Auditory Neuropathy Spectrum Disorders: From Diagnosis to Treatment: Literature Review and Case Reports

Romolo Daniele De Siati, Flora Rosenzweig, Guillaume Gersdorff, Anaïs Gregoire, Philippe Rombaux, Naïma Deggouj, Romolo Daniele De Siati, Flora Rosenzweig, Guillaume Gersdorff, Anaïs Gregoire, Philippe Rombaux, Naïma Deggouj

Abstract

Auditory neuropathy spectrum disorder (ANSD) refers to a range of hearing impairments characterized by deteriorated speech perception, despite relatively preserved pure-tone detection thresholds. Affected individuals usually present with abnormal auditory brainstem responses (ABRs), but normal otoacoustic emissions (OAEs). These electrophysiological characteristics have led to the hypothesis that ANSD may be caused by various dysfunctions at the cochlear inner hair cell (IHC) and spiral ganglion neuron (SGN) levels, while the activity of outer hair cells (OHCs) is preserved, resulting in discrepancies between pure-tone and speech comprehension thresholds. The exact prevalence of ANSD remains unknown; clinical findings show a large variability among subjects with hearing impairment ranging from mild to profound hearing loss. A wide range of prenatal and postnatal etiologies have been proposed. The study of genetics and of the implicated sites of lesion correlated with clinical findings have also led to a better understanding of the molecular mechanisms underlying the various forms of ANSD, and may guide clinicians in better screening, assessment and treatment of ANSD patients. Besides OAEs and ABRs, audiological assessment includes stapedial reflex measurements, supraliminal psychoacoustic tests, electrocochleography (ECochG), auditory steady-state responses (ASSRs) and cortical auditory evoked potentials (CAEPs). Hearing aids are indicated in the treatment of ANSD with mild to moderate hearing loss, whereas cochlear implantation is the first choice of treatment in case of profound hearing loss, especially in case of IHC presynaptic disorders, or in case of poor auditory outcomes with conventional hearing aids.

Keywords: ANSD; auditory neuropathy spectrum disorder; auditory synaptopathy; cochlear implant; genetics; hidden hearing loss.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Audiological assessment in a 5-year-old child with auditory neuropathy spectrum disorder (ANSD) caused by neonatal hypoxia. Poor unaided pure-tone perception (a, gray line) was restored with hearing aids ((a), black line). Panel (b) displays auditory brainstem responses (ABRs) evoked by clicks presented in rarefaction (R) and condensation (C) polarities and the subtraction and summation of R and C (R − C and R + C, respectively), showing detectable cochlear microphonic (CM) and absence of waves V. Electrocochleography (ECochG) recorded through a transtympanic electrode on the promontory wall using 1000 Hz tone burst presented in alternated R and C polarities at a rate of 14.3 s (c) shows a large summating potential (SP). Auditory steady-state responses (ASSRs) thresholds (d) are present in the left (X) more than in the right (O) ear.
Figure 2
Figure 2
Audiological assessment in 8-year-old patient with CAPOS syndrome. CAPOS is an acronym for Cerebellar ataxia, Areflexia, Pes cavus, Optic atrophy and Sensorineural hearing loss. Unaided pure tonal thresholds in both ears are shown in (a). The tonal hearing thresholds remain poor in the right ear aided by an acoustical hearing aid ((b), gray line) but are clearly improved in the left ear by cochlear implant ((b), black line). Speech perception was poor in unaided condition ((c), 10% gray dot at 60dB), it was partially improved by acoustical hearing aids ((c), gray line) but became significantly better with cochlear implant ((c), black line). abnormal auditory brainstem responses (ABRs) (d) show the responses evoked by clicks presented in rarefaction (R) and condensation (C) phase and the subtraction of R and C (R − C), highlighting the cochlear microphonic (CM) and the lack of waves V in the summation (R + C). Auditory steady-state responses (ASSRs) thresholds (e) are present in the left (X) more than in the right (O) ear.
Figure 3
Figure 3
Distribution of pure-tone audiometry threshold (a) and (when possible) speech audiometry threshold for disyllabic words (b) in 14 patients aged between 5 and 48 years with auditory neuropathy spectrum disorder (ANSD). Etiologies of ANSD vary among patients. The figure is intended to show the large variability in hearing ability among patients with ANSD.
Figure 4
Figure 4
Audiological assessment in an adult patient with auditory neuropathy spectrum disorder (ANSD) and bilateral cochlear nerve atrophy. Unaided thresholds for pure-tone audiometry ((a), black line for right ear, gray line for left ear) and speech audiometry ((b), black line for right ear, gray line for left ear) in quiet are good. Otoacoustic emissions (OAEs) are present bilaterally in both temporal/intensity recordings (left panel in (c) for right ear, left panel in (d) for left ear) and spectral analysis (right panel in (c) for right ear, right panel in (d) for left ear); on the other hand, auditory brainstem responses (ABRs) are abnormal with no clear cochlear microphonic (CM) ((e) for right ear, (f) for left ear).
Figure 5
Figure 5
Auditory brainstem responses (ABRs) in a 26-week preterm newborn with auditory neuropathy spectrum disorder (ANSD). Three-month ABRs (a) show small early components, whereas a cochlear microphonic (CM) was detectable 9 months later (b), suggesting a late, although partial, maturation. Auditory steady-state responses (ASSRs) remain absent in both ears.
Figure 6
Figure 6
Audiological assessment in adult with acquired auditory neuropathy spectrum disorder (ANSD) caused by bilateral cochlear nerve hypotrophia of unknown etiology. Unaided pure tone ((a), black line for right ear, gray line for left ear) and speech ((b), both ears in free field) thresholds are poor, with no improvement with hearing aids. Electrocochleography (ECochG) recorded after clicks at 90 dB and at a rate of 14.3 s ((c), grand average, above; superimposed, below) shows preserved summating potential (SP) and compound action potential (CAP). ECochG responses to tone-burst stimuli at different frequencies ((d), grand averages for 8, 4, 3, 2 and 1 kHz) show a large SP. Auditory brainstem responses (ABRs) are absent, except for the cochlear microphonic (CM) (e). The 3-Tesla magnetic resonance imaging of the right ear without contrast (f) shows the hypoplasia of the cochlear nerve.
Figure 7
Figure 7
Audiological assessment in a subject with Brown–Vialetto–Van Laere syndrome-related auditory neuropathy spectrum disorder (ANSD), resulting in neural impairment of the 8th and 12th cranial nerves and the optic nerves. Unaided pure-tone audiometry ((a), both ears) shows bilateral hearing loss mainly for low frequencies. Unaided free field speech discrimination is poor ((b), 10% gray dot at 80 dB). Aided tonal and speech perception outcomes with acoustical hearing aids remain poor and comparable to unaided perception. The latter clearly improves after cochlear implantation (CI) ((b), black line). Otoacoustic emissions (OAEs) are present ((c), spectral analysis of OAEs in the white area, compared to noise in the black area), whereas auditory brainstem responses (ABRs) synchronization was abnormal with no wave V but a clear cochlear microphonic (CM) in both rarefaction (R) and condensation (C) polarities and in the subtraction R − C (d). Cortical auditory evoked responses (e) show a P3 complex after stimulation with an oddball paradigm and in selective attentive conditions only, even if no recordable N100 or P200 waves are present in responses to the frequent stimuli (not shown).
Figure 8
Figure 8
Audiological assessment in a 14-year-old child with auditory neuropathy spectrum disorder (ANSD) features occurring with severe hearing loss. Her medical history includes a 35-week preterm birth after an intrahepatic cholestasis of pregnancy, with normal birth weight but neonatal hypoxia requiring 3 weeks of stay in neonatal intensive care unit. Hearing aids were fitted in early infancy. Besides poor sounds recognition and speech perception, speech development was good in the lexical and morphosyntactic fields. Unaided tonal thresholds ((a), gray line for right ear, black line for left ear) and unaided speech discrimination (b) are poor. Aided pure-tone audiometry (c) and speech perception (d) with hearing aids are clearly improved, allowing a good development of language skills and learning abilities. Auditory brainstem responses (ABRs) elicited by clicks at 90 dB show small cochlear microphonic (CM) (e). Auditory steady-state responses (ASSRs) (f) are detected for 500 Hz at the right ear.
