How to Improve the Survival of Transplanted Mesenchymal Stem Cell in Ischemic Heart?

Liangpeng Li, Xiongwen Chen, Wei Eric Wang, Chunyu Zeng, Liangpeng Li, Xiongwen Chen, Wei Eric Wang, Chunyu Zeng

Abstract

Mesenchymal stem cell (MSC) is an intensely studied stem cell type applied for cardiac repair. For decades, the preclinical researches on animal model and clinical trials have suggested that MSC transplantation exerts therapeutic effect on ischemic heart disease. However, there remain major limitations to be overcome, one of which is the very low survival rate after transplantation in heart tissue. Various strategies have been tried to improve the MSC survival, and many of them showed promising results. In this review, we analyzed the studies in recent years to summarize the methods, effects, and mechanisms of the new strategies to address this question.

Figures

Figure 1
Figure 1
Schematic cartoon to illustrate the strategies to improve survival of MSC in ischemic myocardium. MSC can be either pretreated by hypoxia/cytokine or genetically modified before delivery to myocardium. Hydrogel/polymer with suspended MSC forms a semigrid scaffold when injected into the myocardium, which improves cell retention. MSC can be also seeded on biocompatible patch or form cell layer by culturing in thermosensitive dish; both of them can be deposited or sutured onto the epicardium of the infarcted area. Combined with another cell type (CSC, Treg cell) or medicine/compound (statin), they improve the survival of MSC.

References

    1. Jansen Of Lorkeers S. J., Eding J. E. C., Vesterinen H. M., et al. Similar effect of autologous and allogeneic cell therapy for ischemic heart disease: systematic review and meta-analysis of large animal studies. Circulation Research. 2015;116(1):80–86. doi: 10.1161/circresaha.116.304872.
    1. Kawaguchi N., Nakanishi T. Cardiomyocyte regeneration. Cells. 2013;2(1):67–82. doi: 10.3390/cells2010067.
    1. Rosen M. R., Myerburg R. J., Francis D. P., Cole G. D., Marbán E. Translating stem cell research to cardiac disease therapies: pitfalls and prospects for improvement. Journal of the American College of Cardiology. 2014;64(9):922–937. doi: 10.1016/j.jacc.2014.06.1175.
    1. Ko I.-K., Kim B.-S. Mesenchymal stem cells for treatment of myocardial infarction. International Journal of Stem Cells. 2008;1(1):49–54. doi: 10.15283/ijsc.2008.1.1.49.
    1. Farini A., Sitzia C., Erratico S., Meregalli M., Torrente Y. Clinical applications of mesenchymal stem cells in chronic diseases. Stem Cells International. 2014;2014:11. doi: 10.1155/2014/306573.306573
    1. Friedenstein A. J., Chailakhjan R. K., Lalykina K. S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell and Tissue Kinetics. 1970;3(4):393–403.
    1. Zuk P. A., Zhu M., Mizuno H., et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering. 2001;7(2):211–228. doi: 10.1089/107632701300062859.
    1. De Bari C., Dell'Accio F., Tylzanowski P., Luyten F. P. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis and Rheumatism. 2001;44(8):1928–1942. doi: 10.1002/1529-0131(200108)44:8<1928::AID-ART331>;2-P.
    1. Sabatini F., Petecchia L., Tavian M., de Villeroché V. J., Rossi G. A., Brouty-Boyé D. Human bronchial fibroblasts exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities. Laboratory Investigation. 2005;85(8):962–971. doi: 10.1038/labinvest.3700300.
    1. Jang H. R., Park J. H., Kwon G. Y., et al. Effect of preemptive treatment with human umbilical cord blood-derived mesenchymal stem cells on the development of renal ischemia-reperfusion injury in mice. American Journal of Physiology. Renal Physiology. 2014;307(10):F1149–F1161. doi: 10.1152/ajprenal.00555.2013.
    1. Zvaifler N. J., Marinova-Mutafchieva L., Adams G., et al. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Research. 2000;2(6):477–488. doi: 10.1186/ar130.
    1. Huang Y.-S., Li I.-H., Chueh S.-H., et al. Mesenchymal stem cells from rat olfactory bulbs can differentiate into cells with cardiomyocyte characteristics. Journal of Tissue Engineering and Regenerative Medicine. 2013 doi: 10.1002/term.1684.
    1. da Silva Meirelles L., Chagastelles P. C., Nardi N. B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science. 2006;119(11):2204–2213. doi: 10.1242/jcs.02932.
