Radiation Pneumonitis: Old Problem, New Tricks

Varsha Jain, Abigail T Berman, Varsha Jain, Abigail T Berman

Abstract

Radiation therapy is a major treatment modality for management of non-small cell lung cancer. Radiation pneumonitis is a dose limiting toxicity of radiotherapy, affecting its therapeutic ratio. This review presents patient and treatment related factors associated with the development of radiation pneumonitis. Research focusing on reducing the incidence of radiation pneumonitis by using information about lung ventilation, imaging-based biomarkers as well as normal tissue complication models is discussed. Recent advances in our understanding of molecular mechanisms underlying lung injury has led to the development of several targeted interventions, which are also explored in this review.

Keywords: lung cancer; radiation pneumonitis; radiation therapy.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Representative images of a double scatter proton (a) vs. Intensity modulated radiation therapy IMRT photon (b) plans for a patient with locally advanced lung cancer. Note the differences in dosimetry between the two plans.

References

    1. Trott K.R., Herrmann T., Kasper M. Target cells in radiation pneumopathy. Int. J. Radiat. Oncol. Biol. Phys. 2004;58:463–469. doi: 10.1016/j.ijrobp.2003.09.045.
    1. Wade M., Li Y.-C., Wahl G.M. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat. Rev. Cancer. 2013;13:83–96. doi: 10.1038/nrc3430.
    1. Johnston C.J., Wright T.W., Rubin P., Finkelstein J.N. Alterations in the expression of chemokine mRNA levels in fibrosis-resistant and -sensitive mice after thoracic irradiation. Exp. Lung Res. 1998;24:321–337. doi: 10.3109/01902149809041538.
    1. Hallahan D.E., Virudachalam S. Ionizing radiation mediates expression of cell adhesion molecules in distinct histological patterns within the lung. Cancer Res. 1997;57:2096–2099.
    1. Moore A.H., Olschowka J.A., Williams J.P., Paige S.L., O’Banion M.K. Radiation-induced edema is dependent on cyclooxygenase 2 activity in mouse brain. Radiat. Res. 2004;161:153–160. doi: 10.1667/RR3116.
    1. Graves P.R., Siddiqui F., Anscher M.S., Movsas B. Radiation pulmonary toxicity: From mechanisms to management. Semin. Radiat. Oncol. 2010;20:201–207. doi: 10.1016/j.semradonc.2010.01.010.
    1. Rodrigues G., Lock M., D’Souza D., Yu E., Van Dyk J. Prediction of radiation pneumonitis by dose-volume histogram parameters in lung cancer—A systematic review. Radiother. Oncol. 2004;71:127–138. doi: 10.1016/j.radonc.2004.02.015.
    1. Palma D.A., Senan S., Tsujino K., Barriger R.B., Rengan R., Moreno M., Jeffrey D., Kim T.H., Ramella S., Marks L.B., et al. Predicting Radiation Pneumonitis after Chemoradiotherapy for Lung Cancer: An International Individual Patient Data Meta- analysis. Int. J. Radiat. Oncol. 2013;85:444–450. doi: 10.1016/j.ijrobp.2012.04.043.
    1. Borst G.R., De Jaeger K., Belderbos J.S.A., Burgers S.A., Lebesque J. V Pulmonary function changes after radiotherapy in non-small-cell lung cancer patients with long-term disease-free survival. Int. J. Radiat. Oncol. Biol. Phys. 2005;62:639–644. doi: 10.1016/j.ijrobp.2004.11.029.
    1. Mehta V. Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer: Pulmonary function, prediction, and prevention. Int. J. Radiat. Oncol. Biol. Phys. 2005;63:5–24. doi: 10.1016/j.ijrobp.2005.03.047.
    1. Miller K.L., Zhou S.M., Barrier R.C., Jr., Shafman T., Folz R.J., Clough R.W., Marks L.B. Long-term changes in pulmonary function tests after definitive radiotherapy for lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2003;56:611–615. doi: 10.1016/S0360-3016(03)00182-2.
    1. De Jaeger K., Seppenwoolde Y., Boersma L.J., Muller S.H., Baas P., Belderbos J.S.A., Lebesque J.V. Pulmonary function following high-dose radiotherapy of non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2003;55:1331–1340. doi: 10.1016/S0360-3016(02)04389-4.