Figure 9
Figure 9
Audiological assessment in a 14-years-old male with auditory neuropathy spectrum disorder (ANSD). His medical history includes neonatal hyperbilirubinemia and low birth weight. Despite early hearing aids fitting, speech development was delayed. He shows residual pure-tone hearing thresholds ((a), gray line) and poor speech discrimination ((b), gray line) in the left ear. After left-ear cochlear implantation, aided tonal ((a), black line) and speech ((b), black line) thresholds show good auditory outcomes. Auditory brainstem responses (ABRs) at left ear are absent (c). However, speech perception in noise, such as during school activities, remains poor.

References

    1. Rance G. Auditory Neuropathy/Dys-Synchrony and Its Perceptual Consequences. Trends Amplif. 2005;9:1–43. doi: 10.1177/108471380500900102.
    1. Berlin C.I., Morlet T., Hood L.J. Auditory Neuropathy/Dyssynchrony: Its Diagnosis and Management. Pediatr. Clin. N. Am. 2003;50:331–340. doi: 10.1016/S0031-3955(03)00031-2.
    1. Berlin C.I., Hood L.J., Morlet T., Wilensky D., Li L., Mattingly K.R., Taylor-Jeanfreau J., Keats B.J.B., John P.S., Montgomery E., et al. Multi-Site Diagnosis and Management of 260 Patients with Auditory Neuropathy/Dys-Synchrony (Auditory Neuropathy Spectrum Disorder) Int. J. Audiol. 2010;49:30–43. doi: 10.3109/14992020903160892.
    1. Zeng F.G., Kong Y.Y., Michalewski H.J., Starr A. Perceptual Consequences of Disrupted Auditory Nerve Activity. J. Neurophysiol. 2005;93:3050–3063. doi: 10.1152/jn.00985.2004.
    1. Fontenot T.E., Giardina C.K., Teagle H.F., Park L.R., Adunka O.F., Buchman C.A., Brown K.D., Fitzpatrick D.C. Clinical Role of Electrocochleography in Children with Auditory Neuropathy Spectrum Disorder. Int. J. Pediatr. Otorhinolaryngol. 2017;99:120–127. doi: 10.1016/j.ijporl.2017.05.026.
    1. Kitao K., Mutai H., Namba K., Morimoto N., Nakano A., Arimoto Y., Sugiuchi T., Masuda S., Okamoto Y., Morita N., et al. Deterioration in Distortion Product Otoacoustic Emissions in Auditory Neuropathy Patients with Distinct Clinical and Genetic Backgrounds. Ear Hear. 2019;40:184–191. doi: 10.1097/AUD.0000000000000586.
    1. Starr A., Picton T.W., Sininger Y., Hood L.J., Berlin C.I. Auditory Neuropathy. Brain. 1996;119:741–753. doi: 10.1093/brain/119.3.741.
    1. Starr A., Dong C.J., Michalewski H.J. Brain Potentials before and during Memory Scanning. Electroencephalogr. Clin. Neurophysiol. 1996;99:28–37. doi: 10.1016/0921-884X(96)95147-4.
    1. Zeng F.G., Oba S., Garde S., Sininger Y., Starr A. Temporal and Speech Processing Deficits in Auditory Neuropathy. Neuroreport. 1999;10:3429–3435. doi: 10.1097/00001756-199911080-00031.
    1. Berlin C.I., Hood L.J., Rose K. On Renaming Audi- Tory Neuropathy as Auditory Dys-Synchrony. Audiol. Today. 2001;13:15–17.
    1. Santarelli R., del Castillo I., Cama E., Scimemi P., Starr A. Audibility, Speech Perception and Processing of Temporal Cues in Ribbon Synaptic Disorders Due to OTOF Mutations. Hear. Res. 2015:200–212. doi: 10.1016/j.heares.2015.07.007.
    1. Moser T., Starr A. Nature Reviews Neurology. Nature Publishing Group; Berlin, Germany: 2016. Auditory Neuropathy-Neural and Synaptic Mechanisms; pp. 135–149.
    1. Shearer A.E., Hansen M.R. Auditory Synaptopathy, Auditory Neuropathy, and Cochlear Implantation. Laryngoscope Investig. Otolaryngol. 2019;4:429–440. doi: 10.1002/lio2.288.
    1. Foerst A., Beutner D., Lang-Roth R., Huttenbrink K.B., von Wedel H., Walger M. Prevalence of Auditory Neuropathy/Synaptopathy in a Population of Children with Profound Hearing Loss. Int. J. Pediatr. Otorhinolaryngol. 2006;70:1415–1422. doi: 10.1016/j.ijporl.2006.02.010.
    1. Sergeyenko Y., Lall K., Charles Liberman M., Kujawa S.G. Age-Related Cochlear Synaptopathy: An Early-Onset Contributor to Auditory Functional Decline. J. Neurosci. 2013;33:13686–13694. doi: 10.1523/JNEUROSCI.1783-13.2013.
    1. Guest H., Munro K.J., Prendergast G., Millman R.E., Plack C.J. Impaired Speech Perception in Noise with a Normal Audiogram: No Evidence for Cochlear Synaptopathy and No Relation to Lifetime Noise Exposure. Hear. Res. 2018;364:142–151. doi: 10.1016/j.heares.2018.03.008.
    1. Kujawa S.G., Liberman M.C. Adding Insult to Injury: Cochlear Nerve Degeneration after “Temporary” Noise-Induced Hearing Loss. J. Neurosci. 2009;29:14077–14085. doi: 10.1523/JNEUROSCI.2845-09.2009.
    1. Chen G.D. Hidden Cochlear Impairments. J. Otol. 2018;13:37–43. doi: 10.1016/j.joto.2018.05.001.
    1. Xiong B., Liu Z., Liu Q., Peng Y., Wu H., Lin Y., Zhao X., Sun W. Missed Hearing Loss in Tinnitus Patients with Normal Audiograms. Hear. Res. 2019;384:107826. doi: 10.1016/j.heares.2019.107826.
    1. Iliadou V.V., Ptok M., Grech H., Pedersen E.R., Brechmann A.A., Deggouj N.N., Kiese-Himmel C., Sliwinska-Kowalska M., Nickisch A., Demanez L., et al. A European Perspective on Auditory Processing Disorder-Current Knowledge and Future Research Focus. Front. Neurol. 2017;8:622. doi: 10.3389/fneur.2017.00622.
    1. Vignesh S.S., Jaya V., Muraleedharan A. Prevalence and Audiological Characteristics of Auditory Neuropathy Spectrum Disorder in Pediatric Population: A Retrospective Study. Indian J. Otolaryngol. Head Neck Surg. 2016;68:196–201. doi: 10.1007/s12070-014-0759-6.
    1. Boudewyns A., Declau F., van den Ende J., Hofkens A., Dirckx S., Van de Heyning P. Auditory Neuropathy Spectrum Disorder (ANSD) in Referrals from Neonatal Hearing Screening at a Well-Baby Clinic. Eur. J. Pediatr. 2016;175:993–1000. doi: 10.1007/s00431-016-2735-5.
    1. Penido R.C., Isaac M.L. Prevalence of Auditory Neuropathy Spectrum Disorder in an Auditory Health Care Service. Braz. J. Otorhinolaryngol. 2013;79:429–433. doi: 10.5935/1808-8694.20130077.
    1. Robertson C.M.T., Howarth T.M., Bork D.L.R., Dinu I.A. Permanent Bilateral Sensory and Neural Hearing Loss of Children after Neonatal Intensive Care Because of Extreme Prematurity: A Thirty-Year Study. Pediatrics. 2009;123:e797–e807. doi: 10.1542/peds.2008-2531.
    1. Vohr B.R., Widen J.E., Cone-Wesson B., Sininger Y.S., Gorga M.P., Folsom R.C., Norton S.J. Identification of Neonatal Hearing Impairment: Characteristics of Infants in the Neonatal Intensive Care Unit and Well-Baby Nursery. Ear Hear. 2000;21:373–382. doi: 10.1097/00003446-200010000-00005.
    1. Schulman Galambos C., Galambos R. Brain Stem Evoked Response Audiometry in Newborn Hearing Screening. Arch. Otolaryngol. 1979;105:86–90. doi: 10.1001/archotol.1979.00790140032006.