    1. Piersma A. H., Brockbank K. G. M., Ploemacher R. E., van Vliet E., Brakel-van Peer K. M., Visser P. J. Characterization of fibroblastic stromal cells from murine bone marrow. Experimental Hematology. 1985;13(4):237–243.
    1. Plotnikov E. Y., Khryapenkova T. G., Vasileva A. K., et al. Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture. Journal of Cellular and Molecular Medicine. 2008;12(5):1622–1631. doi: 10.1111/j.1582-4934.2007.00205.x.
    1. Toma C., Pittenger M. F., Cahill K. S., Byrne B. J., Kessler P. D. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105(1):93–98. doi: 10.1161/hc0102.101442.
    1. Fazel S., Chen L., Weisel R. D., et al. Cell transplantation preserves cardiac function after infarction by infarct stabilization: augmentation by stem cell factor. The Journal of Thoracic and Cardiovascular Surgery. 2005;130(5):1310.e1–1310.e10. doi: 10.1016/j.jtcvs.2005.07.012.
    1. Noiseux N., Gnecchi M., Lopez-Ilasaca M., et al. Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Molecular Therapy. 2006;14(6):840–850. doi: 10.1016/j.ymthe.2006.05.016.
    1. Keating A. Mesenchymal stromal cells: new directions. Cell Stem Cell. 2012;10(6):709–716. doi: 10.1016/j.stem.2012.05.015.
    1. Dominici M., Le Blanc K., Mueller I., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–317. doi: 10.1080/14653240600855905.
    1. Nombela-Arrieta C., Ritz J., Silberstein L. E. The elusive nature and function of mesenchymal stem cells. Nature Reviews: Molecular Cell Biology. 2011;12(2):126–131. doi: 10.1038/nrm3049.
    1. Panepucci R. A., Siufi J. L. C., Silva W. A., Jr., et al. Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells. 2004;22(7):1263–1278. doi: 10.1634/stemcells.2004-0024.
    1. Lee R. H., Kim B., Choi I., et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cellular Physiology and Biochemistry. 2004;14(4–6):311–324. doi: 10.1159/000080341.
    1. Tomita S., Li R.-K., Weisel R. D., et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation. 1999;100(19):II247–II256.
    1. Hatzistergos K. E., Quevedo H., Oskouei B. N., et al. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circulation Research. 2010;107(7):913–922. doi: 10.1161/circresaha.110.222703.
    1. Wakitani S., Saito T., Caplan A. I. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle & Nerve. 1995;18(12):1417–1426. doi: 10.1002/mus.880181212.
    1. Fazel S., Chen L., Weisel R. D., et al. Cell transplantation preserves cardiac function after infarction by infarct stabilization: augmentation by stem cell factor. Journal of Thoracic and Cardiovascular Surgery. 2005;130(5):1310.e1–1310.e10. doi: 10.1016/j.jtcvs.2005.07.012.
    1. Reinecke H., Minami E., Zhu W.-Z., Laflamme M. A. Cardiogenic differentiation and transdifferentiation of progenitor cells. Circulation Research. 2008;103(10):1058–1071. doi: 10.1161/circresaha.108.180588.
    1. Ratajczak M. Z., Kucia M., Jadczyk T., et al. Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies. Leukemia. 2012;26(6):1166–1173. doi: 10.1038/leu.2011.389.
    1. Scott R. C., Rosano J. M., Ivanov Z., et al. Targeting VEGF-encapsulated immunoliposomes to MI heart improves vascularity and cardiac function. The FASEB Journal. 2009;23(10):3361–3367. doi: 10.1096/fj.08-127373.
    1. Virag J. A. I., Rolle M. L., Reece J., Hardouin S., Feigl E. O., Murry C. E. Fibroblast growth factor-2 regulates myocardial infarct repair: effects on cell proliferation, scar contraction, and ventricular function. The American Journal of Pathology. 2007;171(5):1431–1440. doi: 10.2353/ajpath.2007.070003.
    1. Ruvinov E., Leor J., Cohen S. The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials. 2011;32(2):565–578. doi: 10.1016/j.biomaterials.2010.08.097.
    1. Huang L., Ma W., Ma Y., Feng D., Chen H., Cai B. Exosomes in mesenchymal stem cells, a new therapeutic strategy for cardiovascular diseases? International Journal of Biological Sciences. 2015;11(2):238–245. doi: 10.7150/ijbs.10725.