    1. National Institute of Cancer Common Terminology Criteria for Adverse Events (CTCAE) [(accessed on 5 April 2018)]; Available online: .
    1. Cox J.D., Stetz J., Pajak T.F. Toxicity criteria of the radiation therapy oncology group (RTOG) and the european organization for research and treatment of cancer (EORTC) Int. J. Radiat. Oncol. Biol. Phys. 1995;31:1341–1346. doi: 10.1016/0360-3016(95)00060-C.
    1. Green S., Weiss G.R. Southwest Oncology Group standard response criteria, endpoint definitions and toxicity criteria. Investig. New Drugs. 1992;10:239–253. doi: 10.1007/BF00944177.
    1. Oken M., Creech R., Tormey D., Horton J., Davis T., McFadden E., Carbone P. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am. J. Clin. Oncol. 1982;5:649–656. doi: 10.1097/00000421-198212000-00014.
    1. World Health Organization . Handbook for Reporting Results of Cancer Treatment. WHO; Geneva, Switzerland: 1979.
    1. Vogelius I.R., Bentzen I.S. A literature-based meta-analysis of clinical risk factors for development of radiation induced pneumonitis. Anta Oncol. 2013;51:975–983. doi: 10.3109/0284186X.2012.718093.A.
    1. Bjermer L., Cai Y., Nilsson K., Hellstrom S., Henriksson R. Tobacco smoke exposure suppresses radiation-induced inflammation in the lung: A study of bronchoalveolar lavage and ultrastructural morphology in the rat. Eur. Respir. J. 1993;6:1173–1180.
    1. Laviolette M., Coulombe R., Picard S., Braquet P., Borgeat P. Decreased leukotriene B4 synthesis in smokers’ alveolar macrophages in vitro. J. Clin. Investig. 1986;77:54–60. doi: 10.1172/JCI112301.
    1. Sun S., Schiller J.H., Gazdar A.F. Lung cancer in never smokers—A different disease. Nat. Rev. Cancer. 2007;7:778–790. doi: 10.1038/nrc2190.
    1. Takeda A., Kunieda E., Ohashi T., Aoki Y., Oku Y., Enomoto T., Nomura K., Sugiura M. Severe COPD is correlated with mild radiation pneumonitis following stereotactic body radiotherapy. Chest. 2012;141:858–866. doi: 10.1378/chest.11-1193.
    1. Bahig H., Filion E., Vu T., Chalaoui J., Lambert L., Roberge D., Gagnon M., Fortin B., Béliveau-Nadeau D., Mathieu D., et al. Severe radiation pneumonitis after lung stereotactic ablative radiation therapy in patients with interstitial lung disease. Pract. Radiat. Oncol. 2016;6:367–374. doi: 10.1016/j.prro.2016.01.009.
    1. Ozawa Y., Abe T., Omae M., Matsui T., Kato M., Hasegawa H., Enomoto Y., Ishihara T., Inui N., Yamada K., et al. Impact of preexisting interstitial lung disease on acute, extensive radiation pneumonitis: Retrospective analysis of patients with lung cancer. PLoS ONE. 2015;10 doi: 10.1371/journal.pone.0140437.
    1. Yamaguchi S., Ohguri T., Ide S., Aoki T., Imada H., Yahara K., Narisada H., Korogi Y. Stereotactic body radiotherapy for lung tumors in patients with subclinical interstitial lung disease: The potential risk of extensive radiation pneumonitis. Lung Cancer. 2013;82:260–265. doi: 10.1016/j.lungcan.2013.08.024.
    1. Yamaguchi S., Ohguri T., Matsuki Y., Yahara K., Oki H., Imada H., Narisada H., Korogi Y. Radiotherapy for thoracic tumors: Association between subclinical interstitial lung disease and fatal radiation pneumonitis. Int. J. Clin. Oncol. 2015;20:45–52. doi: 10.1007/s10147-014-0679-1.
    1. Curran W.J., Paulus R., Langer C.J., Komaki R., Lee J.S., Hauser S., Movsas B., Wasserman T., Rosenthal S.A., Gore E., et al. Sequential vs. concurrent chemoradiation for stage III non-small cell lung cancer: Randomized phase III trial RTOG 9410. J. Natl. Cancer Inst. 2011;103:1452–1460. doi: 10.1093/jnci/djr325.
