Clinical review: Respiratory monitoring in the ICU - a consensus of 16

Laurent Brochard, Greg S Martin, Lluis Blanch, Paolo Pelosi, F Javier Belda, Amal Jubran, Luciano Gattinoni, Jordi Mancebo, V Marco Ranieri, Jean-Christophe M Richard, Diederik Gommers, Antoine Vieillard-Baron, Antonio Pesenti, Samir Jaber, Ola Stenqvist, Jean-Louis Vincent, Laurent Brochard, Greg S Martin, Lluis Blanch, Paolo Pelosi, F Javier Belda, Amal Jubran, Luciano Gattinoni, Jordi Mancebo, V Marco Ranieri, Jean-Christophe M Richard, Diederik Gommers, Antoine Vieillard-Baron, Antonio Pesenti, Samir Jaber, Ola Stenqvist, Jean-Louis Vincent

Abstract

Monitoring plays an important role in the current management of patients with acute respiratory failure but sometimes lacks definition regarding which 'signals' and 'derived variables' should be prioritized as well as specifics related to timing (continuous versus intermittent) and modality (static versus dynamic). Many new techniques of respiratory monitoring have been made available for clinical use recently, but their place is not always well defined. Appropriate use of available monitoring techniques and correct interpretation of the data provided can help improve our understanding of the disease processes involved and the effects of clinical interventions. In this consensus paper, we provide an overview of the important parameters that can and should be monitored in the critically ill patient with respiratory failure and discuss how the data provided can impact on clinical management.

Figures

Figure 1
Figure 1
The three phases of capnography tracings. Phase I contains gas from the apparatus and anatomic dead space (airway), phase II represents increasing carbon dioxide concentration resulting from progressive emptying of alveoli, and phase III represents alveolar gas. The highest point of phase III is the end-tidal partial pressure of carbon dioxide (PetCO2). PaCO2, arterial partial pressure of carbon dioxide; PCO2, partial pressure of carbon dioxide.
Figure 2
Figure 2
Analysis of airway pressures and flow during volume-controlled mechanical ventilation. The difference between peak or maximal pressure (Pmax) and plateau pressure (Pplat) defines the resistive pressure, whereas the difference between Pplat and positive end-expiratory pressure (PEEP) defines the elastic pressure. Analysis of the airway pressure shape during the phase of constant flow inflation (removing initial and final parts) can be used to calculate the stress index (arrow).
Figure 3
Figure 3
Pressure (horizontal axis)-volume (vertical axis) loop obtained in a sedated and paralyzed patient with acute respiratory distress syndrome (ARDS) by the means of a supersyringe with successive small steps of inflation and deflation. The static pressure volume points are fitted with an S-shaped line with obvious lower and upper inflections (at 10 and 25 cm H2O, respectively). The whole loop shows a marked hysteresis, and there is an upper deflation inflection at about 20 cm H2O. Paw, airway pressure.
Figure 4
Figure 4
Example of a flow wave shape typical of expiratory flow limitation and intrinsic positive end-expiratory pressure (PEEP). Qualitative analysis of the expiratory part of the curve provides this information. Exp, expiration; Insp, inspiration.
Figure 5
Figure 5
Example of ineffective efforts demonstrated on the esophageal pressure analysis. These missing efforts can be easily recognized on the airway pressure trace and the fl ow trace as indicated by the arrows. Id, idem.
Figure 6
Figure 6
Campbell diagram with all of its components. The horizontal axis shows the esophageal pressure (the surrogate of pleural pressure), and the vertical axis denotes volume above end-expiration. The fitted points to the left of the red line indicate the decrease in esophageal pressure during inspiration, and the points to the right of the red line indicate the esophageal pressure during expiration. The red line joins the points of zero flow at the beginning and the end of inspiration. The continuous black line to the right of the diagram denotes the chest wall compliance when muscles are relaxed, and the parallel dotted line joining the zero flow point at the beginning of inspiration is used to account for the presence of intrinsic positive end-expiratory pressure (PEEP) (the horizontal distance between the continuous and the dotted black lines). The surface to the left of the red line is the resistive component of work, and the surface to the right of this red line is the elastic component of work, including the elastic component of work due to the presence of intrinsic PEEP (about 3 cm H2O in this example). The elastic work due to the intrinsic PEEP is the surface of the rectangle with base equal to intrinsic PEEP (the horizontal distance between the continuous and the dotted black lines) and height equal to tidal volume (about 360 mL in the example). Pes, esophageal pressure.

References

    1. Van de Louw A, Cracco C, Cerf C, Harf A, Duvaldestin P, Lemaire F, Brochard L. Accuracy of pulse oximetry in the intensive care unit. Intensive Care Med. 2001;16:1606–1613. doi: 10.1007/s001340101064.