    1. Feng Y., Huang W., Wani M., Yu X., Ashraf M. Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS ONE. 2014;9(2) doi: 10.1371/journal.pone.0088685.e88685
    1. Yu B., Gong M., Wang Y., et al. Cardiomyocyte protection by gata-4 gene engineered mesenchymal stem cells is partially mediated by translocation of mir-221 in microvesicles. PLoS ONE. 2013;8(8) doi: 10.1371/journal.pone.0073304.e73304
    1. Arslan F., Lai R. C., Smeets M. B., et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Research. 2013;10(3):301–312. doi: 10.1016/j.scr.2013.01.002.
    1. Spees J. L., Olson S. D., Whitney M. J., Prockop D. J. Mitochondrial transfer between cells can rescue aerobic respiration. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(5):1283–1288. doi: 10.1073/pnas.0510511103.
    1. Acquistapace A., Bru T., Lesault P.-F., et al. Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells. 2011;29(5):812–824. doi: 10.1002/stem.632.
    1. Strauer B. E., Brehm M., Zeus T., et al. Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction. Deutsche Medizinische Wochenschrift. 2001;126:932–938.
    1. Wollert K. C., Meyer G. P., Lotz J., et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the boost randomised controlled clinical trial. The Lancet. 2004;364(9429):141–148. doi: 10.1016/s0140-6736(04)16626-9.
    1. Telukuntla K. S., Suncion V. Y., Schulman I. H., Hare J. M. The advancing field of cell-based therapy: insights and lessons from clinical trials. Journal of the American Heart Association. 2013;2(5)e000338
    1. Hare J. M., Fishman J. E., Gerstenblith G., et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. The Journal of the American Medical Association. 2012;308(22):2369–2379. doi: 10.1001/jama.2012.25321.
    1. Bartunek J., Behfar A., Dolatabadi D., et al. Cardiopoietic stem cell therapy in heart failure: the c-cure (cardiopoietic stem cell therapy in heart failure) multicenter randomized trial with lineage-specified biologics. Journal of the American College of Cardiology. 2013;61(23):2329–2338. doi: 10.1016/j.jacc.2013.02.071.
    1. Heldman A. W., DiFede D. L., Fishman J. E., et al. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. Journal of the American Medical Association. 2014;311(1):62–73. doi: 10.1001/jama.2013.282909.
    1. Mathiasen A. B., Qayyum A. A., Jorgensen E., et al. Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: a randomized placebo-controlled trial (MSC-HF trial) European Heart Journal. 2015 doi: 10.1093/eurheartj/ehv136.
    1. Chen S.-L., Fang W.-W., Ye F., et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. The American Journal of Cardiology. 2004;94(1):92–95. doi: 10.1016/j.amjcard.2004.03.034.
    1. Ting A. E., Sherman W. Allogeneic stem cell transplantation for ischemic myocardial dysfunction. Current Opinion in Organ Transplantation. 2012;17(6):675–680. doi: 10.1097/MOT.0b013e32835a66a1.
    1. Martin-Rendon E., Brunskill S. J., Hyde C. J., Stanworth S. J., Mathur A., Watt S. M. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. European Heart Journal. 2008;29(15):1807–1818. doi: 10.1093/eurheartj/ehn220.
    1. Lunde K., Solheim S., Aakhus S., et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. The New England Journal of Medicine. 2006;355(12):1199–1209. doi: 10.1056/nejmoa055706.
    1. Gyöngyösi M., Blanco J., Marian T., et al. Serial noninvasive in vivo positron emission tomographic tracking of percutaneously intramyocardially injected autologous porcine mesenchymal stem cells modified for transgene reporter gene expression. Circulation: Cardiovascular Imaging. 2008;1(2):94–103. doi: 10.1161/circimaging.108.797449.
    1. McGinley L. M., McMahon J., Stocca A., et al. Mesenchymal stem cell survival in the infarcted heart is enhanced by lentivirus vector-mediated heat shock protein 27 expression. Human Gene Therapy. 2013;24(10):840–851. doi: 10.1089/hum.2011.009.
    1. Hofmann M., Wollert K. C., Meyer G. P., et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation. 2005;111(17):2198–2202. doi: 10.1161/01.cir.0000163546.27639.aa.
    1. Facciabene A., Peng X., Hagemann I. S., et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature. 2011;475(7355):226–230. doi: 10.1038/nature10169.
    1. Schächinger V., Aicher A., Döbert N., et al. Pilot trial on determinants of progenitor cell recruitment to the infarcted human myocardium. Circulation. 2008;118(14):1425–1432. doi: 10.1161/circulationaha.108.777102.
