Comparison of sentinel lymph node biopsy guided by indocyanine green, blue dye, and their combination in breast cancer patients: a prospective cohort study

Jiajia Guo, Houpu Yang, Shu Wang, Yingming Cao, Miao Liu, Fei Xie, Peng Liu, Bo Zhou, Fuzhong Tong, Lin Cheng, Hongjun Liu, Siyuan Wang, Jiajia Guo, Houpu Yang, Shu Wang, Yingming Cao, Miao Liu, Fei Xie, Peng Liu, Bo Zhou, Fuzhong Tong, Lin Cheng, Hongjun Liu, Siyuan Wang

Abstract

Background: Recent studies show that near-infrared (NIR) fluorescence imaging using indocyanine green (ICG) has the potential to improve the performance of sentinel lymph node (SLN) mapping. The current cohort study was designed to assess the value of the combination of ICG and methylene blue (MB) dye in patients undergoing SLN biopsy.

Methods: A prospective self-controlled trial was designed to detect the difference in the detection efficacies of ICG, MB, and combined ICG and MB (ICG + MB) navigation methods. Between 2010 and 2013, 198 consecutive early breast cancer patients eligible for sentinel lymph node biopsy were enrolled and 200 biopsy procedures were performed by injection of both ICG and MB. SLNs were searched and removed under the guidance of fluorescence and/or blue dye. The mapping characteristics, the detection rate of SLNs and positive SLNs, and the number of SLNs of ICG, MB, and ICG + MB were compared. Injection safety of ICG and MB was evaluated.

Results: Fluorescence imaging of lymphatic flow, which is helpful to locate the incision site, could be seen in 184 of 200 procedures. The nodal detection rate of ICG, MB, and ICG + MB samples was 97, 89, and 99.5% (χ 2 = 26.2, p < 0.001), respectively, with the combination method yielding a superior identification result. The addition of ICG to the MB method resulted in the identification of more lymph nodes (median 3 versus 2) and more positive axillas (22.7% involved axillas were discovered by fluorescence only) than either method alone. No acute or chronic allergic reaction was observed in this study. However, 23 patients (23/82) who received breast-conserving therapy reported temporary skin staining, and 5 patients had permanent tattooing. Palpable subcutaneous nodules at the injection sites were reported in nine patients. There were no reports of skin necrosis.

Conclusions: The lymphatic navigation by ICG fluorescence detects SLNs at a high detection rate and improves the mapping performance when added to the MB method. The novel ICG + MB dual tracing modality, without involvement of radioactive isotopes, exhibits great potential as an alternative to traditional standard mapping methods.

Trial registration: ACTRN12612000109808 . Retrospectively registered on 23 January 2012.

Keywords: Breast neoplasm; Indocyanine green; Lymphography; Sentinel lymph node biopsy.

Conflict of interest statement

Ethics approval and consent to participate

This study was approved by the Ethical Committee of Peking University People’s Hospital, Beijing. Written informed consent from all patients was obtained before the operation. No individual data were contained in this work.

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
SLN resection mapping by ICG fluorescence. a Two streams of dermal lymphatic vessels. b One stream of dermal lymphatic vessels (IS—injection site; white arrow—fluorescent lymph vessels). c SLN highlighted by ICG fluorescence (white arrow). d Fluorescence disappeared after all the SLNs were removed