    1. Amatuzzi M., Liberman M.C., Northrop C. Selective Inner Hair Cell Loss in Prematurity: A Temporal Bone Study of Infants from a Neonatal Intensive Care Unit. JARO J. Assoc. Res. Otolaryngol. 2011;12:595–604. doi: 10.1007/s10162-011-0273-4.
    1. Berg A.L., Spitzer J.B., Towers H.M., Bartosiewicz C., Diamond B.E. Newborn Hearing Screening in the NICU: Profile of Failed Auditory Brainstem Response/Passed Otoacoustic Emission. Pediatrics. 2005;116:933–938. doi: 10.1542/peds.2004-2806.
    1. Xoinis K., Weirather Y., Mavoori H., Shaha S.H., Iwamoto L.M. Extremely Low Birth Weight Infants Are at High Risk for Auditory Neuropathy. J. Perinatol. 2007;27:718–723. doi: 10.1038/sj.jp.7211803.
    1. Bielecki I., Horbulewicz A., Wolan T. Prevalence and Risk Factors for Auditory Neuropathy Spectrum Disorder in a Screened Newborn Population at Risk for Hearing Loss. Int. J. Pediatr. Otorhinolaryngol. 2012;76:1668–1670. doi: 10.1016/j.ijporl.2012.08.001.
    1. Fuchs P.A. Time and Intensity Coding at the Hair Cell’s Ribbon Synapse. J. Physiol. 2005;566:7–12. doi: 10.1113/jphysiol.2004.082214.
    1. Moser T., Neef A., Khimich D. Mechanisms Underlying the Temporal Precision of Sound Coding at the Inner Hair Cell Ribbon Synapse. J. Physiol. 2006;576:55–62. doi: 10.1113/jphysiol.2006.114835.
    1. Kim K.X., Rutherford M.A. Maturation of Nav and Kv Channel Topographies in the Auditory Nerve Spike Initiator before and after Developmental Onset of Hearing Function. J. Neurosci. 2016;36:2111–2118. doi: 10.1523/JNEUROSCI.3437-15.2016.
    1. Nayagam B.A., Muniak M.A., Ryugo D.K. The Spiral Ganglion: Connecting the Peripheral and Central Auditory Systems. Hear. Res. 2011;278:2–20. doi: 10.1016/j.heares.2011.04.003.
    1. Jeon E.J., Xu N., Xu L., Hansen M.R. Influence of Central Glia on Spiral Ganglion Neuron Neurite Growth. Neuroscience. 2011;177:321–334. doi: 10.1016/j.neuroscience.2011.01.014.
    1. Jung S., Maritzen T., Wichmann C., Jing Z., Neef A., Revelo N.H., Al-Moyed H., Meese S., Wojcik S.M., Panou I., et al. Disruption of Adaptor Protein 2μ (AP -2μ) in Cochlear Hair Cells Impairs Vesicle Reloading of Synaptic Release Sites and Hearing. EMBO J. 2015;34:2686–2702. doi: 10.15252/embj.201591885.
    1. Pangšrič T., Lasarow L., Reuter K., Takago H., Schwander M., Riedel D., Frank T., Tarantino L.M., Bailey J.S., Strenzke N., et al. Hearing Requires Otoferlin-Dependent Efficient Replenishment of Synaptic Vesicles in Hair Cells. Nat. Neurosci. 2010;13:869–876. doi: 10.1038/nn.2578.
    1. Khimich D., Nouvtan R., Pujol R., Diesk S.T., Egner A., Gundelfinger E.D., Moser T. Hair Cell Synaptic Ribbons Are Essential for Synchronous Auditory Signalling. Nature. 2005;434:889–894. doi: 10.1038/nature03418.
    1. Parkinson N.J., Olsson C.L., Hallows J.L., Mckee-Johnson J., Keogh B.P., Noben-Trauth K., Kujawa S.G., Tempel B.L. Mutant β-Spectrin 4 Causes Auditory and Motor Neuropathies in Quivering Mice. Nat. Genet. 2001;29:61–65. doi: 10.1038/ng710.
    1. Buran B.N., Strenzke N., Neef A., Gundelfinger E.D., Moser T., Liberman M.C. Onset Coding Is Degraded in Auditory Nerve Fibers from Mutant Mice Lacking Synaptic Ribbons. J. Neurosci. 2010;30:7587–7597. doi: 10.1523/JNEUROSCI.0389-10.2010.
    1. Starr A., Sininger Y., Nguyen T., Michalewski H. Cochlear Receptor and Auditory Pathway Activity in Auditory Neuropathy. Ear Hear. 2001;22:91–99. doi: 10.1097/00003446-200104000-00002.
    1. Ehrmann-Müller D., Cebulla M., Rak K., Scheich M., Back D., Hagen R., Shehata-Dieler W. Evaluation and Therapy Outcome in Children with Auditory Neuropathy Spectrum Disorder (ANSD) Int. J. Pediatr. Otorhinolaryngol. 2019;127:109618. doi: 10.1016/j.ijporl.2019.109681.
    1. Riggs W.J., Roche J.P., Giardina C.K., Harris M.S., Bastian Z.J., Fontenot T.E., Buchman C.A., Brown K.D., Adunka O.F., Fitzpatrick D.C. Intraoperative Electrocochleographic Characteristics of Auditory Neuropathy Spectrum Disorder in Cochlear Implant Subjects. Front. Neurosci. 2017;11:416. doi: 10.3389/fnins.2017.00416.
    1. Attias J., Raveh E., Aizer-Dannon A., Bloch-Mimouni A., Fattal-Valevski A. Auditory System Dysfunction Due to Infantile Thiamine Deficiency: Long-Term Auditory Sequelae. Audiol. Neurotol. 2012;17:309–320. doi: 10.1159/000339356.
    1. Yasunaga S., Grati M., Cohen-Salmon M., El-Amraoui A., Mustapha M., Salem N., El-Zir E., Loiselet J., Petit C. A Mutation in OTOF, Encoding Otoferlin, a FER-1-like Protein, Causes DFNB9, a Nonsyndromic Form of Deafness. Nat. Genet. 1999;21:363–369. doi: 10.1038/7693.
    1. PangrŠič T., Reisinger E., Moser T. Otoferlin: A Multi-C 2 Domain Protein Essential for Hearing. Trends Neurosci. 2012;35:671–680. doi: 10.1016/j.tins.2012.08.002.
    1. Roux I., Safieddine S., Nouvian R., Grati M., Simmler M.C., Bahloul A., Perfettini I., Le Gall M., Rostaing P., Hamard G., et al. Otoferlin, Defective in a Human Deafness Form, Is Essential for Exocytosis at the Auditory Ribbon Synapse. Cell. 2006;127:277–289. doi: 10.1016/j.cell.2006.08.040.
    1. Johnson C.P., Chapman E.R. Otoferlin Is a Calcium Sensor That Directly Regulates SNARE-Mediated Membrane Fusion. J. Cell Biol. 2010;191:187–197. doi: 10.1083/jcb.201002089.
    1. Padmanarayana M., Hams N., Speight L.C., Petersson E.J., Mehl R.A., Johnson C.P. Characterization of the Lipid Binding Properties of Otoferlin Reveals Specific Interactions between PI(4,5)P2 and the C2C and C2F Domains. Biochemistry. 2014;53:5023–5033. doi: 10.1021/bi5004469.
    1. Fuson K., Rice A., Mahling R., Snow A., Nayak K., Shanbhogue P., Meyer A.G., Redpath G.M.I., Hinderliter A., Cooper S.T., et al. Alternate Splicing of Dysferlin C2A Confers Ca2+-Dependent and Ca2+-Independent Binding for Membrane Repair. Structure. 2014;22:104–115. doi: 10.1016/j.str.2013.10.001.
    1. Jiménez J.L., Bashir R. In Silico Functional and Structural Characterisation of Ferlin Proteins by Mapping Disease-Causing Mutations and Evolutionary Information onto Three-Dimensional Models of Their C2 Domains. J. Neurol. Sci. 2007;260:114–123. doi: 10.1016/j.jns.2007.04.016.