    1. Hamdi H., Furuta A., Bellamy V., et al. Cell delivery: intramyocardial injections or epicardial deposition? A head-to-head comparison. Annals of Thoracic Surgery. 2009;87(4):1196–1203. doi: 10.1016/j.athoracsur.2008.12.074.
    1. Elsässer A., Suzuki K., Lorenz-Meyer S., Bode C., Schaper J. The role of apoptosis in myocardial ischemia: a critical appraisal. Basic Research in Cardiology. 2001;96(3):219–226. doi: 10.1007/s003950170052.
    1. Thompson C. A., Nasseri B. A., Makower J., et al. Percutaneous transvenous cellular cardiomyoplasty: a novel nonsurgical approach for myocardial cell transplantation. Journal of the American College of Cardiology. 2003;41(11):1964–1971. doi: 10.1016/s0735-1097(03)00397-8.
    1. Hou D., Youssef E. A.-S., Brinton T. J., et al. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation. 2005;112(9):I150–I156. doi: 10.1161/circulationaha.104.526749.
    1. Fukushima S., Varela-Carver A., Coppen S. R., et al. Direct intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias in a rat chronic ischemic heart failure model. Circulation. 2007;115(17):2254–2261. doi: 10.1161/circulationaha.106.662577.
    1. Hamdi H., Planat-Benard V., Bel A., et al. Epicardial adipose stem cell sheets results in greater post-infarction survival than intramyocardial injections. Cardiovascular Research. 2011;91(3):483–491. doi: 10.1093/cvr/cvr099.
    1. Leor J., Aboulafia-Etzion S., Dar A., et al. Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation. 2000;102(19):III56–III61.
    1. Zimmermann W. H., Fink C., Kralisch D., Remmers U., Weil J., Eschenhagen T. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnology and Bioengineering. 2000;68(1):106–114. doi: 10.1002/(SICI)1097-0290(20000405)68:1<106::AID-BIT13>;2-3.
    1. Zimmermann W.-H., Melnychenko I., Eschenhagen T. Engineered heart tissue for regeneration of diseased hearts. Biomaterials. 2004;25(9):1639–1647. doi: 10.1016/s0142-9612(03)00521-0.
    1. Jin J., Jeong S. I., Shin Y. M., et al. Transplantation of mesenchymal stem cells within a poly(lactide-co-epsilon-caprolactone) scaffold improves cardiac function in a rat myocardial infarction model. European Journal of Heart Failure. 2009;11(2):147–153. doi: 10.1093/eurjhf/hfn017.
    1. Christman K. L., Vardanian A. J., Fang Q., Sievers R. E., Fok H. H., Lee R. J. Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. Journal of the American College of Cardiology. 2004;44(3):654–660. doi: 10.1016/j.jacc.2004.04.040.
    1. Maureira P., Marie P.-Y., Yu F., et al. Repairing chronic myocardial infarction with autologous mesenchymal stem cells engineered tissue in rat promotes angiogenesis and limits ventricular remodeling. Journal of Biomedical Science. 2012;19(1, article 93) doi: 10.1186/1423-0127-19-93.
    1. Leor J., Tuvia S., Guetta V., et al. Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in swine. Journal of the American College of Cardiology. 2009;54(11):1014–1023. doi: 10.1016/j.jacc.2009.06.010.
    1. Sreejit P., Verma R. S. Cardiogel supports adhesion, proliferation and differentiation of stem cells with increased oxidative stress protection. European Cells & Materials. 2011;21:107–121.
    1. Bourges X., Weiss P., Daculsi G., Legeay G. Synthesis and general properties of silated-hydroxypropyl methylcellulose in prospect of biomedical use. Advances in Colloid and Interface Science. 2002;99(3):215–228. doi: 10.1016/s0001-8686(02)00035-0.
    1. Li X., Zhou J., Liu Z., et al. A PNIPAAm-based thermosensitive hydrogel containing SWCNTs for stem cell transplantation in myocardial repair. Biomaterials. 2014;35(22):5679–5688. doi: 10.1016/j.biomaterials.2014.03.067.
    1. Ceccaldi C., Bushkalova R., Alfarano C., et al. Evaluation of polyelectrolyte complex-based scaffolds for mesenchymal stem cell therapy in cardiac ischemia treatment. Acta Biomaterialia. 2014;10(2):901–911. doi: 10.1016/j.actbio.2013.10.027.
