Digital Biomarkers of Physical Frailty and Frailty Phenotypes Using Sensor-Based Physical Activity and Machine Learning

Catherine Park, Ramkinker Mishra, Jonathan Golledge, Bijan Najafi, Catherine Park, Ramkinker Mishra, Jonathan Golledge, Bijan Najafi

Abstract

Remote monitoring of physical frailty is important to personalize care for slowing down the frailty process and/or for the healthy recovery of older adults following acute or chronic stressors. Taking the Fried frailty criteria as a reference to determine physical frailty and frailty phenotypes (slowness, weakness, exhaustion, inactivity), this study aimed to explore the benefit of machine learning to determine the least number of digital biomarkers of physical frailty measurable from a pendant sensor during activities of daily living. Two hundred and fifty-nine older adults were classified into robust or pre-frail/frail groups based on the physical frailty assessments by the Fried frailty criteria. All participants wore a pendant sensor at the sternum level for 48 h. Of seventeen sensor-derived features extracted from a pendant sensor, fourteen significant features were used for machine learning based on logistic regression modeling and a recursive feature elimination technique incorporating bootstrapping. The combination of percentage time standing, percentage time walking, walking cadence, and longest walking bout were identified as optimal digital biomarkers of physical frailty and frailty phenotypes. These findings suggest that a combination of sensor-measured exhaustion, inactivity, and speed have potential to screen and monitor people for physical frailty and frailty phenotypes.

Keywords: digital biomarkers; digital health; digital twins; frailty phenotype; machine learning; older adults; physical activity; physical frailty; remote patient monitoring; wearable.

Conflict of interest statement

While the overlap with this study is minimal, using activity monitoring to determine frailty is protected by a patent pending (US20150272511 A1). The patent is owned by University of Arizona, and B.N. is listed as a co-inventor on this patent pending. B.N. served as a consultant for BioSensics LLC, which is the manufacturer of the PAMSys used in this study. However, his consultation is not related to the scope of this study and he was not involved in data analysis. Other author(s) declare no potential conflict of interest with respect to the research, authorship, and/or publication of this article.

Figures

Figure 1
Figure 1
The PAMSys wearable sensor and its placement.
Figure 2
Figure 2
Results of optimal feature selection using machine learning. Error bars indicate 95% confidence intervals. AUC, PPV, and NPV indicate area under the receiver operating characteristic curve, positive predictive value, and negative predictive value, respectively.