    1. Hinkelbein J, Genzwuerker HV, Sogl R, Fiedler F. Effect of nail polish on oxygen saturation determined by pulse oximetry in critically ill patients. Resuscitation. 2007;16:82–91. doi: 10.1016/j.resuscitation.2006.06.024.
    1. Feiner JR, Severinghaus JW, Bickler PE. Dark skin decreases the accuracy of pulse oximeters at low oxygen saturation: the effects of oximeter probe type and gender. Anesth Analg. 2007;16:S18–23. doi: 10.1213/01.ane.0000285988.35174.d9. tables.
    1. Jensen LA, Onyskiw JE, Prasad NG. Meta-analysis of arterial oxygen saturation monitoring by pulse oximetry in adults. Heart Lung. 1998;16:387–408. doi: 10.1016/S0147-9563(98)90086-3.
    1. Moller JT, Johannessen NW, Espersen K, Ravlo O, Pedersen BD, Jensen PF, Rasmussen NH, Rasmussen LS, Pedersen T, Cooper JB. Randomized evaluation of pulse oximetry in 20,802 patients: II. Perioperative events and postoperative complications. Anesthesiology. 1993;16:445–453. doi: 10.1097/00000542-199303000-00007.
    1. Eberhard P. The design, use, and results of transcutaneous carbon dioxide analysis: current and future directions. Anesth Analg. 2007;16:S48–S52. doi: 10.1213/01.ane.0000278642.16117.f8.
    1. Romero PV, Lucangelo U, Lopez AJ, Fernandez R, Blanch L. Physiologically based indices of volumetric capnography in patients receiving mechanical ventilation. Eur Respir J. 1997;16:1309–1315. doi: 10.1183/09031936.97.10061309.
    1. You B, Peslin R, Duvivier C, Vu VD, Grilliat JP. Expiratory capnography in asthma: evaluation of various shape indices. Eur Respir J. 1994;16:318–323. doi: 10.1183/09031936.94.07020318.
    1. Lucangelo U, Bernabe F, Vatua S, Degrassi G, Villagra A, Fernandez R, Romero PV, Saura P, Borelli M, Blanch L. Prognostic value of different dead space indices in mechanically ventilated patients with acute lung injury and ARDS. Chest. 2008;16:62–71. doi: 10.1378/chest.07-0935.
    1. Raurich JM, Vilar M, Colomar A, Ibanez J, Ayestaran I, Perez-Barcena J, Llompart-Pou JA. Prognostic value of the pulmonary dead-space fraction during the early and intermediate phases of acute respiratory distress syndrome. Respir Care. 2010;16:282–287.
    1. Lucangelo U, Blanch L. Dead space. Intensive Care Med. 2004;16:576–579. doi: 10.1007/s00134-004-2194-8.
    1. Kuwabara S, Duncalf D. Effect of anatomic shunt on physiologic deadspace-to-tidal volume ratio--a new equation. Anesthesiology. 1969;16:575–577. doi: 10.1097/00000542-196912000-00012.
    1. McSwain SD, Hamel DS, Smith PB, Gentile MA, Srinivasan S, Meliones JN, Cheifetz IM. End-tidal and arterial carbon dioxide measurements correlate across all levels of physiologic dead space. Respir Care. 2010;16:288–293.
    1. Galia F, Brimioulle S, Bonnier F, Vandenbergen N, Dojat M, Vincent JL, Brochard LJ. Use of maximum end-tidal CO(2) values to improve end-tidal CO(2) monitoring accuracy. Respir Care. 2011;16:278–283. doi: 10.4187/respcare.00837.
    1. Kline JA, Israel EG, Michelson EA, O'Neil BJ, Plewa MC, Portelli DC. Diagnostic accuracy of a bedside D-dimer assay and alveolar dead-space measurement for rapid exclusion of pulmonary embolism: a multicenter study. JAMA. 2001;16:761–768. doi: 10.1001/jama.285.6.761.
    1. Verschuren F, Heinonen E, Clause D, Roeseler J, Thys F, Meert P, Marion E, El Gariani A, Col J, Reynaert M, Liistro G. Volumetric capnography as a bedside monitoring of thrombolysis in major pulmonary embolism. Intensive Care Med. 2004;16:2129–2132. doi: 10.1007/s00134-004-2444-9.
    1. Tusman G, Suarez-Sipmann F, Bohm SH, Pech T, Reissmann H, Meschino G, Scandurra A, Hedenstierna G. Monitoring dead space during recruitment and PEEP titration in an experimental model. Intensive Care Med. 2006;16:1863–1871. doi: 10.1007/s00134-006-0371-7.
    1. Beydon L, Uttman L, Rawal R, Jonson B. Effects of positive end-expiratory pressure on dead space and its partitions in acute lung injury. Intensive Care Med. 2002;16:1239–1245. doi: 10.1007/s00134-002-1419-y.
