Using an Accelerometer-Based Step Counter in Post-Stroke Patients: Validation of a Low-Cost Tool

Francesco Negrini, Giulio Gasperini, Eleonora Guanziroli, Jacopo Antonino Vitale, Giuseppe Banfi, Franco Molteni, Francesco Negrini, Giulio Gasperini, Eleonora Guanziroli, Jacopo Antonino Vitale, Giuseppe Banfi, Franco Molteni

Abstract

Monitoring the real-life mobility of stroke patients could be extremely useful for clinicians. Step counters are a widely accessible, portable, and cheap technology that can be used to monitor patients in different environments. The aim of this study was to validate a low-cost commercial tri-axial accelerometer-based step counter for stroke patients and to determine the best positioning of the step counter (wrists, ankles, and waist). Ten healthy subjects and 43 post-stroke patients were enrolled and performed four validated clinical tests (10 m, 50 m, and 6 min walking tests and timed up and go tests) while wearing five step counters in different positions while a trained operator counted the number of steps executed in each test manually. Data from step counters and those collected manually were compared using the intraclass coefficient correlation and mean average percentage error. The Bland-Altman plot was also used to describe agreement between the two quantitative measurements (step counter vs. manual counting). During walking tests in healthy subjects, the best reliability was found for lower limbs and waist placement (intraclass coefficient correlations (ICCs) from 0.46 to 0.99), and weak reliability was observed for upper limb placement in every test (ICCs from 0.06 to 0.38). On the contrary, in post-stroke patients, moderate reliability was found only for the lower limbs in the 6 min walking test (healthy ankle ICC: 0.69; pathological ankle ICC: 0.70). Furthermore, the Bland-Altman plot highlighted large average discrepancies between methods for the pathological group. However, while the step counter was not able to reliably determine steps for slow patients, when applied to the healthy ankle of patients who walked faster than 0.8 m/s, it counted steps with excellent precision, similar to that seen in the healthy subjects (ICCs from 0.36 to 0.99). These findings show that a low-cost accelerometer-based step counter could be useful for measuring mobility in select high-performance patients and could be used in clinical and real-world settings.

Keywords: accelerometer; gait; rehabilitation; step counter; stroke.

Conflict of interest statement

The authors have no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of the data; in the writing of the manuscript; or in the decision to publish the results.

Figures

Figure 1
Figure 1
Bland–Altman plots for difference vs. average of the two measurements methods (step counter and manual counting) during timed up and go test (TUG) for the five different step counter positionings for the pathological group (n = 43). Dashed lines represent +95% (upper line) and −95% (lower line) of the limits of agreements. Legend: LoA, Limits of Agreement.
Figure 2
Figure 2
Comparison of the mean absolute percentage error in the 50 m walking test (50 m WT) for the healthy group (n = 10), pathological group (n = 43), and group V3 (n = 17). Legend: P: pathological group; H: healthy group; *: p < 0.05.
Figure 3
Figure 3
Comparison of the mean absolute percentage error in the timed up and go test for the healthy group (n = 10), pathological group (n = 43), and group V3 (n = 17). Legend: P: pathological group; H: healthy group; *: p < 0.05; **: p < 0.001.