References

    1. Xue Q.-L. The frailty syndrome: Definition and natural history. Clin. Geriatr. Med. 2011;27:1–15. doi: 10.1016/j.cger.2010.08.009.
    1. Fried L.P., Tangen C.M., Walston J., Newman A.B., Hirsch C., Gottdiener J., Seeman T., Tracy R., Kop W.J., Burke G., et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001;56:M146–M156. doi: 10.1093/gerona/56.3.M146.
    1. Ofori-Asenso R., Chin K.L., Mazidi M., Zomer E., Ilomaki J., Zullo A.R., Gasevic D., Ademi Z., Korhonen M.J., LoGiudice D., et al. Global incidence of frailty and prefrailty among community-dwelling older adults: A systematic review and meta-analysis. JAMA Netw. Open. 2019;2:e198398. doi: 10.1001/jamanetworkopen.2019.8398.
    1. Fedarko N.S. The biology of aging and frailty. Clin. Geriatr. Med. 2011;27:27–37. doi: 10.1016/j.cger.2010.08.006.
    1. Harrison J.K., Clegg A., Conroy S.P., Young J. Managing frailty as a long-term condition. Age Ageing. 2015;44:732–735. doi: 10.1093/ageing/afv085.
    1. Koller K., Rockwood K. Frailty in older adults: Implications for end-of-life care. Clevel. Clin. J. Med. 2013;80:168–174. doi: 10.3949/ccjm.80a.12100.
    1. Bandeen-Roche K., Seplaki C.L., Huang J., Buta B., Kalyani R.R., Varadhan R., Xue Q.-L., Walston J.D., Kasper J.D. Frailty in older adults: A nationally representative profile in the United States. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2015;70:1427–1434. doi: 10.1093/gerona/glv133.
    1. Siriwardhana D.D., Hardoon S., Rait G., Weerasinghe M.C., Walters K.R. Prevalence of frailty and prefrailty among community-dwelling older adults in low-income and middle-income countries: A systematic review and meta-analysis. BMJ Open. 2018;8:e018195. doi: 10.1136/bmjopen-2017-018195.
    1. Kojima G. Frailty as a predictor of emergency department utilization among community-dwelling older people: A systematic review and meta-analysis. J. Am. Med. Dir. Assoc. 2019;20:103–105. doi: 10.1016/j.jamda.2018.10.004.
    1. Chi J., Chen F., Zhang J., Niu X., Tao H., Ruan H., Wang Y., Hu J. Impacts of frailty on health care costs among community-dwelling older adults: A meta-analysis of cohort studies. Arch. Gerontol. Geriatr. 2021;94:104344. doi: 10.1016/j.archger.2021.104344.
    1. Santos-Eggimann B., Sirven N. Screening for frailty: Older populations and older individuals. Public Health Rev. 2016;37:7. doi: 10.1186/s40985-016-0021-8.
    1. Morley J.E., Vellas B., van Kan G.A., Anker S.D., Bauer J.M., Bernabei R., Cesari M., Chumlea W.C., Doehner W., Evans J., et al. Frailty consensus: A call to action. J. Am. Med. Dir. Assoc. 2013;14:392–397. doi: 10.1016/j.jamda.2013.03.022.
    1. Puts M.T.E., Toubasi S., Andrew M.K., Ashe M.C., Ploeg J., Atkinson E., Ayala A.P., Roy A., Rodríguez Monforte M., Bergman H., et al. Interventions to prevent or reduce the level of frailty in community-dwelling older adults: A scoping review of the literature and international policies. Age Ageing. 2017;46:383–392. doi: 10.1093/ageing/afw247.
    1. Walston J., Buta B., Xue Q.L. Frailty screening and interventions: Considerations for clinical practice. Clin. Geriatr. Med. 2018;34:25–38. doi: 10.1016/j.cger.2017.09.004.
    1. Buta B.J., Walston J.D., Godino J.G., Park M., Kalyani R.R., Xue Q.L., Bandeen-Roche K., Varadhan R. Frailty assessment instruments: Systematic characterization of the uses and contexts of highly-cited instruments. Ageing Res. Rev. 2016;26:53–61. doi: 10.1016/j.arr.2015.12.003.
    1. Rockwood K., Song X., MacKnight C., Bergman H., Hogan D.B., McDowell I., Mitnitski A. A global clinical measure of fitness and frailty in elderly people. CMAJ. 2005;173:489–495. doi: 10.1503/cmaj.050051.
    1. Dent E., Kowal P., Hoogendijk E.O. Frailty measurement in research and clinical practice: A review. Eur. J. Intern. Med. 2016;31:3–10. doi: 10.1016/j.ejim.2016.03.007.
    1. Toosizadeh N., Mohler J., Najafi B. Assessing upper extremity motion: An innovative method to identify frailty. J. Am. Geriatr. Soc. 2015;63:1181–1186. doi: 10.1111/jgs.13451.
    1. Buchman A.S., Wilson R.S., Bienias J.L., Bennett D.A. Change in frailty and risk of death in older persons. Exp. Aging Res. 2009;35:61–82. doi: 10.1080/03610730802545051.
    1. Toosizadeh N., Wendel C., Hsu C.-H., Zamrini E., Mohler J. Frailty assessment in older adults using upper-extremity function: Index development. BMC Geriatr. 2017;17:117. doi: 10.1186/s12877-017-0509-1.
    1. Lee H., Joseph B., Enriquez A., Najafi B. Toward using a smartwatch to monitor frailty in a hospital setting: Using a single wrist-wearable sensor to assess frailty in bedbound inpatients. Gerontology. 2018;64:389–400. doi: 10.1159/000484241.