    1. Aboab J, Niklason L, Uttman L, Kouatchet A, Brochard L, Jonson B. CO2 elimination at varying inspiratory pause in acute lung injury. Clin Physiol Funct Imaging. 2007;16:2–6. doi: 10.1111/j.1475-097X.2007.00699.x.
    1. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;16:818–824. doi: 10.1164/ajrccm.149.3.7509706.
    1. Aboab J, Louis B, Jonson B, Brochard L. Relation between PaO2/FIO2 ratio and FIO2: a mathematical description. Intensive Care Med. 2006;16:1494–1497. doi: 10.1007/s00134-006-0337-9.
    1. Gowda MS, Klocke RA. Variability of indices of hypoxemia in adult respiratory distress syndrome. Crit Care Med. 1997;16:41–45. doi: 10.1097/00003246-199701000-00010.
    1. Whiteley JP, Gavaghan DJ, Hahn CE. Variation of venous admixture, SF6 shunt, PaO2, and the PaO2/FIO2 ratio with FIO2. Br J Anaesth. 2002;16:771–778. doi: 10.1093/bja/88.6.771.
    1. Britos M, Smoot E, Liu KD, Thompson BT, Checkley W, Brower RG. The value of positive end-expiratory pressure and FiO2 criteria in the definition of the acute respiratory distress syndrome. Crit Care Med. 2011;16:2025–2030. doi: 10.1097/CCM.0b013e31821cb774.
    1. Di Marco F, Devaquet J, Lyazidi A, Galia F, da Costa NP, Fumagalli R, Brochard L. Positive end-expiratory pressure-induced functional recruitment in patients with acute respiratory distress syndrome. Crit Care Med. 2010;16:127–132. doi: 10.1097/CCM.0b013e3181b4a7e7.
    1. Mekontso Dessap A, Boissier F, Leon R, Carreira S, Campo FR, Lemaire F, Brochard L. Prevalence and prognosis of shunting across patent foramen ovale during acute respiratory distress syndrome. Crit Care Med. 2010;16:1786–1792. doi: 10.1097/CCM.0b013e3181eaa9c8.
    1. Willson DF, Thomas NJ, Markovitz BP, Bauman LA, DiCarlo JV, Pon S, Jacobs BR, Jefferson LS, Conaway MR, Egan EA. Effect of exogenous surfactant (calfactant) in pediatric acute lung injury: a randomized controlled trial. JAMA. 2005;16:470–476. doi: 10.1001/jama.293.4.470.
    1. Nuckton TJ, Alonso JA, Kallet RH, Daniel BM, Pittet JF, Eisner MD, Matthay MA. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med. 2002;16:1281–1286. doi: 10.1056/NEJMoa012835.
    1. Gattinoni L, Bombino M, Pelosi P, Lissoni A, Pesenti A, Fumagalli R, Tagliabue M. Lung structure and function in different stages of severe adult respiratory distress syndrome. JAMA. 1994;16:1772–1779. doi: 10.1001/jama.1994.03510460064035.
    1. Doyle RL, Szafl arski N, Modin GW, Wiener-Kronish JP, Matthay MA. Identification of patients with acute lung injury. Predictors of mortality. Am J Respir Crit Care Med. 1995;16:1818–1824. doi: 10.1164/ajrccm.152.6.8520742.
    1. Monchi M, Bellenfant F, Cariou A, Joly LM, Thebert D, Laurent I, Dhainaut JF, Brunet F. Early predictive factors of survival in the acute respiratory distress syndrome. A multivariate analysis. Am J Respir Crit Care Med. 1998;16:1076–1081. doi: 10.1164/ajrccm.158.4.9802009.
    1. Sakka SG, Klein M, Reinhart K, Meier-Hellmann A. Prognostic value of extravascular lung water in critically ill patients. Chest. 2002;16:2080–2086. doi: 10.1378/chest.122.6.2080.
    1. Lange NR, Schuster DP. The measurement of lung water. Crit Care. 1999;16:R19–R24. doi: 10.1186/cc342.
    1. Brown LM, Liu KD, Matthay MA. Measurement of extravascular lung water using the single indicator method in patients: research and potential clinical value. Am J Physiol Lung Cell Mol Physiol. 2009;16:L547–L558. doi: 10.1152/ajplung.00127.2009.
    1. Monnet X, Anguel N, Osman D, Hamzaoui O, Richard C, Teboul JL. Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS. Intensive Care Med. 2007;16:448–453. doi: 10.1007/s00134-006-0498-6.
    1. Jonson B, Richard JC, Straus C, Mancebo J, Lemaire F, Brochard L. Pressure-volume curves and compliance in acute lung injury: evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med. 1999;16:1172–1178. doi: 10.1164/ajrccm.159.4.9801088.