    1. Dulon D., Safieddine S., Jones S.M., Petit C. Otoferlin Is Critical for a Highly Sensitive and Linear Calcium-Dependent Exocytosis at Vestibular Hair Cell Ribbon Synapses. J. Neurosci. 2009;29:10474–10487. doi: 10.1523/JNEUROSCI.1009-09.2009.
    1. Varga R., Avenarius M.R., Kelley P.M., Keats B.J., Berlin C.I., Hood L.J., Morlet T.G., Brashears S.M., Starr A., Cohn E.S., et al. OTOF Mutations Revealed by Genetic Analysis of Hearing Loss Families Including a Potential Temperature Sensitive Auditory Neuropathy Allele. J. Med. Genet. 2006;43:576–581. doi: 10.1136/jmg.2005.038612.
    1. Wynne D.P., Zeng F.G., Bhatt S., Michalewski H.J., Dimitrijevic A., Starr A. Loudness Adaptation Accompanying Ribbon Synapse and Auditory Nerve Disorders. Brain. 2013;136:1626–1638. doi: 10.1093/brain/awt056.
    1. Marlin S., Feldmann D., Nguyen Y., Rouillon I., Loundon N., Jonard L., Bonnet C., Couderc R., Garabedian E.N., Petit C., et al. Temperature-Sensitive Auditory Neuropathy Associated with an Otoferlin Mutation: Deafening Fever! Biochem. Biophys. Res. Commun. 2010;394:737–742. doi: 10.1016/j.bbrc.2010.03.062.
    1. Wang D.Y., Wang Y.C., Weil D., Zhao Y.L., Rao S.Q., Zong L., Ji Y.B., Liu Q., Li J.Q., Yang H.M., et al. Screening Mutations of OTOF Gene in Chinese Patients with Auditory Neuropathy, Including a Familial Case of Temperature-Sensitive Auditory Neuropathy. BMC Med. Genet. 2010;11:79. doi: 10.1186/1471-2350-11-79.
    1. Romanos J., Kimura L., Fávero M.L., Izarra F.A.R., De Mello Auricchio M.T.B., Batissoco A.C., Lezirovitz K., Abreu-Silva R.S., Mingroni-Netto R.C. Novel OTOF Mutations in Brazilian Patients with Auditory Neuropathy. J. Hum. Genet. 2009;54:382–385. doi: 10.1038/jhg.2009.45.
    1. Matsunaga T., Mutai H., Kunishima S., Namba K., Morimoto N., Shinjo Y., Arimoto Y., Kataoka Y., Shintani T., Morita N., et al. A Prevalent Founder Mutation and Genotype-Phenotype Correlations of OTOF in Japanese Patients with Auditory Neuropathy. Clin. Genet. 2012;82:425–432. doi: 10.1111/j.1399-0004.2012.01897.x.
    1. Runge C.L., Erbe C.B., Mcnally M.T., Van Dusen C., Friedland D.R., Kwitek A.E., Kerschner J.E. A Novel Otoferlin Splice-Site Mutation in Siblings with Auditory Neuropathy Spectrum Disorder. Audiol. Neurotol. 2015;18:374–382. doi: 10.1159/000354978.
    1. Iwasa Y., Nishio S., Sugaya A., Kataoka Y., Kanda Y., Taniguchi M., Nagai K., Naito Y., Ikezono T., Horie R., et al. OTOF Mutation Analysis with Massively Parallel DNA Sequencing in 2,265 Japanese Sensorineural Hearing Loss Patients. PLoS ONE. 2019;14:e021593. doi: 10.1371/journal.pone.0215932.
    1. Deafness Variation Database. [(accessed on 10 January 2020)]; Available online:
    1. Sloan-Heggen C.M., Bierer A.O., Shearer A.E., Kolbe D.L., Nishimura C.J., Frees K.L., Ephraim S.S., Shibata S.B., Booth K.T., Campbell C.A., et al. Comprehensive Genetic Testing in the Clinical Evaluation of 1119 Patients with Hearing Loss. Hum. Genet. 2016;135:441–450. doi: 10.1007/s00439-016-1648-8.
    1. Tertrais M., Bouleau Y., Emptoz A., Belleudy S., Sutton R.B., Petit C., Safieddine S., Dulon D. Viral Transfer of Mini-Otoferlins Partially Restores the Fast Component of Exocytosis and Uncovers Ultrafast Endocytosis in Auditory Hair Cells of Otoferlin Knock-out Mice. J. Neurosci. 2019;39:3394–3411. doi: 10.1523/JNEUROSCI.1550-18.2018.
    1. Baig S.M., Koschak A., Lieb A., Gebhart M., Dafinger C., Nürnberg G., Ali A., Ahmad I., Sinnegger-Brauns M.J., Brandt N., et al. Loss of Ca v 1.3 (CACNA1D) Function in a Human Channelopathy with Bradycardia and Congenital Deafness. Nat. Neurosci. 2011;14:77–86. doi: 10.1038/nn.2694.
    1. Brandt A., Striessnig J., Moser T. Cav1.3 Channels Are Essential for Development and Presynaptic Activity of Cochlear Inner Hair Cells. J. Neurosci. 2003;23:10832–10840. doi: 10.1523/JNEUROSCI.23-34-10832.2003.
    1. Platzer J., Engel J., Schrott-Fischer A., Stephan K., Bova S., Chen H., Zheng H., Striessnig J. Congenital Deafness and Sinoatrial Node Dysfunction in Mice Lacking Class D L-Type Ca2+ Channels. Cell. 2000;102:89–97. doi: 10.1016/S0092-8674(00)00013-1.
    1. Qi F., Zhang R., Chen J., Zhao F., Sun Y., Du Z., Bing D., Li P., Shao S., Zhu H., et al. Down-Regulation of Cav1.3 in Auditory Pathway Promotes Age-Related Hearing Loss by Enhancing Calcium-Mediated Oxidative Stress in Male Mice. Aging. 2019;11:6490–6502. doi: 10.18632/aging.102203.
    1. Eckrich S., Hecker D., Sorg K., Blum K., Fischer K., Münkner S., Wenzel G., Schick B., Engel J. Cochlea-Specific Deletion of Cav1.3 Calcium Channels Arrests Inner Hair Cell Differentiation and Unravels Pitfalls of Conditional Mouse Models. Front. Cell. Neurosci. 2019;13:225. doi: 10.3389/fncel.2019.00225.
    1. Haeseleer F., Imanishi Y., Sokal I., Filipek S., Palczewski K. Biochemical and Biophysical Research Communications. Academic Press Inc.; Cambridge, MA, USA: 2002. Calcium-Binding Proteins: Intracellular Sensors from the Calmodulin Superfamily; pp. 615–623.
    1. Christel C., Lee A. Ca 2 +-Dependent Modulation of Voltage-Gated Ca 2 + Channels. Biochim. Biophys. Acta Gen. Subj. 2012;1820:1243–1252. doi: 10.1016/j.bbagen.2011.12.012.
    1. Schrauwen I., Helfmann S., Inagaki A., Predoehl F., Tabatabaiefar M.A., Picher M.M., Sommen M., Seco C.Z., Oostrik J., Kremer H., et al. A Mutation in CABP2, Expressed in Cochlear Hair Cells, Causes Autosomal-Recessive Hearing Impairment. Am. J. Hum. Genet. 2012;91:636–645. doi: 10.1016/j.ajhg.2012.08.018.
    1. Seal R.P., Akil O., Yi E., Weber C.M., Grant L., Yoo J., Clause A., Kandler K., Noebels J.L., Glowatzki E., et al. Sensorineural Deafness and Seizures in Mice Lacking Vesicular Glutamate Transporter 3. Neuron. 2008;57:263–275. doi: 10.1016/j.neuron.2007.11.032.
    1. Ruel J., Emery S., Nouvian R., Bersot T., Amilhon B., Van Rybroek J.M., Rebillard G., Lenoir M., Eybalin M., Delprat B., et al. Impairment of SLC17A8 Encoding Vesicular Glutamate Transporter-3, VGLUT3, Underlies Nonsyndromic Deafness DFNA25 and Inner Hair Cell Dysfunction in Null Mice. Am. J. Hum. Genet. 2008;83:278–292. doi: 10.1016/j.ajhg.2008.07.008.