    1. Ravichandran R., Venugopal J. R., Sundarrajan S., Mukherjee S., Ramakrishna S. Cardiogenic differentiation of mesenchymal stem cells on elastomeric poly (glycerol sebacate)/collagen core/shell fibers. World Journal of Cardiology. 2013;5(3):28–41. doi: 10.4330/wjc.v5.i3.28.
    1. Li X.-Y., Wang T., Jiang X.-J., et al. Injectable hydrogel helps bone marrow-derived mononuclear cells restore infarcted myocardium. Cardiology. 2010;115(3):194–199. doi: 10.1159/000281840.
    1. Bourges X., Weiss P., Coudreuse A., Daculsi G., Legeay G. General properties of silated hydroxyethylcellulose for potential biomedical applications. Biopolymers. 2002;63(4):232–238. doi: 10.1002/bip.10053.
    1. Holladay C. A., Duffy A. M., Chen X., Sefton M. V., O'Brien T. D., Pandit A. S. Recovery of cardiac function mediated by MSC and interleukin-10 plasmid functionalised scaffold. Biomaterials. 2012;33(5):1303–1314. doi: 10.1016/j.biomaterials.2011.10.019.
    1. Mathieu E., Lamirault G., Toquet C., et al. Intramyocardial delivery of mesenchymal stem cell-seeded hydrogel preserves cardiac function and attenuates ventricular remodeling after myocardial infarction. PLoS ONE. 2012;7(12) doi: 10.1371/journal.pone.0051991.e51991
    1. Panda N. C., Zuckerman S. T., Mesubi O. O., et al. Improved conduction and increased cell retention in healed MI using mesenchymal stem cells suspended in alginate hydrogel. Journal of Interventional Cardiac Electrophysiology. 2014;41(2):117–127. doi: 10.1007/s10840-014-9940-9.
    1. Zhang X., Wang H., Ma X., et al. Preservation of the cardiac function in infarcted rat hearts by the transplantation of adipose-derived stem cells with injectable fibrin scaffolds. Experimental Biology and Medicine. 2010;235(12):1505–1515. doi: 10.1258/ebm.2010.010175.
    1. Frey N., Linke A., Suselbeck T., et al. Intracoronary delivery of injectable bioabsorbable scaffold (ik-5001) to treat left ventricular remodeling after st-elevation myocardial infarction: a first-in-man study. Circulation: Cardiovascular Interventions. 2014;7(6):806–812. doi: 10.1161/circinterventions.114.001478.
    1. Araña M., Gavira J. J., Peña E., et al. Epicardial delivery of collagen patches with adipose-derived stem cells in rat and minipig models of chronic myocardial infarction. Biomaterials. 2014;35(1):143–151. doi: 10.1016/j.biomaterials.2013.09.083.
    1. Li J. H., Zhang N., Wangi J. A. Improved anti-apoptotic and anti-remodeling potency of bone marrow mesenchymal stem cells by anoxic pre-conditioning in diabetic cardiomyopathy. Journal of Endocrinological Investigation. 2008;31(2):103–110. doi: 10.1007/bf03345575.
    1. Hu X., Yu S. P., Fraser J. L., et al. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. Journal of Thoracic and Cardiovascular Surgery. 2008;135(4):799–808. doi: 10.1016/j.jtcvs.2007.07.071.
    1. Wang L., Hu X., Zhu W., et al. Increased leptin by hypoxic-preconditioning promotes autophagy of mesenchymal stem cells and protects them from apoptosis. Science China Life Sciences. 2014;57(2):171–180. doi: 10.1007/s11427-014-4607-4.
    1. Saini U., Gumina R. J., Wolfe B., Kuppusamy M. L., Kuppusamy P., Boudoulas K. D. Preconditioning mesenchymal stem cells with caspase inhibition and hyperoxia prior to hypoxia exposure increases cell proliferation. Journal of Cellular Biochemistry. 2013;114(11):2612–2623. doi: 10.1002/jcb.24609.
    1. Figeac F., Lesault P.-F., Le Coz O., et al. Nanotubular crosstalk with distressed cardiomyocytes stimulates the paracrine repair function of mesenchymal stem cells. Stem Cells. 2014;32(1):216–230. doi: 10.1002/stem.1560.
    1. Herrmann J. L., Wang Y., Abarbanell A. M., Weil B. R., Tan J., Meldrum D. R. Preconditioning mesenchymal stem cells with transforming growth factor-alpha improves mesenchymal stem cell-mediated cardioprotection. Shock. 2010;33(1):24–30. doi: 10.1097/shk.0b013e3181b7d137.