    1. Onishi H., Kuriyama K., Yamaguchi M., Komiyama T., Tanaka S., Araki T., Nishikawa K., Ishihara H. Concurrent two-dimensional radiotherapy and weekly docetaxel in the treatment of stage III non-small cell lung cancer: A good local response but no good survival due to radiation pneumonitis. Lung Cancer. 2003;40:79–84. doi: 10.1016/S0169-5002(02)00532-9.
    1. Parashar B., Edwards A., Mehta R., Pasmantier M., Wernicke A.G., Sabbas A., Kerestez R.S., Nori D., Chao K.S.C. Chemotherapy significantly increases the risk of radiation pneumonitis in radiation therapy of advanced lung cancer. Am. J. Clin. Oncol. 2011;34:160–164. doi: 10.1097/COC.0b013e3181d6b40f.
    1. Fehrenbacher L., Spira A., Ballinger M., Kowanetz M., Vansteenkiste J., Mazieres J., Park K., Smith D., Artal-Cortes A., Lewanski C., et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387:1837–1846. doi: 10.1016/S0140-6736(16)00587-0.
    1. Borghaei H., Paz-Ares L., Horn L., Spigel D.R., Steins M., Ready N.E., Chow L.Q., Vokes E.E., Felip E., Holgado E., et al. Nivolumab versus docetaxel in advanced non-squamous non-small cell lung cancer. N. Engl. J. Med. 2015;373:1627–1639. doi: 10.1056/NEJMoa1507643.
    1. Brahmer J., Reckamp K.L., Baas P., Crinò L., Eberhardt W.E.E., Poddubskaya E., Antonia S., Pluzanski A., Vokes E.E., Holgado E., et al. Nivolumab versus docetaxel in advanced squamous-cell non–small-cell lung cancer. N. Engl. J. Med. 2015;373:123–135. doi: 10.1056/NEJMoa1504627.
    1. Reck M., Rodríguez-Abreu D., Robinson A.G., Hui R., Csőszi T., Fülöp A., Gottfried M., Peled N., Tafreshi A., Cuffe S., et al. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N. Engl. J. Med. 2016;375:1823–1833. doi: 10.1056/NEJMoa1606774.
    1. Antonia S.J., Villegas A., Daniel D., Vicente D., Murakami S., Hui R., Yokoi T., Chiappori A., Lee K.H., de Wit M., et al. Durvalumab after Chemoradiotherapy in Stage III Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2017 doi: 10.1056/NEJMoa1709937.
    1. Delaunay M., Cadranel J., Lusque A., Meyer N., Gounaut V., Moro-Sibilot D., Michot J.M., Raimbourg J., Girard N., Guisier F., et al. Immune-checkpoint inhibitors associated with interstitial lung disease in cancer patients. Eur. Respir. J. 2017;50 doi: 10.1183/13993003.00050-2017.
    1. Nishino M., Giobbie-Hurder A., Hatabu H., Ramaiya N.H., Hodi F.S. Incidence of programmed cell death 1 inhibitor-related pneumonitis in patients with advanced cancer a systematic review and meta-analysis. JAMA Oncol. 2016;2:1607–1616. doi: 10.1001/jamaoncol.2016.2453.
    1. Crequit P., Wislez M., Fleury Feith J., Rozensztajn N., Jabot L., Friard S., Lavole A., Gounant V., Fillon J., Antoine M., et al. Crizotinib associated with ground-glass opacity predominant pattern interstitial lung disease: A retrospective observational cohort study with a systematic literature review. J. Thorac. Oncol. 2015;10:1148–1155. doi: 10.1097/JTO.0000000000000577.
    1. Hochstrasser A., Benz G., Joerger M., Templeton A., Brutsche M., Frh M. Interstitial pneumonitis after treatment with pemetrexed: A rare event? Chemotherapy. 2012;58:84–88. doi: 10.1159/000336131.
    1. Roychowdhury D.F., Cassidy C.A., Peterson P., Arning M. A report on serious pulmonary toxicity associated with gemcitabine-based therapy. Investig. New Drugs. 2002;20:311–315. doi: 10.1023/A:1016214032272.
    1. Grande C., Villanueva M.J., Huidobro G., Casal J. Docetaxel-induced interstitial pneumonitis following non-small-cell lung cancer treatment. Clin. Transl. Oncol. 2007;9:578–581. doi: 10.1007/s12094-007-0106-4.