    1. Petek E., Windpassinger C., Mach M., Rauter L., Scherer S.W., Wagner K., Kroisel P.M. Molecular Characterization of a 12q22-Q24 Deletion Associated with Congenital Deafness: Confirmation and Refinement of the DFNA25 Locus. Am. J. Med. Genet. Part A. 2002;117:122–126. doi: 10.1002/ajmg.a.10155.
    1. Ryu N., Sagong B., Park H.J., Kim M.A., Lee K.Y., Choi J.Y., Kim U.K. Screening of the SLC17A8 Gene as a Causative Factor for Autosomal Dominant Non-Syndromic Hearing Loss in Koreans. BMC Med. Genet. 2016;17:6. doi: 10.1186/s12881-016-0269-3.
    1. Ryu N., Lee S., Park H.J., Lee B., Kwon T.J., Bok J., Park C.I., Lee K.Y., Baek J.I., Kim U.K. Identification of a Novel Splicing Mutation within SLC17A8 in a Korean Family with Hearing Loss by Whole-Exome Sequencing. Gene. 2017;627:233–238. doi: 10.1016/j.gene.2017.06.040.
    1. Shearer A.E., Eppsteiner R.W., Frees K., Tejani V., Sloan-Heggen C.M., Brown C., Abbas P., Dunn C., Hansen M.R., Gantz B.J., et al. Genetic Variants in the Peripheral Auditory System Significantly Affect Adult Cochlear Implant Performance. Hear. Res. 2017;348:138–142. doi: 10.1016/j.heares.2017.02.008.
    1. Akil O., Lustig L. Methods in Molecular Biology. Volume 1950. Humana Press Inc.; Totowa, NJ, USA: 2019. AAV-Mediated Gene Delivery to the Inner Ear; pp. 271–282.
    1. Alexander C., Votruba M., Pesch U.E.A., Thiselton D.L., Mayer S., Moore A., Rodriguez M., Kellner U., Leo-Kottler B., Auburger G., et al. OPA1, Encoding a Dynamin-Related GTPase, Is Mutated in Autosomal Dominant Optic Atrophy Linked to Chromosome 3q28. Nat. Genet. 2000;26:211–215. doi: 10.1038/79944.
    1. Delettre C., Lenaers G., Griffoin J.M., Gigarel N., Lorenzo C., Belenguer P., Pelloquin L., Grosgeorge J., Turc-Carel C., Perret E., et al. Nuclear Gene OPA1, Encoding a Mitochondrial Dynamin-Related Protein, Is Mutated in Dominant Optic Atrophy. Nat. Genet. 2000;26:207–210. doi: 10.1038/79936.
    1. Kasahara A., Scorrano L. Mitochondria: From Cell Death Executioners to Regulators of Cell Differentiation. Trends Cell Biol. 2014;24:761–770. doi: 10.1016/j.tcb.2014.08.005.
    1. Bansal D., Miyake K., Vogel S.S., Groh S., Chen C.C., Williamson R., McNeil P.L., Campbell K.P. Defective Membrane Repair in Dysferlin-Deficient Muscular Dystrophy. Nature. 2003;423:168–172. doi: 10.1038/nature01573.
    1. Ferré M., Bonneau D., Milea D., Chevrollier A., Verny C., Dollfus H., Ayuso C., Defoort S., Vignal C., Zanlonghi X., et al. Molecular Screening of 980 Cases of Suspected Hereditary Optic Neuropathy with a Report on 77 Novel OPA1 Mutations. Hum. Mutat. 2009;30:E692–E705. doi: 10.1002/humu.21025.
    1. Davies V.J., Hollins A.J., Piechota M.J., Yip W., Davies J.R., White K.E., Nicols P.P., Boulton M.E., Votruba M. Opa1 Deficiency in a Mouse Model of Autosomal Dominant Optic Atrophy Impairs Mitochondrial Morphology, Optic Nerve Structure and Visual Function. Hum. Mol. Genet. 2007;16:1307–1318. doi: 10.1093/hmg/ddm079.
    1. Yu-Wai-Man P., Griffiths P.G., Gorman G.S., Lourenco C.M., Wright A.F., Auer-Grumbach M., Toscano A., Musumeci O., Valentino M.L., Caporali L., et al. Multi-System Neurological Disease Is Common in Patients with OPA1 Mutations. Brain. 2010;133:771–786. doi: 10.1093/brain/awq007.
    1. Santarelli R., Rossi R., Scimemi P., Cama E., Valentino M.L., La Morgia C., Caporali L., Liguori R., Magnavita V., Monteleone A., et al. OPA1-Related Auditory Neuropathy: Site of Lesion and Outcome of Cochlear Implantation. Brain. 2015;138:563–576. doi: 10.1093/brain/awu378.
    1. Huang T., Santarelli R., Starr A. Mutation of OPA1 Gene Causes Deafness by Affecting Function of Auditory Nerve Terminals. Brain Res. 2009;1300:97–104. doi: 10.1016/j.brainres.2009.08.083.
    1. Diaz-Horta O., Abad C., Sennaroglu L., Ii J.F., DeSmidt A., Bademci G., Tokgoz-Yilmaz S., Duman D., Cengiz F.B., Grati M., et al. ROR1 Is Essential for Proper Innervation of Auditory Hair Cells and Hearing in Humans and Mice. Proc. Natl. Acad. Sci. USA. 2016;113:5993–5998. doi: 10.1073/pnas.1522512113.
    1. Holm T.H., Lykke-Hartmann K. Insights into the Pathology of the A3 Na+/K+-ATPase Ion Pump in Neurological Disorders; Lessons from Animal Models. Front. Physiol. 2016;7:209. doi: 10.3389/fphys.2016.00209.
    1. Nicolaides P., Appleton R.E., Fryer A. Cerebellar Ataxia, Areflexia, Pes Cavus, Optic Atrophy, and Sensorineural Hearing Loss (CAPOS): A New Syndrome. J. Med. Genet. 1996;33:419–421. doi: 10.1136/jmg.33.5.419.
    1. Demos M.K., van Karnebeek C.D., Ross C.J., Adam S., Shen Y., Zhan S.H., Shyr C., Horvath G., Suri M., Fryer A., et al. A Novel Recurrent Mutation in ATP1A3 Causes CAPOS Syndrome. Orphanet J. Rare Dis. 2014;9:15. doi: 10.1186/1750-1172-9-15.
    1. Rosewich H., Weise D., Ohlenbusch A., Gärtner J., Brockmann K. Phenotypic Overlap of Alternating Hemiplegia of Childhood and CAPOS Syndrome. Neurology. 2014;83:861–863. doi: 10.1212/WNL.0000000000000735.
    1. Tranebjærg L., Strenzke N., Lindholm S., Rendtorff N.D., Poulsen H., Khandelia H., Kopec W., Lyngbye T.J.B., Hamel C., Delettre C., et al. Correction to: The CAPOS Mutation in ATP1A3 Alters Na/K-ATPase Function and Results in Auditory Neuropathy Which Has Implications for Management. Hum. Genet. 2018;137:111–127. doi: 10.1007/s00439-017-1862-z.
    1. Heimer G., Sadaka Y., Israelian L., Feiglin A., Ruggieri A., Marshall C.R., Scherer S.W., Ganelin-Cohen E., Marek-Yagel D., Tzadok M., et al. CAOS-Episodic Cerebellar Ataxia, Areflexia, Optic Atrophy, and Sensorineural Hearing Loss: A Third Allelic Disorder of the ATP1A3 Gene. J. Child Neurol. 2015;30:1749–1756. doi: 10.1177/0883073815579708.
    1. Paquay S., Wiame E., Deggouj N., Boschi A., De Siati R.D., Sznajer Y., Nassogne M.-C. Childhood Hearing Loss Is a Key Feature of CAPOS Syndrome: A Case Report. Int. J. Pediatr. Otorhinolaryngol. 2018;104:191–194. doi: 10.1016/j.ijporl.2017.11.022.
    1. Potic A., Nmezi B., Padiath Q.S. CAPOS Syndrome and Hemiplegic Migraine in a Novel Pedigree with the Specific ATP1A3 Mutation. J. Neurol. Sci. 2015;358:453–456. doi: 10.1016/j.jns.2015.10.002.