    1. Xu B., Luo Y., Liu Y., Li B. Y., Wang Y. Platelet-derived growth factor-BB enhances MSC-mediated cardioprotection via suppression of miR-320 expression. The American Journal of Physiology—Heart and Circulatory Physiology. 2015;308(9):H980–H989. doi: 10.1152/ajpheart.00737.2014.
    1. Filip S., Mokry J., Horacek J., English D. Stem cells and the phenomena of plasticity and diversity: a limiting property of carcinogenesis. Stem Cells and Development. 2008;17(6):1031–1038. doi: 10.1089/scd.2007.0234.
    1. Mao Q., Lin C., Gao J., et al. Mesenchymal stem cells overexpressing integrin-linked kinase attenuate left ventricular remodeling and improve cardiac function after myocardial infarction. Molecular and Cellular Biochemistry. 2014;397(1-2):203–214. doi: 10.1007/s11010-014-2188-y.
    1. Li W., Ma N., Ong L.-L., et al. Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells. 2007;25(8):2118–2127. doi: 10.1634/stemcells.2006-0771.
    1. Lim S. Y., Kim Y. S., Ahn Y., et al. The effects of mesenchymal stem cells transduced with Akt in a porcine myocardial infarction model. Cardiovascular Research. 2006;70(3):530–542. doi: 10.1016/j.cardiores.2006.02.016.
    1. Gnecchi M., He H., Noiseux N., et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. The FASEB Journal. 2006;20(6):661–669. doi: 10.1096/fj.05-5211com.
    1. Jiang S., Haider H. K., Idris N. M., Salim A., Ashraf M. Supportive interaction between cell survival signaling and angiocompetent factors enhances donor cell survival and promotes angiomyogenesis for cardiac repair. Circulation Research. 2006;99(7):776–784. doi: 10.1161/01.res.0000244687.97719.4f.
    1. Wang X., Zhao T., Huang W., et al. Hsp20-engineered mesenchymal stem cells are resistant to oxidative stress via enhanced activation of Akt and increased secretion of growth factors. Stem Cells. 2009;27(12):3021–3031. doi: 10.1002/stem.230.
    1. Mirotsou M., Zhang Z., Deb A., et al. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(5):1643–1648. doi: 10.1073/pnas.0610024104.
    1. Fan L., Lin C., Zhuo S., et al. Transplantation with survivin-engineered mesenchymal stem cells results in better prognosis in a rat model of myocardial infarction. European Journal of Heart Failure. 2009;11(11):1023–1030. doi: 10.1093/eurjhf/hfp135.
    1. Tang Y. L., Tang Y., Zhang Y. C., Qian K., Shen L., Phillips M. I. Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. Journal of the American College of Cardiology. 2005;46(7):1339–1350. doi: 10.1016/j.jacc.2005.05.079.
    1. Cho J., Zhai P., Maejima Y., Sadoshima J. Myocardial injection with GSK-3β-overexpressing bone marrow-derived mesenchymal stem cells attenuates cardiac dysfunction after myocardial infarction. Circulation Research. 2011;108(4):478–489. doi: 10.1161/circresaha.110.229658.
    1. Ranganath S. H., Levy O., Inamdar M. S., Karp J. M. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell. 2012;10(3):244–258. doi: 10.1016/j.stem.2012.02.005.
    1. Huang J., Zhang Z., Guo J., et al. Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium. Circulation Research. 2010;106(11):1753–1762. doi: 10.1161/circresaha.109.196030.
    1. Tang J., Wang J., Guo L., et al. Mesenchymal stem cells modified with stromal cell-derived factor 1α improve cardiac remodeling via paracrine activation of hepatocyte growth factor in a rat model of myocardial infarction. Molecules and Cells. 2010;29(1):9–19. doi: 10.1007/s10059-010-0001-7.
    1. Wang W. E., Yang D., Li L., et al. Prolyl hydroxylase domain protein 2 silencing enhances the survival and paracrine function of transplanted adipose-derived stem cells in infarcted myocardium. Circulation Research. 2013;113(3):288–300. doi: 10.1161/CIRCRESAHA.113.300929.
    1. Li H., Zuo S., He Z., et al. Paracrine factors released by GATA-4 overexpressed mesenchymal stem cells increase angiogenesis and cell survival. The American Journal of Physiology—Heart and Circulatory Physiology. 2010;299(6):H1772–H1781. doi: 10.1152/ajpheart.00557.2010.