References

    1. Lyman GH, Somerfield MR, Giuliano AE. Sentinel lymph node biopsy for patients with early-stage breast cancer: 2016 American Society of Clinical Oncology clinical practice guideline update summary. J Oncol Pract. 2017;13:196–198. doi: 10.1200/JOP.2016.019992.
    1. Giammarile F, Alazraki N, Aarsvold JN, Audisio RA, Glass E, Grant SF, Kunikowska J, Leidenius M, Moncayo VM, Uren RF, et al. The EANM and SNMMI practice guideline for lymphoscintigraphy and sentinel node localization in breast cancer. Eur J Nucl Med Mol I. 2013;40:1932–1947. doi: 10.1007/s00259-013-2544-2.
    1. Eser M, Kement M, Kaptanoglu L, Gecer M, Abamor E, Tutal F, Balin S, Kurt N, Uzun H. A prospective comparative study to assess the contribution of radioisotope tracer method to dye-only method in the detection of sentinel lymph node in breast cancer. BMC Surg. 2013;13:13. doi: 10.1186/1471-2482-13-13.
    1. Radovanovic Z, Golubovic A, Plzak A, Stojiljkovic B, Radovanovic D. Blue dye versus combined blue dye-radioactive tracer technique in detection of sentinel lymph node in breast cancer. Eur J Surg Oncol. 2004;30:913–917. doi: 10.1016/j.ejso.2004.08.003.
    1. Meyer-Rochow GY, Martin RC, Harman CR. Sentinel node biopsy in breast cancer: validation study and comparison of blue dye alone with triple modality localization. ANZ J Surg. 2003;73:815–818. doi: 10.1046/j.1445-2197.2003.02783.x.
    1. Ang CH, Tan MY, Teo C, Seah DW, Chen JC, Chan MY, Tan EY. Blue dye is sufficient for sentinel lymph node biopsy in breast cancer. Br J Surg. 2014;101:383–389. doi: 10.1002/bjs.9390.
    1. Zaazou M, Mahran K, Merhem I. Sentinel lymph node biopsy using methylene blue dye in early breast cancer. Is it truly reliable? Egypt J Surg. 2010;29:132–136.
    1. Mathelin C, Croce S, Brasse D, Gairard B, Gharbi M, Andriamisandratsoa N, Bekaert V, Francis Z, Guyonnet JL, Huss D, et al. Methylene blue dye, an accurate dye for sentinel lymph node identification in early breast cancer. Anticancer Res. 2009;29:4119–4125.
    1. Zakaria S, Hoskin TL, Degnim AC. Safety and technical success of methylene blue dye for lymphatic mapping in breast cancer. Am J Surg. 2008;196:228–233. doi: 10.1016/j.amjsurg.2007.08.060.
    1. Varghese P, Abdelrahman A, Akberali S, Mostafa A, Gattuso J, Carpenter R. Methylene blue dye: a safe and effective alternative for sentinel lymph node localisation. Eur J Surg Oncol. 2007;33:1134. doi: 10.1016/j.ejso.2007.07.148.
    1. Blessing WD, Stolier AJ, Teng SC, Bolton JS, Fuhrman GM. A comparison of methylene blue and lymphazurin in breast cancer sentinel node mapping. Am J Surg. 2002;184:341–345. doi: 10.1016/S0002-9610(02)00948-0.
    1. Hung WK, Chan CM, Ying M, Chong SF, Mak KL, Yip AW. Randomized clinical trial comparing blue dye with combined dye and isotope for sentinel lymph node biopsy in breast cancer. Br J Surg. 2005;92:1494–1497. doi: 10.1002/bjs.5211.
    1. Niebling MG, Pleijhuis RG, Bastiaannet E, Brouwers AH, van Dam GM, Hoekstra HJ. A systematic review and meta-analyses of sentinel lymph node identification in breast cancer and melanoma, a plea for tracer mapping. Eur J Surg Oncol. 2016;42:466–473. doi: 10.1016/j.ejso.2015.12.007.
    1. Ahmed M, Purushotham AD, Douek M. Novel techniques for sentinel lymph node biopsy in breast cancer: a systematic review. Lancet Oncol. 2014;15:e351–e362. doi: 10.1016/S1470-2045(13)70590-4.
    1. Tagaya N, Yamazaki R, Nakagawa A, Abe A, Hamada K, Kubota K, Oyama T. Intraoperative identification of sentinel lymph nodes by near-infrared fluorescence imaging in patients with breast cancer. Am J Surg. 2008;195:850–853. doi: 10.1016/j.amjsurg.2007.02.032.
    1. Kitai T, Inomoto T, Miwa M, Shikayama T. Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer. 2005;12:211–215. doi: 10.2325/jbcs.12.211.
    1. Chiu CC. Sentinel lymph node biopsy in breast cancer guided by indocyanine green fluorescence (Br J Surg 2009;96:1289–1294) Br J Surg. 2010;97:455–456. doi: 10.1002/bjs.7007.
    1. Murawa D, Hirche C, Dresel S, Hunerbein M. Sentinel lymph node biopsy in breast cancer guided by indocyanine green fluorescence. Br J Surg. 2009;96:1289–1294. doi: 10.1002/bjs.6721.
    1. Xiong L, Gazyakan E, Yang W, Engel H, Hunerbein M, Kneser U, Hirche C. Indocyanine green fluorescence-guided sentinel node biopsy: a meta-analysis on detection rate and diagnostic performance. Eur J Surg Oncol. 2014;40:843–849. doi: 10.1016/j.ejso.2014.02.228.
