M.R., Taylor R.W., Athens J., Roy M., Brown R.C. Adherence to Hunger Training over 6 Months and the Effect on Weight and Eating Behaviour: Secondary Analysis of a Randomised Controlled Trial. Nutrients. 2017;9:1260. doi: 10.3390/nu9111260.
    1. De Bruin W.E., Ward A.L., Taylor R.W., Jospe M.R. ‘Am I really hungry?’ A qualitative exploration of patients’ experience, adherence and behaviour change during hunger training: A pilot study. BMJ Open. 2019;9:e032248. doi: 10.1136/bmjopen-2019-032248.
    1. Ertunc M.E., Hotamisligil G.S. Lipid signaling and lipotoxicity in metaflammation: Indications for metabolic disease pathogenesis and treatment. J. Lipid Res. 2016;57:2099–2114. doi: 10.1194/jlr.R066514.
    1. Rose D.P., Gracheck P.J., Vona-Davis L. The Interactions of Obesity, Inflammation and Insulin Resistance in Breast Cancer. Cancers. 2015;7:2147–2168. doi: 10.3390/cancers7040883.
    1. Schembre S.M., Jospe M.R., Bedrick E.J., Liang L., Brewster A.M., Levy E., Dirba D.D., Campbell M., Taylor R.W., Basen-Engquist K.M. Hunger Training as a self-regulation strategy in a comprehensive weight loss program for breast cancer prevention: A randomized feasibility study. Cancer Prev. Res. 2021 doi: 10.1158/1940-6207.CAPR-21-0298. under review.
    1. Wing R.R., Hamman R.F., Bray G.A., Delahanty L., Edelstein S.L., Hill J.O., Horton E.S., Hoskin M.A., Kriska A., Lachin J., et al. Achieving weight and activity goals among diabetes prevention program lifestyle participants. Obes. Res. 2004;12:1426–1434. doi: 10.1038/oby.2004.179.
    1. Stephens S.K., Cobiac L.J., Veerman J.L. Improving diet and physical activity to reduce population prevalence of overweight and obesity: An overview of current evidence. Prev. Med. 2014;62:167–178. doi: 10.1016/j.ypmed.2014.02.008.
    1. Gail M.H., Brinton L.A., Byar D.P., Corle D.K., Green S.B., Schairer C., Mulvihill J.J. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J. Natl. Cancer Inst. 1989;81:1879–1886. doi: 10.1093/jnci/81.24.1879.
    1. Matthews D.R., Hosker J.P., Rudenski A.S., Naylor B.A., Treacher D.F., Turner R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–419. doi: 10.1007/BF00280883.
    1. Hill N.R., Oliver N.S., Choudhary P., Levy J.C., Hindmarsh P., Matthews D.R. Normal Reference Range for Mean Tissue Glucose and Glycemic Variability Derived from Continuous Glucose Monitoring for Subjects Without Diabetes in Different Ethnic Groups. Diabetes Technol. Ther. 2011;13:921–928. doi: 10.1089/dia.2010.0247.
    1. Pendergast F.J., Ridgers N.D., Worsley A., McNaughton S.A. Evaluation of a smartphone food diary application using objectively measured energy expenditure. Int. J. Behav. Nutr. Phys. Act. 2017;14:30. doi: 10.1186/s12966-017-0488-9.
    1. Teixeira V., Voci S.M., Mendes-Netto R.S., da Silva D.G. The relative validity of a food record using the smartphone application MyFitnessPal. Nutr. Diet. 2018;75:219–225. doi: 10.1111/1747-0080.12401.
    1. Cienfuegos S., Gabel K., Kalam F., Ezpeleta M., Wiseman E., Pavlou V., Lin S., Oliveira M.L., Varady K.A. Effects of 4- and 6-h Time-Restricted Feeding on Weight and Cardiometabolic Health: A Randomized Controlled Trial in Adults with Obesity. Cell Metab. 2020;32:366–378.e3. doi: 10.1016/j.cmet.2020.06.018.
    1. Gabel K., Hoddy K.K., Haggerty N., Song J., Kroeger C.M., Trepanowski J.F., Panda S., Varady K.A. Effects of 8-h time restricted feeding on body weight and metabolic disease risk factors in obese adults: A pilot study. Nutr. Healthy Aging. 2018;4:345–353. doi: 10.3233/NHA-170036.
    1. Hegedus E., Salvy S.-J., Wee C.P., Naguib M., Raymond J.K., Fox D.S., Vidmar A.P. Use of continuous glucose monitoring in obesity research: A scoping review. Obes. Res. Clin. Pract. 2021;15:431–438. doi: 10.1016/j.orcp.2021.08.006.
    1. Connell L.E., Carey R.N., de Bruin M., Rothman A.J., Johnston M., Kelly M.P., Michie S. Links Between Behavior Change Techniques and Mechanisms of Action: An Expert Consensus Study. Ann. Behav. Med. 2019;53:708–720. doi: 10.1093/abm/kay082.
    1. Liao Y., Basen-Engquist K.M., Urbauer D.L., Bevers T.B., Hawk E., Schembre S.M. Using Continuous Glucose Monitoring to Motivate Physical Activity in Overweight and Obese Adults: A Pilot Study. Cancer Epidemiol. Biomark. Prev. 2020;29:761–768. doi: 10.1158/1055-9965.EPI-19-0906.

Source: PubMed

3
Subskrybuj