    1. Huang F., Li M.-L., Fang Z.-F., et al. Overexpression of MicroRNA-1 improves the efficacy of mesenchymal stem cell transplantation after myocardial infarction. Cardiology. 2013;125(1):18–30. doi: 10.1159/000347081.
    1. Xu J., Huang Z., Lin L., et al. miR-210 over-expression enhances mesenchymal stem cell survival in an oxidative stress environment through antioxidation and c-Met pathway activation. Science China. Life Sciences. 2014;57(10):989–997. doi: 10.1007/s11427-014-4725-z.
    1. Beltrami A. P., Barlucchi L., Torella D., et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114(6):763–776. doi: 10.1016/s0092-8674(03)00687-1.
    1. Bolli R., Chugh A. R., D'Amario D., et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. The Lancet. 2011;378(9806):1847–1857. doi: 10.1016/s0140-6736(11)61590-0.
    1. Mazhari R., Hare J. M. Mechanisms of action of mesenchymal stem cells in cardiac repair: potential influences on the cardiac stem cell niche. Nature Clinical Practice Cardiovascular Medicine. 2007;4(supplement 1):S21–S26. doi: 10.1038/ncpcardio0770.
    1. Oskouei B. N., Lamirault G., Joseph C., et al. Increased potency of cardiac stem cells compared with bone marrow mesenchymal stem cells in cardiac repair. Stem Cells Translational Medicine. 2012;1(2):116–124. doi: 10.5966/sctm.2011-0015.
    1. Williams A. R., Hatzistergos K. E., Addicott B., et al. Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation. 2013;127(2):213–223. doi: 10.1161/circulationaha.112.131110.
    1. Facciabene A., Motz G. T., Coukos G. T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Research. 2012;72(9):2162–2171. doi: 10.1158/0008-5472.can-11-3687.
    1. Zhou Y., Singh A. K., Hoyt R. F., Jr., et al. Regulatory T cells enhance mesenchymal stem cell survival and proliferation following autologous cotransplantation in ischemic myocardium. The Journal of Thoracic and Cardiovascular Surgery. 2014;148(3):1131–1137. doi: 10.1016/j.jtcvs.2014.06.029.
    1. Yang Y.-J., Zhao J.-L., You S.-J., et al. Post-infarction treatment with simvastatin reduces myocardial no-reflow by opening of the KATP channel. European Journal of Heart Failure. 2007;9(1):30–36. doi: 10.1016/j.ejheart.2006.04.013.
    1. Sparrow C. P., Burton C. A., Hernandez M., et al. Simvastatin has anti-inflammatory and antiatherosclerotic activities independent of plasma cholesterol lowering. Arteriosclerosis, Thrombosis, and Vascular Biology. 2001;21(1):115–121. doi: 10.1161/01.atv.21.1.115.
    1. Assmus B., Urbich C., Aicher A., et al. HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circulation Research. 2003;92(9):1049–1055. doi: 10.1161/01.res.0000070067.64040.7c.
    1. Kwak B., Mulhaupt F., Myit S., Mach F. Statins as a newly recognized type of immunomodulator. Nature Medicine. 2000;6(12):1399–1402. doi: 10.1038/82219.
    1. Luo J.-D., Xie F., Zhang W.-W., Ma X.-D., Guan J.-X., Chen X. Simvastatin inhibits noradrenaline-induced hypertrophy of cultured neonatal rat cardiomyocytes. British Journal of Pharmacology. 2001;132(1):159–164. doi: 10.1038/sj.bjp.0703792.
    1. Yang Y.-J., Qian H.-Y., Huang J., et al. Combined therapy with simvastatin and bone marrow-derived mesenchymal stem cells increases benefits in infarcted swine hearts. Arteriosclerosis, Thrombosis, and Vascular Biology. 2009;29(12):2076–2082. doi: 10.1161/atvbaha.109.189662.
    1. Zhang Z., Li S., Cui M., et al. Rosuvastatin enhances the therapeutic efficacy of adipose-derived mesenchymal stem cells for myocardial infarction via PI3K/Akt and MEK/ERK pathways. Basic Research in Cardiology. 2013;108(2, article 333) doi: 10.1007/s00395-013-0333-5.
    1. Hu X., Wang J., Chen J., et al. Optimal temporal delivery of bone marrow mesenchymal stem cells in rats with myocardial infarction. European Journal of Cardio-Thoracic Surgery. 2007;31(3):438–443. doi: 10.1016/j.ejcts.2006.11.057.