    1. Richard JC, Brochard L, Vandelet P, Breton L, Maggiore SM, Jonson B, Clabault K, Leroy J, Bonmarchand G. Respective effects of end-expiratory and end-inspiratory pressures on alveolar recruitment in acute lung injury. Crit Care Med. 2003;16:89–92. doi: 10.1097/00003246-200301000-00014.
    1. Lu Q, Vieira SR, Richecoeur J, Puybasset L, Kalfon P, Coriat P, Rouby JJ. A simple automated method for measuring pressure-volume curves during mechanical ventilation. Am J Respir Crit Care Med. 1999;16:275–282. doi: 10.1164/ajrccm.159.1.9802082.
    1. Matamis D, Lemaire F, Harf A, Brun-Buisson C, Ansquer JC, Atlan G. Total respiratory pressure-volume curves in the adult respiratory distress syndrome. Chest. 1984;16:58–66. doi: 10.1378/chest.86.1.58.
    1. Roupie E, Dambrosio M, Servillo G, Mentec H, el Atrous S, Beydon L, Brun-Buisson C, Lemaire F, Brochard L. Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome. Am J Respir Crit Care Med. 1995;16:121–128. doi: 10.1164/ajrccm.152.1.7599810.
    1. Crotti S, Mascheroni D, Caironi P, Pelosi P, Ronzoni G, Mondino M, Marini JJ, Gattinoni L. Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med. 2001;16:131–140. doi: 10.1164/ajrccm.164.1.2007011.
    1. Pelosi P, Goldner M, McKibben A, Adams A, Eccher G, Caironi P, Losappio S, Gattinoni L, Marini JJ. Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med. 2001;16:122–130. doi: 10.1164/ajrccm.164.1.2007010.
    1. Owens RL, Hess DR, Malhotra A, Venegas JG, Harris RS. Effect of the chest wall on pressure-volume curve analysis of acute respiratory distress syndrome lungs. Crit Care Med. 2008;16:2980–2985. doi: 10.1097/CCM.0b013e318186afcb.
    1. Demory D, Arnal JM, Wysocki M, Donati S, Granier I, Corno G, Durand-Gasselin J. Recruitability of the lung estimated by the pressure volume curve hysteresis in ARDS patients. Intensive Care Med. 2008;16:2019–2025. doi: 10.1007/s00134-008-1167-8.
    1. Maggiore SM, Jonson B, Richard JC, Jaber S, Lemaire F, Brochard L. Alveolar derecruitment at decremental positive end-expiratory pressure levels in acute lung injury: comparison with the lower inflection point, oxygenation, and compliance. Am J Respir Crit Care Med. 2001;16:795–801. doi: 10.1164/ajrccm.164.5.2006071.
    1. Grasso S, Terragni P, Mascia L, Fanelli V, Quintel M, Herrmann P, Hedenstierna G, Slutsky AS, Ranieri VM. Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury. Crit Care Med. 2004;16:1018–1027. doi: 10.1097/.
    1. Grasso S, Stripoli T, De Michele M, Bruno F, Moschetta M, Angelelli G, Munno I, Ruggiero V, Anaclerio R, Cafarelli A, Driessen B, Fiore T. ARDSnet ventilatory protocol and alveolar hyperinflation: role of positive end-expiratory pressure. Am J Respir Crit Care Med. 2007;16:761–767. doi: 10.1164/rccm.200702-193OC.
    1. Formenti P, Graf J, Santos A, Gard KE, Faltesek K, Adams AB, Dries DJ, Marini JJ. Non-pulmonary factors strongly influence the stress index. Intensive Care Med. 2011;16:594–600. doi: 10.1007/s00134-011-2133-4.
    1. Jaber S, Jung B, Matecki S, Petrof BJ. Clinical review: Ventilator-induced diaphragmatic dysfunction - human studies confirm animal model findings! Crit Care. 2011;16:206. doi: 10.1186/cc10023.
    1. Jaber S, Petrof BJ, Jung B, Chanques G, Berthet JP, Rabuel C, Bouyabrine H, Courouble P, Koechlin-Ramonatxo C, Sebbane M, Similowski T, Scheuermann V, Mebazaa A, Capdevila X, Mornet D, Mercier J, Lacampagne A, Philips A, Matecki S. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med. 2011;16:364–371. doi: 10.1164/rccm.201004-0670OC.
    1. Polkey MI, Duguet A, Luo Y, Hughes PD, Hart N, Hamnegard CH, Green M, Similowski T, Moxham J. Anterior magnetic phrenic nerve stimulation: laboratory and clinical evaluation. Intensive Care Med. 2000;16:1065–1075. doi: 10.1007/s001340051319.