    1. Konishi J., Yamazaki K., Kinoshita I., Isobe H., Ogura S., Sekine S., Ishida T., Takashima R., Nakadate M., Nishikawa S., et al. Analysis of the response and toxicity to gefitinib of non-small cell lung cancer. Anticancer Res. 2005;25:435–441.
    1. Liu V., White D.A., Zakowski M.F., Travis W., Kris M.G., Ginsberg M.S., Miller V.A., Azzoli C.G. Pulmonary toxicity associated with erlotinib. Chest. 2007;132:1042–1044. doi: 10.1378/chest.07-0050.
    1. Twyman-Saint Victor C., Rech A.J., Maity A., Rengan R., Pauken K.E., Stelekati E., Benci J.L., Xu B., Dada H., Odorizzi P.M., et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015;520:373–377. doi: 10.1038/nature14292.
    1. Shaverdian N., Lisberg A.E., Bornazyan K., Veruttipong D., Goldman J.W., Formenti S.C., Garon E.B., Lee P. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: A secondary analysis of the KEYNOTE-001 phase I trial. Lancet Oncol. 2017;18:895–903. doi: 10.1016/S1470-2045(17)30380-7.
    1. Kocak Z., Yu X., Zhou S.M., D’Amico A., Hollis D., Kahn D., Tisch A., Shafman T.D., Marks L.B. The impact of pre-radiotherapy surgery on radiation-induced lung injury. Clin. Oncol. 2005;17:210–216. doi: 10.1016/j.clon.2004.11.013.
    1. Albain K.S., Swann R.S., Rusch V.W., Turrisi A.T., Shepherd F.A., Smith C., Chen Y., Livingston R.B., Feins R.H., Gandara D.R., et al. Radiotherapy plus chemotherapy with or without surgical resection for stage III non-small-cell lung cancer: A phase III randomised controlled trial. Lancet. 2009;374:379–386. doi: 10.1016/S0140-6736(09)60737-6.
    1. Van Luijk P., Faber H., Meertens H., Schippers J.M., Langendijk J.A., Brandenburg S., Kampinga H.H., Coppes R.P. The impact of heart irradiation on dose-volume effects in the rat lung. Int. J. Radiat. Oncol. Biol. Phys. 2007;69:552–559. doi: 10.1016/j.ijrobp.2007.05.065.
    1. Ghobadi G., Van Der Veen S., Bartelds B., De Boer R.A., Dickinson M.G., De Jong J.R., Faber H., Niemantsverdriet M., Brandenburg S., Berger R.M.F., et al. Physiological interaction of heart and lung in thoracic irradiation. Int. J. Radiat. Oncol. Biol. Phys. 2012;84 doi: 10.1016/j.ijrobp.2012.07.2362.
    1. Huang E.X., Hope A.J., Lindsay P.E., Trovo M., El Naqa I., Deasy J.O., Bradley J.D. Heart irradiation as a risk factor for radiation pneumonitis. Acta Oncol. 2011;50:51–60. doi: 10.3109/0284186X.2010.521192.
    1. Wijsman R., Dankers F.J.W.M., Troost E.G.C., Hoffmann A.L., van der Heijden E.H.F.M., de Geus-Oei L.F., Bussink J. Inclusion of incidental radiation dose to the cardiac atria and ventricles does not improve the prediction of radiation pneumonitis in advanced-stage non-small cell lung cancer patients treated with intensity modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2017;99:434–441. doi: 10.1016/j.ijrobp.2017.04.011.
    1. Yom S.S., Liao Z., Liu H.H., Tucker S.L., Hu C.S., Wei X., Wang X., Wang S., Mohan R., Cox J.D., et al. Initial evaluation of treatment-related pneumonitis in advanced-stage non-dmall-cell lung cancer patients treated with concurrent chemotherapy and intensity-modulated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2007;68:94–102. doi: 10.1016/j.ijrobp.2006.12.031.
    1. Wu V.W.C., Kwong D.L.W., Sham J.S.T. Target dose conformity in 3-dimensional conformal radiotherapy and intensity modulated radiotherapy. Radiother. Oncol. 2004;71:201–206. doi: 10.1016/j.radonc.2004.03.004.
    1. Boyle J., Ackerson B., Gu L., Kelsey C.R. Dosimetric advantages of intensity modulated radiation therapy in locally advanced lung cancer. Adv. Radiat. Oncol. 2017;2:6–11. doi: 10.1016/j.adro.2016.12.006.