    1. Duat Rodriguez A., Prochazkova M., Santos Santos S., Rubio Cabezas O., Cantarin Extremera V., Gonzalez-Gutierrez-Solana L. Early Diagnosis of CAPOS Syndrome Before Acute-Onset Ataxia—Review of the Literature and a New Family. Pediatr. Neurol. 2017;71:60–64. doi: 10.1016/j.pediatrneurol.2017.01.009.
    1. Maas R.P.P.W.M., Schieving J.H., Schouten M., Kamsteeg E.J., Van De Warrenburg B.P.C. The Genetic Homogeneity of CAPOS Syndrome: Four New Patients with the c.2452G>A (p.Glu818Lys) Mutation in the ATP1A3 Gene. Pediatr. Neurol. 2016;59:71–75. doi: 10.1016/j.pediatrneurol.2016.02.010.
    1. Han K.H., Oh D.Y., Lee S., Lee C., Han J.H., Kim M.Y., Park H.R., Park M.K., Kim N.K.D., Lee J., et al. ATP1A3 Mutations Can Cause Progressive Auditory Neuropathy: A New Gene of Auditory Synaptopathy. Sci. Rep. 2017;7:1–11. doi: 10.1038/s41598-017-16676-9.
    1. Schoen C.J., Burmeister M., Lesperance M.M. Diaphanous Homolog 3 (Diap3) Overexpression Causes Progressive Hearing Loss and Inner Hair Cell Defects in a Transgenic Mouse Model of Human Deafness. PLoS ONE. 2013;8:e56520. doi: 10.1371/journal.pone.0056520.
    1. Schoen C.J., Emery S.B., Thorne M.C., Ammana H.R., Śliwerska E., Arnett J., Hortsch M., Hannan F., Burmeister M., Lesperance M.M. Increased Activity of Diaphanous Homolog 3 (DIAPH3)/Diaphanous Causes Hearing Defects in Humans with Auditory Neuropathy and in Drosophila. Proc. Natl. Acad. Sci. USA. 2010;107:13396–13401. doi: 10.1073/pnas.1003027107.
    1. Kim T.B., Isaacson B., Sivakumaran T.A., Starr A., Keats B.J.B., Lesperance M.M. A Gene Responsible for Autosomal Dominant Auditory Neuropathy (AUNA1) Maps to 13q14-21. J. Med. Genet. 2004;41:872–876. doi: 10.1136/jmg.2004.020628.
    1. Starr A., Isaacson B., Michalewski H.J., Zeng F.G., Kong Y.Y., Beale P., Paulson G.W., Keats B.J.B., Lesperance M.M. A Dominantly Inherited Progressive Deafness Affecting Distal Auditory Nerve and Hair Cells. JARO J. Assoc. Res. Otolaryngol. 2004;5:411–426. doi: 10.1007/s10162-004-5014-5.
    1. Charcot-Marie-Tooth Disease Fact Sheet|National Institute of Neurological Disorders and Stroke. [(accessed on 31 December 2019)]; Available online: .
    1. Goswamy J., Bruce I.A., Green K.M.J., O’Driscoll M.P. Cochlear Implantation in a Patient with Sensori-Neural Deafness Secondary to Charcot-Marie-Tooth Disease. Cochlear Implants Int. 2012;13:184–187. doi: 10.1179/1754762811Y.0000000021.
    1. Verhagen W.I.M., Huygen P.L.M., Gabreëls-Festen A.A.W.M., Engelhart M., Van Mierlo P.J.W.B., Van Engelen B.G.M. Sensorineural Hearing Impairment in Patients with Pmp22 Duplication, Deletion, and Frameshift Mutations. Otol. Neurotol. 2005;26:405–414. doi: 10.1097/01.mao.0000169769.93173.df.
    1. Varga R., Kelley P.M., Keats B.J., Starr A., Leal S.M., Cohn E., Kimberling W.J. Non-Syndromic Recessive Auditory Neuropathy Is the Result of Mutations in the Otoferlin (OTOF) Gene [2] J. Med. Genet. 2003;40:45–50. doi: 10.1136/jmg.40.1.45.
    1. Kabzińska D., Korwin-Piotrowska T., Drechsler H., Drac H., Hausmanowa-Petrusewicz I., Kochański A. Late-Onset Charcot-Marie-Tooth Type 2 Disease with Hearing Impairment Associated with a Novel Pro105Thr Mutation in the MPZ Gene. Am. J. Med. Genet. Part A. 2007;143:2196–2199. doi: 10.1002/ajmg.a.31908.
    1. Rance G., Fava R., Baldock H., Chong A., Barker E., Corben L., Delatycki M.B. Speech Perception Ability in Individuals with Friedreich Ataxia. Brain. 2008;131:2002–2012. doi: 10.1093/brain/awn104.
    1. Tranebjærg L. Deafness-Dystonia-Optic Neuronopathy Syndrome. In: Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J.H., Stephens K., Amemiya A., editors. GeneReviews® [Internet] University of Washington; Seattle, WA, USA: 2003.
    1. Bahmad F., Merchant S.N., Nadol J.B., Tranebjærg L. Otopathology in Mohr-Tranebjærg Syndrome. Laryngoscope. 2007;117:1202–1208. doi: 10.1097/MLG.0b013e3180581944.
    1. Brookes J.T., Kanis A.B., Tan L.Y., Tranebjærg L., Vore A., Smith R.J.H. Cochlear Implantation in Deafness-Dystonia-Optic Neuronopathy (DDON) Syndrome. Int. J. Pediatr. Otorhinolaryngol. 2008;72:121–126. doi: 10.1016/j.ijporl.2007.08.019.
    1. Kawarai T., Yamazaki H., Yamakami K., Tsukamoto-Miyashiro A., Kodama M., Rumore R., Caltagirone C., Nishino I., Orlacchio A. A Novel AIFM1 Missense Mutation in a Japanese Patient with Ataxic Sensory Neuronopathy and Hearing Impairment. J. Neurol. Sci. 2020;409:116584. doi: 10.1016/j.jns.2019.116584.
    1. Joza N., Pospisilik J.A., Hangen E., Hanada T., Modjtahedi N., Penninger J.M., Kroemer G. AIF: Not Just an Apoptosis-Inducing Factor. Ann. N. Y. Acad. Sci. 2009;1171:2–11. doi: 10.1111/j.1749-6632.2009.04681.x.
    1. Zong L., Guan J., Ealy M., Zhang Q., Wang D., Wang H., Zhao Y., Shen Z., Campbell C.A., Wang F., et al. Mutations in Apoptosis-Inducing Factor Cause X-Linked Recessive Auditory Neuropathy Spectrum Disorder. J. Med. Genet. 2015;52:523–531. doi: 10.1136/jmedgenet-2014-102961.
    1. Simon M., Richard E.M., Wang X., Shahzad M., Huang V.H., Qaiser T.A., Potluri P., Mahl S.E., Davila A., Nazli S., et al. Mutations of Human NARS2, Encoding the Mitochondrial Asparaginyl-TRNA Synthetase, Cause Nonsyndromic Deafness and Leigh Syndrome. PLoS Genet. 2015;11:e1005097. doi: 10.1371/journal.pgen.1005097.
    1. Defourny J., Aghaie A., Perfettini I., Avan P., Delmaghani S., Petit C. Pejvakin-Mediated Pexophagy Protects Auditory Hair Cells against Noise-Induced Damage. Proc. Natl. Acad. Sci. USA. 2019;116:8010–8017. doi: 10.1073/pnas.1821844116.
    1. Delmaghani S., Del Castillo F.J., Michel V., Leibovici M., Aghaie A., Ron U., Van Laer L., Ben-Tal N., Van Camp G., Weil D., et al. Mutations in the Gene Encoding Pejvakin, a Newly Identified Protein of the Afferent Auditory Pathway, Cause DFNB59 Auditory Neuropathy. Nat. Genet. 2006;38:770–778. doi: 10.1038/ng1829.
    1. Schwander M., Sczaniecka A., Grillet N., Bailey J.S., Avenarius M., Najmabadi H., Steffy B.M., Federe G.C., Lagler E.A., Banan R., et al. A Forward Genetics Screen in Mice Identifies Recessive Deafness Traits and Reveals That Pejvakin Is Essential for Outer Hair Cell Function. J. Neurosci. 2007;27:2163–2175. doi: 10.1523/JNEUROSCI.4975-06.2007.