    1. Sinderby C. Neurally adjusted ventilatory assist (NAVA) Minerva Anestesiol. 2002;16:378–380.
    1. Georgopoulos D, Prinianakis G, Kondili E. Bedside waveforms interpretation as a tool to identify patient-ventilator asynchronies. Intensive Care Med. 2006;16:34–47. doi: 10.1007/s00134-005-2828-5.
    1. Leung P, Jubran A, Tobin MJ. Comparison of assisted ventilator modes on triggering, patient effort, and dyspnea. Am J Respir Crit Care Med. 1997;16:1940–1948. doi: 10.1164/ajrccm.155.6.9196100.
    1. Thille AW, Cabello B, Galia F, Lyazidi A, Brochard L. Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med. 2008;16:1477–1486. doi: 10.1007/s00134-008-1121-9.
    1. Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;16:1515–1522. doi: 10.1007/s00134-006-0301-8.
    1. Parthasarathy S, Tobin MJ. Effect of ventilator mode on sleep quality in critically ill patients. Am J Respir Crit Care Med. 2002;16:1423–1429. doi: 10.1164/rccm.200209-999OC.
    1. Tassaux D, Gainnier M, Battisti A, Jolliet P. Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med. 2005;16:1283–1289. doi: 10.1164/rccm.200407-880OC.
    1. Cabello B, Mancebo J. Work of breathing. Intensive Care Med. 2006;16:1311–1314. doi: 10.1007/s00134-006-0278-3.
    1. Mancebo J, Albaladejo P, Touchard D, Bak E, Subirana M, Lemaire F, Harf A, Brochard L. Airway occlusion pressure to titrate positive end-expiratory pressure in patients with dynamic hyperinflation. Anesthesiology. 2000;16:81–90. doi: 10.1097/00000542-200007000-00016.
    1. Vassilakopoulos T. Understanding wasted/ineffective efforts in mechanically ventilated COPD patients using the Campbell diagram. Intensive Care Med. 2008;16:1336–1339. doi: 10.1007/s00134-008-1095-7.
    1. Jubran A, Grant BJ, Laghi F, Parthasarathy S, Tobin MJ. Weaning prediction: esophageal pressure monitoring complements readiness testing. Am J Respir Crit Care Med. 2005;16:1252–1259. doi: 10.1164/rccm.200503-356OC.
    1. Mancebo J, Amaro P, Lorino H, Lemaire F, Harf A, Brochard L. Effects of albuterol inhalation on the work of breathing during weaning from mechanical ventilation. Am Rev Respir Dis. 1991;16:95–100. doi: 10.1164/ajrccm/144.1.95.
    1. Alberti A, Gallo F, Fongaro A, Valenti S, Rossi A. P0.1 is a useful parameter in setting the level of pressure support ventilation. Intensive Care Med. 1995;16:547–553. doi: 10.1007/BF01700158.
    1. Field S, Sanci S, Grassino A. Respiratory muscle oxygen consumption estimated by the diaphragm pressure-time index. J Appl Physiol. 1984;16:44–51.
    1. Nava S, Bruschi C, Fracchia C, Braschi A, Rubini F. Patient-ventilator interaction and inspiratory effort during pressure support ventilation in patients with different pathologies. Eur Respir J. 1997;16:177–183. doi: 10.1183/09031936.97.10010177.
    1. Sassoon CS, Light RW, Lodia R, Sieck GC, Mahutte CK. Pressure-time product during continuous positive airway pressure, pressure support ventilation, and T-piece during weaning from mechanical ventilation. Am Rev Respir Dis. 1991;16:469–475. doi: 10.1164/ajrccm/143.3.469.
    1. Talmor D, Sarge T, Malhotra A, O'Donnell CR, Ritz R, Lisbon A, Novack V, Loring SH. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008;16:2095–2104. doi: 10.1056/NEJMoa0708638.
    1. Vieillard-Baron A, Jardin F. Esophageal pressure in acute lung injury. N Engl J Med. 2009;16:832.
    1. Chiumello D, Carlesso E, Cadringher P, Caironi P, Valenza F, Polli F, Tallarini F, Cozzi P, Cressoni M, Colombo A, Marini JJ, Gattinoni L. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;16:346–355. doi: 10.1164/rccm.200710-1589OC.
    1. Bellani G, Guerra L, Musch G, Zanella A, Patroniti N, Mauri T, Messa C, Pesenti A. Lung regional metabolic activity and gas volume changes induced by tidal ventilation in patients with acute lung injury. Am J Respir Crit Care Med. 2011;16:1193–1199. doi: 10.1164/rccm.201008-1318OC.
    1. Marini JJ. Spontaneously regulated versus controlled ventilation of acute lung injury/acute respiratory distress syndrome. Curr Opin Crit Care. 2011;16:24–29. doi: 10.1097/MCC.0b013e328342726e.