    1. Chun S.G., Hu C., Choy H., Komaki R.U., Timmerman R.D., Schild S.E., Bogart J.A., Dobelbower M.C., Bosch W., Galvin J.M., et al. Impact of intensity-modulated radiation therapy technique for locally advanced non-small-cell lung cancer: A secondary analysis of the NRG oncology RTOG 0617 randomized clinical trial. J. Clin. Oncol. 2017;35:56–62. doi: 10.1200/JCO.2016.69.1378.
    1. Berman A.T., Teo B.-K.K., Dolney D., Swisher-McClure S., Shahnazi K., Both S., Rengan R. An in-silico comparison of proton beam and IMRT for postoperative radiotherapy in completely resected stage IIIA non-small cell lung cancer. Radiat. Oncol. 2013;8:144. doi: 10.1186/1748-717X-8-144.
    1. Zhang X., Li Y., Pan X., Xiaoqiang L., Mohan R., Komaki R., Cox J.D., Chang J.Y. Intensity-modulated proton therapy reduces the dose to normal tissue compared with intensity-modulated radiation therapy or passive scattering proton therapy and enables individualized radical radiotherapy for extensive stage IIIB non-small-cell lung canc. Int. J. Radiat. Oncol. Biol. Phys. 2010;77:357–366. doi: 10.1016/j.ijrobp.2009.04.028.
    1. Higgins K.A., O’Connell K., Liu Y., Gillespie T.W., McDonald M.W., Pillai R.N., Patel K.R., Patel P.R., Robinson C.G., Simone C.B., et al. National cancer database analysis of proton versus photon radiation therapy in non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2017;97:128–137. doi: 10.1016/j.ijrobp.2016.10.001.
    1. Liao Z., Lee J.J., Komaki R., Gomez D.R., O’Reilly M.S., Fossella F.V., Blumenschein G.R., Heymach J.V., Vaporciyan A.A., Swisher S.G., et al. Bayesian adaptive randomization trial of passive scattering proton therapy and intensity-modulated photon radiotherapy for locally advanced non-small-cell lung cancer. J. Clin. Oncol. 2018 doi: 10.1200/JCO.2017.74.0720.
    1. Vinogradskiy Y., Gan G., Castillo R., Castillo E., Martel M., Guerrero T., Miften M. Quantitative assessment of lung function in stage I and stage III lung radiation therapy patients using 4DCT-based ventilation imaging. Int. J. Radiat. Oncol. Biol. Phys. 2012;84:S754. doi: 10.1016/j.ijrobp.2012.07.2018.
    1. Vinogradskiy Y., Schubert L., Diot Q., Waxweiller T., Koo P., Castillo R., Castillo E., Guerrero T., Rusthoven C., Gaspar L., et al. Regional lung function profiles of stage i and III lung cancer patients: An evaluation for functional avoidance radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2016;95:1273–1280. doi: 10.1016/j.ijrobp.2016.02.058.
    1. Marks L.B., Spencer D.P., Bentel G.C., Ray S.K., Sherouse G.W., Sontag M.R., Edward Coleman R., Jaszczak R.J., Turkington T.G., Tapson V., et al. The utility of SPECT lung perfusion scans in minimizing and assessing the physiologic consequences of thoracic irradiation. Int. J. Radiat. Oncol. Biol. Phys. 1993;26:659–668. doi: 10.1016/0360-3016(93)90285-4.
    1. Christian J.A., Partridge M., Nioutsikou E., Cook G., McNair H.A., Cronin B., Courbon F., Bedford J.L., Brada M. The incorporation of SPECT functional lung imaging into inverse radiotherapy planning for non-small cell lung cancer. Radiother. Oncol. 2005;77:271–277. doi: 10.1016/j.radonc.2005.08.008.
    1. Castillo R., Castillo E., Martinez J., Guerrero T. TU-B-204B-04: Ventilation from Four Dimensional Computed Tomography: Density versus Jacobian Methods. Med. Phys. 2010;37:377. doi: 10.1118/1.3469193.
    1. Bates E.L., Bragg C.M., Wild J.M., Hatton M.Q.F., Ireland R.H. Functional image-based radiotherapy planning for non-small cell lung cancer: A simulation study. Radiother. Oncol. 2009;93:32–36. doi: 10.1016/j.radonc.2009.05.018.