    1. Borck G., Rainshtein L., Hellman-Aharony S., Volk A., Friedrich K., Taub E., Magal N., Kanaan M., Kubisch C., Shohat M., et al. High Frequency of Autosomal-Recessive DFNB59 Hearing Loss in an Isolated Arab Population in Israel. Clin. Genet. 2012;82:271–276. doi: 10.1111/j.1399-0004.2011.01741.x.
    1. Ebermann I., Walger M., Scholl H.P.N., Issa P.C., Lüke C., Nürnberg G., Lang-Roth R., Becker C., Nürnberg P., Bolz H.J. Truncating Mutation of the DFNB59 Gene Causes Cochlear Hearing Impairment and Central Vestibular Dysfunction. Hum. Mutat. 2007;28:571–577. doi: 10.1002/humu.20478.
    1. Chaleshtori M.H., Simpson M.A., Farrokhi E., Dolati M., Hoghooghi Rad L., Geshnigani S.A., Crosby A.H. Novel Mutations in the Pejvakin Gene Are Associated with Autosomal Recessive Non-Syndromic Hearing Loss in Iranian Families. Clin. Genet. 2007;72:261–263. doi: 10.1111/j.1399-0004.2007.00852.x.
    1. Collin R.W.J., Kalay E., Oostrik J., Çaylan R., Wollnik B., Arslan S., Den Hollander A.I., Birinci Y., Lichtner P., Strom T.M., et al. Involvement of DFNB59 Mutations in Autosomal Recessive Nonsyndromic Hearing Impairment. Hum. Mutat. 2007;28:718–723. doi: 10.1002/humu.20510.
    1. Delmaghani S., Defourny J., Aghaie A., Beurg M., Dulon D., Thelen N., Perfettini I., Zelles T., Aller M., Meyer A., et al. Hypervulnerability to Sound Exposure through Impaired Adaptive Proliferation of Peroxisomes. Cell. 2015;163:894–906. doi: 10.1016/j.cell.2015.10.023.
    1. Guipponi M. The Transmembrane Serine Protease (TMPRSS3) Mutated in Deafness DFNB8/10 Activates the Epithelial Sodium Channel (ENaC) in Vitro. Hum. Mol. Genet. 2002;11:2829–2836. doi: 10.1093/hmg/11.23.2829.
    1. Fasquelle L., Scott H.S., Lenoir M., Wang J., Rebillard G., Gaboyard S., Venteo S., François F., Mausset-Bonnefont A.L., Antonarakis S.E., et al. Tmprss3, a Transmembrane Serine Protease Deficient in Human DFNB8/10 Deafness, Is Critical for Cochlear Hair Cell Survival at the Onset of Hearing. J. Biol. Chem. 2011;286:17383–17397. doi: 10.1074/jbc.M110.190652.
    1. Shrestha B.R., Chia C., Wu L., Kujawa S.G., Liberman M.C., Goodrich L.V. Sensory Neuron Diversity in the Inner Ear Is Shaped by Activity. Cell. 2018;174:1229–1246. doi: 10.1016/j.cell.2018.07.007.
    1. Li Y., Peng A., Ge S., Wang Q., Liu J. MiR-204 Suppresses Cochlear Spiral Ganglion Neuron Survival Invitro by Targeting TMPRSS3. Hear. Res. 2014;314:60–64. doi: 10.1016/j.heares.2014.05.002.
    1. Scott H.S., Kudoh J., Wattenhofer M., Shibuya K., Berry A., Chrast R., Guipponi M., Wang J., Kawasaki K., Asakawa S., et al. Insertion of β-Satellite Repeats Identifies a Transmembrane Protease Causing Both Congenital and Childhood Onset Autosomal Recessive Deafness. Nat. Genet. 2001;27:59–63. doi: 10.1038/83768.
    1. Bonne-Tamir B., DeStefano A.L., Briggs C.E., Adair R., Franklyn B., Weiss S., Korostishevsky M., Frydman M., Baldwin C.T., Farrer L.A. Linkage of Congenital Recessive Deafness (Gene DFNB10) to Chromosome 21q22.3. Am. J. Hum. Genet. 1996;58:1254–1259.
    1. Weegerink N.J.D., Schraders M., Oostrik J., Huygen P.L.M., Strom T.M., Granneman S., Pennings R.J.E., Venselaar H., Hoefsloot L.H., Elting M., et al. Genotype-Phenotype Correlation in DFNB8/10 Families with TMPRSS3 Mutations. JARO J. Assoc. Res. Otolaryngol. 2011;12:753–766. doi: 10.1007/s10162-011-0282-3.
    1. Miyagawa M., Nishio S.Y., Sakurai Y., Hattori M., Tsukada K., Moteki H., Kojima H., Usami S.I. The Patients Associated with TMPRSS3 Mutations Are Good Candidates for Electric Acoustic Stimulation. Ann. Otol. Rhinol. Laryngol. 2015;124:193S–204S. doi: 10.1177/0003489415575056.
    1. Eppsteiner R.W., Shearer A.E., Hildebrand M.S., DeLuca A.P., Ji H., Dunn C.C., Black-Ziegelbein E.A., Casavant T.L., Braun T.A., Scheetz T.E., et al. Prediction of Cochlear Implant Performance by Genetic Mutation: The Spiral Ganglion Hypothesis. Hear. Res. 2012;292:51–58. doi: 10.1016/j.heares.2012.08.007.
    1. Meleca J.B., Stillitano G., Lee M.Y., Lyle W., Carol Liu Y.C., Anne S. Outcomes of Audiometric Testing in Children with Auditory Neuropathy Spectrum Disorder. Int. J. Pediatr. Otorhinolaryngol. 2020;129:109757. doi: 10.1016/j.ijporl.2019.109757.
    1. Haustein M.D., Read D.J., Steinert J.R., Pilati N., Dinsdale D., Forsythe I.D. Acute Hyperbilirubinaemia Induces Presynaptic Neurodegeneration at a Central Glutamatergic Synapse. J. Physiol. 2010;588:4683–4693. doi: 10.1113/jphysiol.2010.199778.
    1. Chandan H.S., Prabhu P. Audiological Changes over Time in Adolescents and Young Adults with Auditory Neuropathy Spectrum Disorder. Eur. Arch. Oto-Rhino-Laryngol. 2015;272:1801–1807. doi: 10.1007/s00405-015-3505-0.
    1. Rance G., Beer D.E., Cone-Wesson B., Shepherd R.K., Dowell R.C., King A.M., Rickards F.W., Clark G.M. Clinical Findings for a Group of Infants and Young Children with Auditory Neuropathy. Ear Hear. 1999;20:238–252. doi: 10.1097/00003446-199906000-00006.
    1. Kraus N., Bradlow A.R., Cheatham M.A., Cunningham J., King C.D., Koch D.B., Nicol T.G., McGee T.J., Stein L.K., Wright B.A. Consequences of Neural Asynchrony: A Case of Auditory Neuropathy. JARO J. Assoc. Res. Otolaryngol. 2000;1:33–45. doi: 10.1007/s101620010004.
    1. Dimitrijevic A., Starr A., Bhatt S., Michalewski H.J., Zeng F.G., Pratt H. Auditory Cortical N100 in Pre- and Post-Synaptic Auditory Neuropathy to Frequency or Intensity Changes of Continuous Tones. Clin. Neurophysiol. 2011;122:594–604. doi: 10.1016/j.clinph.2010.08.005.
    1. Kemp D.T. Stimulated Acoustic Emissions from within the Human Auditory System. J. Acoust. Soc. Am. 1978;64:1386–1391. doi: 10.1121/1.382104.
    1. Prieve B., Fitzgerald T. Otoacoustic Emissions. In: Katz J., editor. Handbook of Clinical Audiology. Wolters Kluwer Health; Philadelphia, PA, USA: 2015.
    1. Glattke T.J. Otoacoustic Emissions—Clinical Applications. 2nd ed. Thieme; New York, NY, USA: 2002.
    1. Uus K. Transient Auditory Neuropathy in Infants: How to Conceptualize the Recovery of Auditory Brain Stem Response in the Context of Newborn Hearing Screening? Semin. Hear. 2011;32:123–128. doi: 10.1055/s-0031-1277233.