    1. Kallet RH, Alonso JA, Luce JM, Matthay MA. Exacerbation of acute pulmonary edema during assistaed mechanical ventilation using a low tidal volume, lung protective strategy. Chest. 1999;16:1826–1832. doi: 10.1378/chest.116.6.1826.
    1. Lemaire F, Teboul JL, Cinotti L, Giotto G, Abrouk F, Steg G, Macquin-Mavier I, Zapol WM. Acute left ventricular dysfunction during unsuccessful weaning from mechanical ventilation. Anesthesiology. 1988;16:171–179. doi: 10.1097/00000542-198808000-00004.
    1. Permutt S. Circulatory effects of weaning from mechanical ventilation: the importance of transdiaphragmatic pressure. Anesthesiology. 1988;16:157–160. doi: 10.1097/00000542-198808000-00002.
    1. Malbrain ML, Chiumello D, Pelosi P, Wilmer A, Brienza N, Malcangi V, Bihari D, Innes R, Cohen J, Singer P, Japiassu A, Kurtop E, De Keulenaer BL, Daelemans R, Del Turco M, Cosimini P, Ranieri M, Jacquet L, Laterre PF, Gattinoni L. Prevalence of intra-abdominal hypertension in critically ill patients: a multicentre epidemiological study. Intensive Care Med. 2004;16:822–829. doi: 10.1007/s00134-004-2169-9.
    1. Falke KJ, Pontoppidan H, Kumar A, Leith DE, Geffin B, Laver MB. Ventilation with end-expiratory pressure in acute lung disease. J Clin Invest. 1972;16:2315–2323. doi: 10.1172/JCI107042.
    1. Olegard C, Sondergaard S, Houltz E, Lundin S, Stenqvist O. Estimation of functional residual capacity at the bedside using standard monitoring equipment: a modified nitrogen washout/washin technique requiring a small change of the inspired oxygen fraction. Anesth Analg. 2005;16:206–212. doi: 10.1213/01.ANE.0000165823.90368.55.
    1. Chiumello D, Cressoni M, Chierichetti M, Tallarini F, Botticelli M, Berto V, Mietto C, Gattinoni L. Nitrogen washout/washin, helium dilution and computed tomography in the assessment of end expiratory lung volume. Crit Care. 2008;16:R150. doi: 10.1186/cc7139.
    1. Patroniti N, Saini M, Zanella A, Weismann D, Isgro S, Bellani G, Foti G, Pesenti A. Measurement of end-expiratory lung volume by oxygen washin-washout in controlled and assisted mechanically ventilated patients. Intensive Care Med. 2008;16:2235–2240. doi: 10.1007/s00134-008-1218-1.
    1. Ibanez J, Raurich JM. Normal values of functional residual capacity in the sitting and supine positions. Intensive Care Med. 1982;16:173–177. doi: 10.1007/BF01725734.
    1. Bikker IG, van Bommel J, Reis Miranda D, Bakker J, Gommers D. End-expiratory lung volume during mechanical ventilation: a comparison with reference values and the effect of positive end-expiratory pressure in intensive care unit patients with different lung conditions. Crit Care. 2008;16:R145. doi: 10.1186/cc7125.
    1. Reis Miranda D, Gommers D. Precise use of medical terminology. Crit Care Med. 2006;16:1854–1855.
    1. Dellamonica J, Lerolle N, Sargentini C, Beduneau G, Di Marco F, Mercat A, Richard JC, Diehl JL, Mancebo J, Rouby JJ, Lu Q, Bernardin G, Brochard L. PEEP-induced changes in lung volume in acute respiratory distress syndrome. Two methods to estimate alveolar recruitment. Intensive Care Med. 2011;16:1595–1604. doi: 10.1007/s00134-011-2333-y.
    1. Remerand F, Dellamonica J, Mao Z, Ferrari F, Bouhemad B, Jianxin Y, Arbelot C, Lu Q, Ichai C, Rouby JJ. Multiplane ultrasound approach to quantify pleural effusion at the bedside. Intensive Care Med. 2010;16:656–664. doi: 10.1007/s00134-010-1769-9.
    1. Reissig A, Copetti R, Kroegel C. Current role of emergency ultrasound of the chest. Crit Care Med. 2011;16:839–845. doi: 10.1097/CCM.0b013e318206d6b8.
    1. Bouhemad B, Liu ZH, Arbelot C, Zhang M, Ferarri F, Le Guen M, Girard M, Lu Q, Rouby JJ. Ultrasound assessment of antibiotic-induced pulmonary reaeration in ventilator-associated pneumonia. Crit Care Med. 2010;16:84–92. doi: 10.1097/CCM.0b013e3181b08cdb.