    1. Brennan D., Schubert L., Diot Q., Castillo R., Castillo E., Guerrero T., Martel M.K., Linderman D., Gaspar L.E., Miften M., et al. Clinical validation of 4-dimensional computed tomography ventilation with pulmonary function test data. Int. J. Radiat. Oncol. Biol. Phys. 2015;92:423–429. doi: 10.1016/j.ijrobp.2015.01.019.
    1. Faught A.M., Miyasaka Y., Kadoya N., Castillo R., Castillo E., Vinogradskiy Y., Yamamoto T. Evaluating the toxicity reduction with computed tomographic ventilation functional avoidance radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2017;99:325–333. doi: 10.1016/j.ijrobp.2017.04.024.
    1. Yamamoto T., Kabus S., Bal M., Keall P., Benedict S., Daly M. The first patient treatment of computed tomography ventilation functional image-guided radiotherapy for lung cancer. Radiother. Oncol. 2016;118:227–231. doi: 10.1016/j.radonc.2015.11.006.
    1. Waxweiler T., Schubert L., Diot Q., Faught A., Stuhr K., Castillo R., Castillo E., Guerrero T., Rusthoven C., Gaspar L., et al. A complete 4DCT-ventilation functional avoidance virtual trial: Developing strategies for prospective clinical trials. J. Appl. Clin. Med. Phys. 2017;18:144–152. doi: 10.1002/acm2.12086.
    1. Petit S.F., Van Elmpt W.J.C., Oberije C.J.G., Vegt E., Dingemans A.M.C., Lambin P., Dekker A.L.A.J., De Ruysscher D. [18F]fluorodeoxyglucose uptake patterns in lung before radiotherapy identify areas more susceptible to radiation-induced lung toxicity in non-small-cell lung cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 2011;81:698–705. doi: 10.1016/j.ijrobp.2010.06.016.
    1. Castillo R., Pham N., Ansari S., Meshkov D., Castillo S., Li M., Olanrewaju A., Hobbs B., Castillo E., Guerrero T. Pre-radiotherapy FDG PET predicts radiation pneumonitis in lung cancer. Radiat. Oncol. 2014;9:1–10. doi: 10.1186/1748-717X-9-74.
    1. Chaudhuri A.A., Binkley M.S., Rigdon J., Carter J.N., Aggarwal S., Dudley S.A., Qian Y., Kumar K.A., Hara W.Y., Gensheimer M., et al. Pre-treatment non-target lung FDG-PET uptake predicts symptomatic radiation pneumonitis following Stereotactic Ablative Radiotherapy (SABR) pre-treatment non-target lung FDG-PET uptake predicts radiation pneumonitis after SABR. Radiother. Oncol. 2016;119:454–460. doi: 10.1016/j.radonc.2016.05.007.
    1. Anthony G.J., Cunliffe A., Castillo R., Pham N., Guerrero T., Armato S.G., Al-Hallaq H.A. Incorporation of pre-therapy 18F-FDG uptake data with CT texture features into a radiomics model for radiation pneumonitis diagnosis. Med. Phys. 2017;44:3686–3694. doi: 10.1002/mp.12282.
    1. Marks L., Bentzen S., Deasy J., Kong F. Radiation dose volume effects in the lung. Int. J. Radiat. Oncol. Biol. Phys. 2010;76:70–76. doi: 10.1016/j.ijrobp.2009.06.091.
    1. Appelt A.L., Vogelius I.R., Farr K.P., Khalil A.A., Bentzen S.M. Towards individualized dose constraints: Adjusting the QUANTEC radiation pneumonitis model for clinical risk factors. Acta Oncol. 2014;53:605–612. doi: 10.3109/0284186X.2013.820341.
    1. Tucker S.L., Liu H.H., Liao Z., Wei X., Wang S., Jin H., Komaki R., Martel M.K., Mohan R. Analysis of radiation pneumonitis risk using a generalized lyman model. Int. J. Radiat. Oncol. Biol. Phys. 2008;72:568–574. doi: 10.1016/j.ijrobp.2008.04.053.
    1. Tucker S.L., Li M., Xu T., Gomez D., Yuan X., Yu J., Liu Z., Yin M., Guan X., Wang L.E., et al. Incorporating single-nucleotide polymorphisms into the lyman model to improve prediction of radiation pneumonitis. Int. J. Radiat. Oncol. Biol. Phys. 2013;85:251–257. doi: 10.1016/j.ijrobp.2012.02.021.