    1. Pappa A.K., Hutson K.A., Scott W.C., David Wilson J., Fox K.E., Masood M.M., Giardina C.K., Pulver S.H., Grana G.D., Askew C., et al. Hair Cell and Neural Contributions to the Cochlear Summating Potential. J. Neurophysiol. 2019;121:2163–2180. doi: 10.1152/jn.00006.2019.
    1. Dallos P., Cheatham M.A. Production of Cochlear Potentials by Inner and Outer Hair Cells. J. Acoust. Soc. Am. 1976;60:510–512. doi: 10.1121/1.381086.
    1. do Amaral Soares I., de Lemos Menezes P., Carnaúba A.T.L., de Andrade K.C.L., Lins O.G. Estudo Do Microfonismo Coclear Na Neuropatia Auditiva. Braz. J. Otorhinolaryngol. 2016;82:722–736. doi: 10.1016/j.bjorl.2015.11.022.
    1. Santarelli R. Information from Cochlear Potentials and Genetic Mutations Helps Localize the Lesion Site in Auditory Neuropathy. Genome Med. 2010;2:91. doi: 10.1186/gm212.
    1. Santarelli R., Arslan E. Electrocochleography in Auditory Neuropathy. Hear. Res. 2002;170:32–47. doi: 10.1016/S0378-5955(02)00450-1.
    1. Abbas P.J., Brown C.J. Assessment of Responses to Cochlear Implant Stimulation at Different Levels of the Auditory Pathway. Hear. Res. 2015;322:67–76. doi: 10.1016/j.heares.2014.10.011.
    1. Fitzpatrick D.C., Campbell A.T., Choudhury B., Dillon M.P., Forgues M., Buchman C.A., Adunka O.F. Round Window Electrocochleography Just before Cochlear Implantation: Relationship to Word Recognition Outcomes in Adults. Otol. Neurotol. 2014;35:64–71. doi: 10.1097/MAO.0000000000000219.
    1. Formeister E.J., McClellan J.H., Merwin W.H., Iseli C.E., Calloway N.H., Teagle H.F.B., Buchman C.A., Adunka O.F., Fitzpatrick D.C. Intraoperative Round Window Electrocochleography and Speech Perception Outcomes in Pediatric Cochlear Implant Recipients. Ear Hear. 2015;36:249–260. doi: 10.1097/AUD.0000000000000106.
    1. Durrant J.D., Wang J., Ding D.L., Salvi R.J. Are Inner or Outer Hair Cells the Source of Summating Potentials Recorded from the Round Window? J. Acoust. Soc. Am. 1998;104:370–377. doi: 10.1121/1.423293.
    1. Snyder R.L., Schreiner C.E. The Auditory Neurophonic: Basic Properties. Hear. Res. 1984;15:261–280. doi: 10.1016/0378-5955(84)90033-9.
    1. Henry K.R. Auditory Nerve Neurophonic Recorded from the Round Window of the Mongolian Gerbil. Hear. Res. 1995;90:176–184. doi: 10.1016/0378-5955(95)00162-6.
    1. Santarelli R., Scimemi P., Dal Monte E., Arslan E. Cochlear Microphonic Potential Recorded by Transtympanic Electrocochleography in Normally-Hearing and Hearing-Impaired Ears. Acta Otorhinolaryngol. Ital. 2006;26:78–95.
    1. Wichmann C., Moser T. Relating Structure and Function of Inner Hair Cell Ribbon Synapses. Cell Tissue Res. 2015;361:95–114. doi: 10.1007/s00441-014-2102-7.
    1. Santarelli R., Arslan E. Electrocochleography. In: Katz J., editor. Handbook of Clinical Audiology. 7th ed. Wolters Kluwer Health Adis (ESP); London, UK: 2014.
    1. Korczak P., Smart J., Delgado R., Strobel T.M., Bradford C. Auditory Steady-State Responses. J. Am. Acad. Audiol. 2012;23:146–170. doi: 10.3766/jaaa.23.3.3.
    1. Lu P., Huang Y., Chen W.-X., Jiang W., Hua N.-Y., Wang Y., Wang B., Xu Z.-M. Measurement of Thresholds Using Auditory Steady-State Response and Cochlear Microphonics in Children with Auditory Neuropathy. J. Am. Acad. Audiol. 2019;30:672–676. doi: 10.3766/jaaa.17013.
    1. Sharma A., Cardon G., Henion K., Roland P. Cortical Maturation and Behavioral Outcomes in Children with Auditory Neuropathy Spectrum Disorder. Int. J. Audiol. 2011;50:98–106. doi: 10.3109/14992027.2010.542492.
    1. Michalewski H.J., Starr A., Zeng F.G., Dimitrijevic A. N100 Cortical Potentials Accompanying Disrupted Auditory Nerve Activity in Auditory Neuropathy (AN): Effects of Signal Intensity and Continuous Noise. Clin. Neurophysiol. 2009;120:1352–1363. doi: 10.1016/j.clinph.2009.05.013.
    1. Michalewski H.J., Starr A., Nguyen T.T., Kong Y.Y., Zeng F.G. Auditory Temporal Processes in Normal-Hearing Individuals and in Patients with Auditory Neuropathy. Clin. Neurophysiol. 2005;116:669–680. doi: 10.1016/j.clinph.2004.09.027.
    1. Emami S.F., Abdoli A. Cortical Auditory Evoked Potentials in Children with Auditory Neuropathy/Dys-Synchrony. Indian J. Otolaryngol. Head Neck Surg. 2019;71:238–242. doi: 10.1007/s12070-018-1445-x.
    1. Narne V.K., Vanaja C.S. Speech Identification and Cortical Potentials in Individuals with Auditory Neuropathy. Behav. Brain Funct. 2008;4:15. doi: 10.1186/1744-9081-4-15.
    1. Näätänen R. The Mismatch Negativity: A Powerful Tool for Cognitive Neuroscience. Ear Hear. 1995;16:6–18. doi: 10.1097/00003446-199502000-00002.
    1. Squires N.K., Squires K.C., Hillyard S.A. Two Varieties of Long-Latency Positive Waves Evoked by Unpredictable Auditory Stimuli in Man. Electroencephalogr. Clin. Neurophysiol. 1975;38:387–401. doi: 10.1016/0013-4694(75)90263-1.
    1. Kumar A.U., Jayaram M. Auditory Processing in Individuals with Auditory Neuropathy. Behav. Brain Funct. 2005;1:21. doi: 10.1186/1744-9081-1-21.
    1. Rance G., Starr A. Pathophysiological Mechanisms and Functional Hearing Consequences of Auditory Neuropathy. Brain. 2015;138:3141–3158. doi: 10.1093/brain/awv270.
    1. Walker E., McCreery R., Spratford M., Roush P. Children with Auditory Neuropathy Spectrum Disorder Fitted with Hearing AIDS Applying the American Academy of Audiology Pediatric Amplification Guideline: Current Practice and Outcomes. J. Am. Acad. Audiol. 2016;27:204–218. doi: 10.3766/jaaa.15050.
    1. Giraudet F., Avan P. Auditory Neuropathies. Curr. Opin. Neurol. 2012;25:50–56. doi: 10.1097/WCO.0b013e32834f0351.
    1. Breneman A.I., Gifford R.H., Dejong M.D. Cochlear Implantation in Children with Auditory Neuropathy Spectrum Disorder: Long-Term Outcomes. J. Am. Acad. Audiol. 2012;23:5–17. doi: 10.3766/jaaa.23.1.2.
    1. Teagle H.F.B., Roush P.A., Woodard J.S., Hatch D.R., Zdanski C.J., Buss E., Buchman C.A. Cochlear Implantation in Children with Auditory Neuropathy Spectrum Disorder. Ear Hear. 2010;31:325–335. doi: 10.1097/AUD.0b013e3181ce693b.
    1. Crispino G., Di Pasquale G., Scimemi P., Rodriguez L., Ramirez F.G., de Siati R.D., Santarelli R.M., Arslan E., Bortolozzi M., Chiorini J.A., et al. BAAV Mediated GJB2 Gene Transfer Restores Gap Junction Coupling in Cochlear Organotypic Cultures from Deaf Cx26Sox10Cre Mice. PLoS ONE. 2011;6:e23279. doi: 10.1371/journal.pone.0023279.

Source: PubMed

3
Subskrybuj