    1. Bouhemad B, Brisson H, Le-Guen M, Arbelot C, Lu Q, Rouby JJ. Bedside ultrasound assessment of positive end-expiratory pressure-induced lung recruitment. Am J Respir Crit Care Med. 2011;16:341–347. doi: 10.1164/rccm.201003-0369OC.
    1. Puybasset L, Cluzel P, Chao N, Slutsky AS, Coriat P, Rouby JJ. A computed tomography scan assessment of regional lung volume in acute lung injury. The CT Scan ARDS Study Group. Am J Respir Crit Care Med. 1998;16:1644–1655. doi: 10.1164/ajrccm.158.5.9802003.
    1. Pelosi P, Rocco PR, de Abreu MG. Use of computed tomography scanning to guide lung recruitment and adjust positive-end expiratory pressure. Curr Opin Crit Care. 2011;16:268–274. doi: 10.1097/MCC.0b013e328344ddbc.
    1. Lindgren S, Odenstedt H, Olegard C, Sondergaard S, Lundin S, Stenqvist O. Regional lung derecruitment after endotracheal suction during volume-or pressure-controlled ventilation: a study using electric impedance tomography. Intensive Care Med. 2007;16:172–180. doi: 10.1007/s00134-006-0425-x.
    1. Fagerberg A, Stenqvist O, Aneman A. Electrical impedance tomography applied to assess matching of pulmonary ventilation and perfusion in a porcine experimental model. Crit Care. 2009;16:R34. doi: 10.1186/cc7741.
    1. Costa EL, Borges JB, Melo A, Suarez-Sipmann F, Toufen C Jr, Bohm SH, Amato MB. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med. 2009;16:1132–1137. doi: 10.1007/s00134-009-1447-y.
    1. Bikker IG, Leonhardt S, Reis MD, Bakker J, Gommers D. Bedside measurement of changes in lung impedance to monitor alveolar ventilation in dependent and non-dependent parts by electrical impedance tomography during a positive end-expiratory pressure trial in mechanically ventilated intensive care unit patients. Crit Care. 2010;16:R100. doi: 10.1186/cc9036.
    1. Bikker IG, Preis C, Egal M, Bakker J, Gommers D. Electrical impedance tomography measured at two thoracic levels can visualize the ventilation distribution changes at the bedside during a decremental positive end-expiratory pressure (PEEP) trial. Crit Care. 2011;16:R193. doi: 10.1186/cc10354.
    1. Vincent JL, Rhodes A, Perel A, Martin CS, Rocca GD, Vallet B, Pinsky MR, Hofer CK, Teboul JL, de Boode WP, Walley KR, Maggiorini M, Singer M. Update on hemodynamic monitoring: a consensus of 16. Crit Care. 2011;16:229. doi: 10.1186/cc10291.
    1. Jubran A, Mathru M, Dries D, Tobin MJ. Continuous recordings of mixed venous oxygen saturation during weaning from mechanical ventilation and the ramifications thereof. Am J Respir Crit Care Med. 1998;16:1763–1769. doi: 10.1164/ajrccm.158.6.9804056.
    1. Bouhemad B, Ferrari F, Leleu K, Arbelot C, Lu Q, Rouby JJ. Echocardiographic Doppler estimation of pulmonary artery pressure in critically ill patients with severe hypoxemia. Anesthesiology. 2008;16:55–62. doi: 10.1097/01.anes.0000296067.02462.34.
    1. Caille V, Amiel JB, Charron C, Belliard G, Vieillard-Baron A, Vignon P. Echocardiography: a help in the weaning process. Crit Care. 2010;16:R120. doi: 10.1186/cc9076.
    1. Mekontso-Dessap A, de Prost N, Girou E, Braconnier F, Lemaire F, Brun-Buisson C, Brochard L. B-type natriuretic peptide and weaning from mechanical ventilation. Intensive Care Med. 2006;16:1529–1536. doi: 10.1007/s00134-006-0339-7.
    1. Grasso S, Leone A, De Michele M, Anaclerio R, Cafarelli A, Ancona G, Stripoli T, Bruno F, Pugliese P, Dambrosio M, Dalfi no L, Di Serio F, Fiore T. Use of N-terminal pro-brain natriuretic peptide to detect acute cardiac dysfunction during weaning failure in difficult-to-wean patients with chronic obstructive pulmonary disease. Crit Care Med. 2007;16:96–105. doi: 10.1097/01.CCM.0000250391.89780.64.
    1. Quesnel C, Piednoir P, Gelly J, Nardelli L, Lecon V, Lasocki S, Bouadma L, Philip I, Elbim C, Mentre F, Crestani B, Dehoux M. Alveolar fibrocyte percentage is an independent predictor of poor outcome in patients with acute lung injury. Crit Care Med. 2012;16:21–28. doi: 10.1097/CCM.0b013e31822d718b.