    1. Langendijk J.A., Lambin P., de Ruysscher D., Widder J., Bos M., Verheij M. Selection of patients for radiotherapy with protons aiming at reduction of side effects: The model-based approach. Radiother. Oncol. 2013;107:267–273. doi: 10.1016/j.radonc.2013.05.007.
    1. Antonadou D., Petridis A., Synodinou M., Throuvalas N., Bolanos N., Veslemes M., Sagriotis A. Amifostine reduces radiochemotherapy-induced toxicities in patients with locally advanced non-small cell lung cancer. Semin. Oncol. 2003;30:2–9. doi: 10.1053/j.seminoncol.2003.11.008.
    1. Movsas B., Scott C., Langer C., Werner-Wasik M., Nicolaou N., Komaki R., Machtay M., Smith C., Axelrod R., Sarna L., et al. Randomized trial of amifostine in locally advanced non-small-cell lung cancer patients receiving chemotherapy and hyperfractionated radiation: Radiation therapy oncology group trial 98-01. J. Clin. Oncol. 2005;23:2145–2154. doi: 10.1200/JCO.2005.07.167.
    1. Greenberger J.S., Epperly M.W. Antioxidant gene therapeutic approaches to normal tissue radioprotection and tumor radiosensitization. In Vivo. 2007;21:141–146.
    1. Epperly M.W., Epstein C.J., Travis E.L., Greenberger J.S. Decreased pulmonary radiation resistance of manganese superoxide dismutase (MnSOD)-deficient mice is corrected by human manganese superoxide dismutase-Plasmid/Liposome (SOD2-PL) intratracheal gene therapy. Radiat. Res. 2000;154:365–374. doi: 10.1667/0033-7587(2000)154[0365:DPRROM];2.
    1. Gauter-Fleckenstein B., Fleckenstein K., Owzar K., Jiang C., Batinic-Haberle I., Vujaskovic Z. Comparison of two Mn porphyrin-based mimics of superoxide dismutase in pulmonary radioprotection. Free Radic. Biol. Med. 2008;44:982–989. doi: 10.1016/j.freeradbiomed.2007.10.058.
    1. Delanian S., Baillet F., Huart J., Lefaix J.L., Maulard C., Housset M. Successful treatment of radiation-induced fibrosis using liposomal Cu/Zn superoxide dismutase: Clinical trial. Radiother. Oncol. 1994;32:12–20. doi: 10.1016/0167-8140(94)90444-8.
    1. Christofidou-Solomidou M., Tyagi S., Tan K.S., Hagan S., Pietrofesa R., Dukes F., Arguiri E., Heitjan D.F., Solomides C.C., Cengel K.A. Dietary flaxseed administered post thoracic radiation treatment improves survival and mitigates radiation-induced pneumonopathy in mice. BMC Cancer. 2011;11:269. doi: 10.1186/1471-2407-11-269.
    1. Calveley V.L., Jelveh S., Langan A., Mahmood J., Yeung I.W.T., Van Dyk J., Hill R.P. Genistein Can Mitigate the Effect of Radiation on Rat Lung Tissue. Radiat. Res. 2010;173:602–611. doi: 10.1667/RR1896.1.
    1. Day R.M., Barshishat-Kupper M., Mog S.R., McCart E.A., Prasanna P.G.S., Davis T.A., Landauer M.R. Genistein protects against biomarkers of delayed lung sequelae in mice surviving high-dose total body irradiation. J. Radiat. Res. 2008;49:361–372. doi: 10.1269/jrr.07121.
    1. Gore E. Celecoxib and radiation therapy in non-small-cell lung cancer. Oncology. 2004;18:10–14.
    1. Mason R.P., Walter M.F., Day C.A., Jacob R.F. Active metabolite of atorvastatin inhibits membrane cholesterol domain formation by an antioxidant mechanism. J. Biol. Chem. 2006;281:9337–9345. doi: 10.1074/jbc.M513000200.
    1. Mathew B., Huang Y., Jacobson J.R., Berdyshev E., Gerhold L.M., Wang T., Moreno-Vinasco L., Lang G., Zhao Y., Chen C.T., et al. Simvastatin attenuates radiation-induced murine lung injury and dysregulated lung gene expression. Am. J. Respir. Cell Mol. Biol. 2011;44:415–422. doi: 10.1165/rcmb.2010-0122OC.