    1. Park C., Sharafkhaneh A., Bryant M.S., Nguyen C., Torres I., Najafi B. Toward remote assessment of physical frailty using sensor-based sit-to-stand test. J. Surg. Res. 2021;263:130–139. doi: 10.1016/j.jss.2021.01.023.
    1. Park C., Mishra R., Sharafkhaneh A., Bryant M.S., Nguyen C., Torres I., Naik A.D., Najafi B. Digital biomarker representing frailty phenotypes: The use of machine learning and sensor-based sit-to-stand test. Sensors. 2021;21:3258. doi: 10.3390/s21093258.
    1. Apsega A., Petrauskas L., Alekna V., Daunoraviciene K., Sevcenko V., Mastaviciute A., Vitkus D., Tamulaitiene M., Griskevicius J. Wearable sensors technology as a tool for discriminating frailty levels during instrumented gait analysis. Appl. Sci. 2020;10:8451. doi: 10.3390/app10238451.
    1. Blodgett J., Theou O., Kirkland S., Andreou P., Rockwood K. The association between sedentary behaviour, moderate-vigorous physical activity and frailty in NHANES cohorts. Maturitas. 2015;80:187–191. doi: 10.1016/j.maturitas.2014.11.010.
    1. Del Pozo-Cruz B., Mañas A., Martín-García M., Marín-Puyalto J., García-García F.J., Rodriguez-Mañas L., Guadalupe-Grau A., Ara I. Frailty is associated with objectively assessed sedentary behaviour patterns in older adults: Evidence from the Toledo Study for Healthy Aging (TSHA) PLoS ONE. 2017;12:e0183911. doi: 10.1371/journal.pone.0183911.
    1. Schwenk M., Mohler J., Wendel C., D’Huyvetter K., Fain M., Taylor-Piliae R., Najafi B. Wearable sensor-based in-home assessment of gait, balance, and physical activity for discrimination of frailty status: Baseline results of the Arizona frailty cohort study. Gerontology. 2015;61:258–267. doi: 10.1159/000369095.
    1. Parvaneh S., Mohler J., Toosizadeh N., Grewal G.S., Najafi B. Postural transitions during activities of daily living could identify frailty status: Application of wearable technology to identify frailty during unsupervised condition. Gerontology. 2017;63:479–487. doi: 10.1159/000460292.
    1. Razjouyan J., Naik A.D., Horstman M.J., Kunik M.E., Amirmazaheri M., Zhou H., Sharafkhaneh A., Najafi B. Wearable sensors and the assessment of frailty among vulnerable older adults: An observational cohort study. Sensors. 2018;18:1336. doi: 10.3390/s18051336.
    1. de Bruin E.D., Najafi B., Murer K., Uebelhart D., Aminian K. Quantification of everyday motor function in a geriatric population. J. Rehabil. Res. Dev. 2007;44:417–428. doi: 10.1682/JRRD.2006.01.0003.
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Taylor & Francis; New York, NY, USA: 2013.
    1. Bradley A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997;30:1145–1159. doi: 10.1016/S0031-3203(96)00142-2.
    1. Zhu W. Making bootstrap statistical inferences: A tutorial. Res. Q. Exerc. Sport. 1997;68:44–55. doi: 10.1080/02701367.1997.10608865.
    1. Efron B., Tibshirani R.J. An Introduction to the Bootstrap. Chapman & Hall; New York, NY, USA: London, UK: 1993.
    1. Mandrekar J.N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 2010;5:1315–1316. doi: 10.1097/JTO.0b013e3181ec173d.
    1. Faller J.W., Pereira D.D.N., de Souza S., Nampo F.K., Orlandi F.S., Matumoto S. Instruments for the detection of frailty syndrome in older adults: A systematic review. PLoS ONE. 2019;14:e0216166. doi: 10.1371/journal.pone.0216166.
    1. Clegg A., Young J., Iliffe S., Rikkert M.O., Rockwood K. Frailty in elderly people. Lancet. 2013;381:752–762. doi: 10.1016/S0140-6736(12)62167-9.
    1. Schwenk M., Howe C., Saleh A., Mohler J., Grewal G., Armstrong D., Najafi B. Frailty and technology: A systematic review of gait analysis in those with frailty. Gerontology. 2014;60:79–89. doi: 10.1159/000354211.
    1. Greene B.R., Doheny E.P., O’Halloran A., Anne Kenny R. Frailty status can be accurately assessed using inertial sensors and the TUG test. Age Ageing. 2014;43:406–411. doi: 10.1093/ageing/aft176.
    1. Turabieh H., Mafarja M., Li X. Iterated feature selection algorithms with layered recurrent neural network for software fault prediction. Expert Syst. Appl. 2019;122:27–42. doi: 10.1016/j.eswa.2018.12.033.
    1. Loncar-Turukalo T., Zdravevski E., da Silva J.M., Chouvarda I., Trajkovik V. Literature on wearable technology for connected health: Scoping review of research trends, advances, and barriers. J. Med. Internet Res. 2019;21:e14017. doi: 10.2196/14017.
    1. Tokuçoğlu F. Monitoring physical activity with wearable technologies. Noro Psikiyatr Ars. 2018;55:S63–S65. doi: 10.29399/npa.23333.
    1. Kirk S. The wearables revolution: Is standardization a help or a hindrance?: Mainstream technology or just a passing phase? IEEE Consum. Electron. Mag. 2014;3:45–50. doi: 10.1109/MCE.2014.2345996.

Source: PubMed

3
Subskrybuj