    1. Storre JH, Steurer B, Kabitz HJ, Dreher M, Windisch W. Transcutaneous PCO2 monitoring during initiation of noninvasive ventilation. Chest. 2007;16:1810–1816. doi: 10.1378/chest.07-1173.
    1. Vignaux L, Vargas F, Roeseler J, Tassaux D, Thille AW, Kossowsky MP, Brochard L, Jolliet P. Patient-ventilator asynchrony during non-invasive ventilation for acute respiratory failure: a multicenter study. Intensive Care Med. 2009;16:840–846. doi: 10.1007/s00134-009-1416-5.
    1. Unroe M, MacIntyre N. Evolving approaches to assessing and monitoring patient-ventilator interactions. Curr Opin Crit Care. 2010;16:261–268. doi: 10.1097/MCC.0b013e328338661e.
    1. Antonelli M, Conti G, Moro ML, Esquinas A, Gonzalez-Diaz G, Confalonieri M, Pelaia P, Principi T, Gregoretti C, Beltrame F, Pennisi MA, Arcangeli A, Proietti R, Passariello M, Meduri GU. Predictors of failure of noninvasive positive pressure ventilation in patients with acute hypoxemic respiratory failure: a multi-center study. Intensive Care Med. 2001;16:1718–1728. doi: 10.1007/s00134-001-1114-4.
    1. Pelosi P, Ferguson ND, Frutos-Vivar F, Anzueto A, Putensen C, Raymondos K, Apezteguia C, Desmery P, Hurtado J, Abroug F, Elizalde J, Tomicic V, Cakar N, Gonzalez M, Arabi Y, Moreno R, Esteban A. Management and outcome of mechanically ventilated neurologic patients. Crit Care Med. 2011;16:1482–1492. doi: 10.1097/CCM.0b013e31821209a8.
    1. Minardi J, Crocco TJ. Management of traumatic brain injury: first link in chain of survival. Mt Sinai J Med. 2009;16:138–144. doi: 10.1002/msj.20105.
    1. Esteban A, Anzueto A, Frutos F, Alia I, Brochard L, Stewart TE, Benito S, Epstein SK, Apezteguia C, Nightingale P, Arroliga AC, Tobin MJ. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA. 2002;16:345–355. doi: 10.1001/jama.287.3.345.
    1. Zygun DA, Kortbeek JB, Fick GH, Laupland KB, Doig CJ. Non-neurologic organ dysfunction in severe traumatic brain injury. Crit Care Med. 2005;16:654–660. doi: 10.1097/01.CCM.0000155911.01844.54.
    1. Lowe GJ, Ferguson ND. Lung-protective ventilation in neurosurgical patients. Curr Opin Crit Care. 2006;16:3–7. doi: 10.1097/01.ccx.0000198055.29600.4b.
    1. Namen AM, Ely EW, Tatter SB, Case LD, Lucia MA, Smith A, Landry S, Wilson JA, Glazier SS, Branch CL, Kelly DL, Bowton DL, Haponik EF. Predictors of successful extubation in neurosurgical patients. Am J Respir Crit Care Med. 2001;16:658–664. doi: 10.1164/ajrccm.163.3.2003060.
    1. Steiner LA, Balestreri M, Johnston AJ, Czosnyka M, Coles JP, Chatfi eld DA, Smielewski P, Pickard JD, Menon DK. Sustained moderate reductions in arterial CO2 after brain trauma time-course of cerebral blood flow velocity and intracranial pressure. Intensive Care Med. 2004;16:2180–2187. doi: 10.1007/s00134-004-2463-6.
    1. Deem S. Management of acute brain injury and associated respiratory issues. Respir Care. 2006;16:357–367.
    1. Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Nemecek A, Newell DW, Rosenthal G, Schouten J, Shutter L, Timmons SD, Ullman JS, Videtta W, Wilberger JE, Wright DW. Guidelines for the management of severe traumatic brain injury. XIV. Hyperventilation. J Neurotrauma. 2007;16(Suppl 1):S87–S90.
    1. Stocchetti N, Maas AI, Chieregato A, van der Plas AA. Hyperventilation in head injury: a review. Chest. 2005;16:1812–1827. doi: 10.1378/chest.127.5.1812.
    1. Caricato A, Conti G, Della CF, Mancino A, Santilli F, Sandroni C, Proietti R, Antonelli M. Effects of PEEP on the intracranial system of patients with head injury and subarachnoid hemorrhage: the role of respiratory system compliance. J Trauma. 2005;16:571–576. doi: 10.1097/01.TA.0000152806.19198.DB.
    1. Young N, Rhodes JK, Mascia L, Andrews PJ. Ventilatory strategies for patients with acute brain injury. Curr Opin Crit Care. 2010;16:45–52. doi: 10.1097/MCC.0b013e32833546fa.

Source: PubMed

3
Subskrybuj