    1. Zhang S., Sun A., Xu D., et al. Impact of timing on efficacy and safety of intracoronary autologous bone marrow stem cells transplantation in acute myocardial infarction: a pooled subgroup analysis of randomized controlled trials. Clinical Cardiology. 2009;32(8):458–466. doi: 10.1002/clc.20575.
    1. Yang Y., Rossi F. M. V., Putnins E. E. Ex vivo expansion of rat bone marrow mesenchymal stromal cells on microcarrier beads in spin culture. Biomaterials. 2007;28(20):3110–3120. doi: 10.1016/j.biomaterials.2007.03.015.
    1. Sarugaser R., Hanoun L., Keating A., Stanford W. L., Davies J. E. Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy. PLoS ONE. 2009;4(8) doi: 10.1371/journal.pone.0006498.e6498
    1. Aicher A., Heeschen C., Sasaki K.-I., Urbich C., Zeiher A. M., Dimmeler S. Low-energy shock wave for enhancing recruitment of endothelial progenitor cells: a new modality to increase efficacy of cell therapy in chronic hind limb ischemia. Circulation. 2006;114(25):2823–2830. doi: 10.1161/circulationaha.106.628623.
    1. Assmus B., Walter D. H., Seeger F. H., et al. Effect of shock wave-facilitated intracoronary cell therapy on LVEF in patients with chronic heart failure: the CELLWAVE randomized clinical trial. Journal of the American Medical Association. 2013;309(15):1622–1631. doi: 10.1001/jama.2013.3527.
    1. Liang X., Ding Y., Zhang Y., Tse H.-F., Lian Q. Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplantation. 2014;23(9):1045–1059. doi: 10.3727/096368913x667709.
    1. Wang T., Jiang X.-J., Tang Q.-Z., et al. Bone marrow stem cells implantation with α-cyclodextrin/MPEG-PCL-MPEG hydrogel improves cardiac function after myocardial infarction. Acta Biomaterialia. 2009;5(8):2939–2944. doi: 10.1016/j.actbio.2009.04.040.
    1. Tano N., Narita T., Kaneko M., et al. Epicardial placement of mesenchymal stromal cell-sheets for the treatment of ischemic cardiomyopathy; in vivo proof-of-concept study. Molecular Therapy. 2014;22:1864–1871. doi: 10.1038/mt.2014.110.
    1. Zhang Q., Wang H., Yang Y.-J., et al. Atorvastatin treatment improves the effects of mesenchymal stem cell transplantation on acute myocardial infarction: the role of the RhoA/ROCK/ERK pathway. International Journal of Cardiology. 2014;176(3):670–679. doi: 10.1016/j.ijcard.2014.07.071.
    1. Wang Y., Li C., Cheng K., et al. Activation of liver X receptor improves viability of adipose-derived mesenchymal stem cells to attenuate myocardial ischemia injury through TLR4/NF-kappaB and Keap-1/Nrf-2 signaling pathways. Antioxidants & Redox Signaling. 2014;21(18):2543–2557. doi: 10.1089/ars.2013.5683.
    1. Zhang Z., Liang D., Gao X., et al. Selective inhibition of inositol hexakisphosphate kinases (IP6Ks) enhances mesenchymal stem cell engraftment and improves therapeutic efficacy for myocardial infarction. Basic Research in Cardiology. 2014;109, article 417 doi: 10.1007/s00395-014-0417-x.
    1. Han D., Huang W., Ma S., et al. Ghrelin improves functional survival of engrafted adipose-derived mesenchymal stem cells in ischemic heart through pi3k/akt signaling pathway. BioMed Research International. 2015;2015:12. doi: 10.1155/2015/858349.858349
    1. Huang B., Qian J., Ma J., et al. Myocardial transfection of hypoxia-inducible factor-1α and co-transplantation of mesenchymal stem cells enhance cardiac repair in rats with experimental myocardial infarction. Stem Cell Research & Therapy. 2014;5, article 22 doi: 10.1186/scrt410.
    1. Deuse T., Peter C., Fedak P. W. M., et al. Hepatocyte growth factor or vascular endothelial growth factor gene transfer maximizes mesenchymal stem cell-based myocardial salvage after acute myocardial infarction. Circulation. 2009;120(1):S247–S254. doi: 10.1161/circulationaha.108.843680.

Source: PubMed

3
Subskrybuj