    1. Wedlake L.J., Silia F., Benton B., Lalji A., Thomas K., Dearnaley D.P., Blake P., Tait D., Khoo V.S., Andreyev H.J.N. Evaluating the efficacy of statins and ACE-inhibitors in reducing gastrointestinal toxicity in patients receiving radiotherapy for pelvic malignancies. Eur. J. Cancer. 2012;48:2117–2124. doi: 10.1016/j.ejca.2011.12.034.
    1. Finkelstein J.N., Johnston C., Barrett T., Oberdörster G. Particulate-cell interactions and pulmonary cytokine expression. Environ. Health Perspect. 1997;105:1179–1182. doi: 10.1289/ehp.97105s51179.
    1. Hong J.H., Jung S.M., Tsao T.C., Wu C.J., Lee C.Y., Chen F.H., Hsu C.H., McBride W.H., Chiang C.S. Bronchoalveolar lavage and interstitial cells have different roles in radiation-induced lung injury. Int. J. Radiat. Biol. 2003;79:159–167. doi: 10.1080/0955300031000076894.
    1. Chen Y., Hyrien O., Williams J., Okunieff P., Smudzin T., Rubin P. Interleukin (IL)-1A and IL-6: Applications to the predictive diagnostic testing of radiation pneumonitis. Int. J. Radiat. Oncol. Biol. Phys. 2005;62:60–266. doi: 10.1016/j.ijrobp.2005.01.041.
    1. Yuan X., Liao Z., Liu Z., Wang L.-E., Tucker S.L., Mao L., Wang X.S., Martel M., Komaki R., Cox J.D., et al. Single Nucleotide Polymorphism at rs1982073:T869C of the TGFβ1 gene is associated with the risk of radiation pneumonitis in patients with non-small-cell lung cancer treated with definitive radiotherapy. J. Clin. Oncol. 2009;27:3370–3378. doi: 10.1200/JCO.2008.20.6763.
    1. Anscher M.S., Thrasher B., Zgonjanin L., Rabbani Z.N., Corbley M.J., Fu K., Sun L., Lee W.-C., Ling L.E., Vujaskovic Z. Small molecular inhibitor of transforming growth factor-beta protects against development of radiation-induced lung injury. Int. J. Radiat. Oncol. Biol. Phys. 2008;71:829–837. doi: 10.1016/j.ijrobp.2008.02.046.
    1. Matěj R., Housa D., Poučková P., Zadinová M., Olejár T. Radiation-induced production of PAR-1 and TGF-beta 1 mRNA in lung of C57Bl6 and C3H murine strains and influence of pharmacoprophylaxis by ACE inhibitors. Pathol. Res. Pract. 2007;203:107–114. doi: 10.1016/j.prp.2006.10.006.
    1. Ghosh S.N., Zhang R., Fish B.L., Semenenko V.A., Li X.A., Moulder J.E., Jacobs E.R., Medhora M. Renin-angiotensin system suppression mitigates experimental radiation pneumonitis. Int. J. Radiat. Oncol. Biol. Phys. 2009;75:1528–1536. doi: 10.1016/j.ijrobp.2009.07.1743.
    1. Cohen E.P., Bedi M., Irving A.A., Jacobs E., Tomic R., Klein J., Lawton C.A., Moulder J.E. Mitigation of late renal and pulmonary injury after hematopoietic stem cell transplantation. Int. J. Radiat. Oncol. Biol. Phys. 2012;83:292–296. doi: 10.1016/j.ijrobp.2011.05.081.
    1. Chopra M., Scott N., McMurray J., McLay J., Bridges A., Smith W.E., Belch J.J. Captopril: A free radical scavenger. Br. J. Clin. Pharmacol. 1989;27:396–399. doi: 10.1111/j.1365-2125.1989.tb05384.x.
    1. Wang H., Liao Z., Zhuang Y., Xu T., Nguyen Q.N., Levy L.B., O’Reilly M., Gold K.A., Gomez D.R. Do Angiotensin-converting enzyme inhibitors reduce the risk of symptomatic radiation pneumonitis in patients with non-small cell lung cancer after definitive radiation therapy? Analysis of a single-institution database. Int. J. Radiat. Oncol. Biol. Phys. 2013;87:1071–1077. doi: 10.1016/j.ijrobp.2013.08.033.

Source: PubMed

3
Subskrybuj