    1. McMasters KM, Tuttle TM, Carlson DJ, Brown CM, Noyes RD, Glaser RL, Vennekotter DJ, Turk PS, Tate PS, Sardi A. Sentinel lymph node biopsy for breast cancer: a suitable alternative to routine axillary dissection in multi-institutional practice when optimal technique is used. J Clin Oncol. 2000;18:2560–2566. doi: 10.1200/JCO.2000.18.13.2560.
    1. Sugie T, Sawada T, Tagaya N, Kinoshita T, Yamagami K, Suwa H, Ikeda T, Yoshimura K, Niimi M, Shimizu A, Toi M. Comparison of the indocyanine green fluorescence and blue dye methods in detection of sentinel lymph nodes in early-stage breast cancer. Ann Surg Oncol. 2013;20:2213–2218. doi: 10.1245/s10434-013-2890-0.
    1. Hirano A, Kamimura M, Ogura K, Kim N, Hattori A, Setoguchi Y, Okubo F, Inoue H, Miyamoto R, Kinoshita J, et al. A comparison of indocyanine green fluorescence imaging plus blue dye and blue dye alone for sentinel node navigation surgery in breast cancer patients. Ann Surg Oncol. 2012;19:4112–4116. doi: 10.1245/s10434-012-2478-0.
    1. Ballardini B, Santoro L, Sangalli C, Gentilini O, Renne G, Lissidini G, Pagani GM, Toesca A, Blundo C, Del Castillo A, et al. The indocyanine green method is equivalent to the 99mTc-labeled radiotracer method for identifying the sentinel node in breast cancer: a concordance and validation study. Eur J Surg Oncol. 2013;39:1332–1336. doi: 10.1016/j.ejso.2013.10.004.
    1. Ahmed M, Douek M. What is the clinical relevance of discordance between radioisotope alone and indocynanine green in sentinel lymph node biopsy for breast cancer? Eur J Surg Oncol. 2014;40:786. doi: 10.1016/j.ejso.2014.01.021.
    1. Sugie T, Ikeda T, Kawaguchi A, Shimizu A, Toi M. Sentinel lymph node biopsy using indocyanine green fluorescence in early-stage breast cancer: a meta-analysis. Int J Clin Oncol. 2017;22:11–17. doi: 10.1007/s10147-016-1064-z.
    1. O Hea BJ, Hill AD, El-Shirbiny AM, Yeh SD, Rosen PP, Coit DG, Borgen PI, Cody HS., 3rd Sentinel lymph node biopsy in breast cancer: initial experience at Memorial Sloan-Kettering Cancer Center. J Am Coll Surg. 1998;186:423–427. doi: 10.1016/S1072-7515(98)00060-X.
    1. Hojo T, Nagao T, Kikuyama M, Akashi S, Kinoshita T. Evaluation of sentinel node biopsy by combined fluorescent and dye method and lymph flow for breast cancer. Breast. 2010;19:210–213. doi: 10.1016/j.breast.2010.01.014.
    1. Hirche C, Murawa D, Mohr Z, Kneif S, Hunerbein M. ICG fluorescence-guided sentinel node biopsy for axillary nodal staging in breast cancer. Breast Cancer Res Treat. 2010;121:373–378. doi: 10.1007/s10549-010-0760-z.
    1. Yi M, Meric-Bernstam F, Ross MI, Akins JS, Hwang RF, Lucci A, Kuerer HM, Babiera GV, Gilcrease MZ, Hunt KK. How many sentinel lymph nodes are enough during sentinel lymph node dissection for breast cancer? Cancer-Am Cancer Soc. 2008;113:30–37.
    1. Ban EJ, Lee JS, Koo JS, Park S, Kim SI, Park BW. How many sentinel lymph nodes are enough for accurate axillary staging in t1-2 breast cancer? J Breast Cancer. 2011;14:296–300. doi: 10.4048/jbc.2011.14.4.296.
    1. Kitai T, Kawashima M. Transcutaneous detection and direct approach to the sentinel node using axillary compression technique in ICG fluorescence-navigated sentinel node biopsy for breast cancer. Breast Cancer. 2012;19:343–348. doi: 10.1007/s12282-011-0286-1.
    1. Grischke EM, Röhm C, Hahn M, Helms G, Brucker S, Wallwiener D. ICG fluorescence technique for the detection of sentinel lymph nodes in breast cancer: results of a prospective open-label clinical trial. Geburtsh Frauenheilk. 2015;75:935–940. doi: 10.1055/s-0035-1557905.
    1. Mieog JSD, Troyan SL, Hutteman M, Donohoe KJ, van der Vorst JR, Stockdale A, Liefers G, Choi HS, Gibbs-Strauss SL, Putter H, et al. Toward optimization of imaging system and lymphatic tracer for near-infrared fluorescent sentinel lymph node mapping in breast cancer. Ann Surg Oncol. 2011;18:2483–2491. doi: 10.1245/s10434-011-1566-x.
    1. Wolf S, Arend O, Schulte K, Reim M. Severe anaphylactic reaction after indocyanine green fluorescence angiography. Am J Ophthalmol. 1992;114:638–639. doi: 10.1016/S0002-9394(14)74501-5.
    1. Stradling B, Aranha G, Gabram S. Adverse skin lesions after methylene blue injections for sentinel lymph node localization. Am J Surg. 2002;184:350–352. doi: 10.1016/S0002-9610(02)00945-5.

Source: PubMed

3
Subskrybuj