References

    1. Mehrholz J., Thomas S., Werner C., Kugler J., Pohl M., Elsner B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst. Rev. 2017;5:CD006185.
    1. Gor-García-Fogeda M.D., Cano de la Cuerda R., Carratalá Tejada M., Alguacil-Diego I.M., Molina-Rueda F. Observational Gait Assessments in People With Neurological Disorders: A Systematic Review. Arch. Phys. Med. Rehabil. 2016;97:131–140. doi: 10.1016/j.apmr.2015.07.018.
    1. Nanninga C.S., Meijering L., Postema K., Schönherr M.C., Lettinga A.T. Unpacking community mobility: A preliminary study into the embodied experiences of stroke survivors. Disabil. Rehabil. 2017;40:1–10. doi: 10.1080/09638288.2017.1323031.
    1. Fulk G.D., Reynolds C., Mondal S., Deutsch J.E. Predicting home and community walking activity in people with stroke. Arch. Phys. Med. Rehabil. 2010;91:1582–1586. doi: 10.1016/j.apmr.2010.07.005.
    1. Moore S.A., Hallsworth K., Plötz T., Ford G.A., Rochester L., Trenell M.I. Physical activity, sedentary behaviour and metabolic control following stroke: A cross-sectional and longitudinal study. PLoS ONE. 2013;8:e55263. doi: 10.1371/journal.pone.0055263.
    1. Moore S.A., Hickey A., Lord S., Del Din S., Godfrey A., Rochester L. Comprehensive measurement of stroke gait characteristics with a single accelerometer in the laboratory and community: A feasibility, validity and reliability study. J. Neuroeng. Rehabil. 2017;14:130. doi: 10.1186/s12984-017-0341-z.
    1. Flansbjer U.-B., Holmbäck A.M., Downham D., Patten C., Lexell J. Reliability of gait performance tests in men and women with hemiparesis after stroke. J. Rehabil. Med. 2005;37:75–82.
    1. Salter K., Jutai J.W., Teasell R., Foley N.C., Bitensky J., Bayley M. Issues for selection of outcome measures in stroke rehabilitation: ICF Participation. Disabil. Rehabil. 2005;27:507–528. doi: 10.1080/0963828040008552.
    1. Danks K.A., Roos M.A., McCoy D., Reisman D.S. A step activity monitoring program improves real world walking activity post stroke. Disabil. Rehabil. 2014;36:2233–2236. doi: 10.3109/09638288.2014.903303.
    1. Craig C.L., Marshall A.L., Sjöström M., Bauman A.E., Booth M.L., Ainsworth B.E., Pratt M., Ekelund U., Yngve A., Sallis J.F., et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003;35:1381–1395. doi: 10.1249/01.MSS.0000078924.61453.FB.
    1. Ahmad S., Harris T., Limb E., Kerry S., Victor C., Ekelund U., Iliffe S., Whincup P., Beighton C., Ussher M., et al. Evaluation of reliability and validity of the General Practice Physical Activity Questionnaire (GPPAQ) in 60-74 year old primary care patients. BMC Fam. Pract. 2015;16:113. doi: 10.1186/s12875-015-0324-8.
    1. Danquah I.H., Petersen C.B., Skov S.S., Tolstrup J.S. Validation of the NPAQ-short—A brief questionnaire to monitor physical activity and compliance with the WHO recommendations. BMC Public Health. 2018;18:601. doi: 10.1186/s12889-018-5538-y.
    1. Bassett D.R., Toth L.P., LaMunion S.R., Crouter S.E. Step Counting: A Review of Measurement Considerations and Health-Related Applications. Sports Med. 2017;47:1303–1315. doi: 10.1007/s40279-016-0663-1.
    1. Lynch E.A., Jones T.M., Simpson D.B., Fini N.A., Kuys S.S., Borschmann K., Kramer S., Johnson L., Callisaya M.L., Mahendran N., et al. Activity monitors for increasing physical activity in adult stroke survivors. Cochrane Database Syst. Rev. 2018;7:CD012543. doi: 10.1002/14651858.CD012543.pub2.
    1. Sprager S., Juric M.B. Inertial Sensor-Based Gait Recognition: A Review. Sensors. 2015;15:22089–22127. doi: 10.3390/s150922089.
    1. Fusca M., Negrini F., Perego P., Magoni L., Molteni F., Andreoni G. Validation of a Wearable IMU System for Gait Analysis: Protocol and Application to a New System. Appl. Sci. 2018;8:1167. doi: 10.3390/app8071167.
    1. O’Brien M.K., Shawen N., Mummidisetty C.K., Kaur S., Bo X., Poellabauer C., Kording K., Jayaraman A. Activity Recognition for Persons With Stroke Using Mobile Phone Technology: Toward Improved Performance in a Home Setting. J. Med. Internet Res. 2017;19:e184. doi: 10.2196/jmir.7385.
    1. Camomilla V., Bergamini E., Fantozzi S., Vannozzi G. Trends Supporting the In-Field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review. Sensors. 2018;18:873. doi: 10.3390/s18030873.
    1. Garcia-Byrne F., Wycherley T.P., Bishop C., Schwerdt S., Porter J., Buckley J.D. Accelerometer detected lateral sway during a submaximal running test correlates with endurance exercise performance in elite Australian male cricket players. J. Sci. Med. Sport. :2019. doi: 10.1016/j.jsams.2019.12.003.
    1. Stetter B.J., Buckeridge E., Nigg S.R., Sell S., Stein T. Towards a wearable monitoring tool for in-field ice hockey skating performance analysis. Eur. J. Sport Sci. 2019;19:893–901. doi: 10.1080/17461391.2018.1563634.
    1. Dyrstad S.M., Hansen B.H., Holme I.M., Anderssen S.A. Comparison of self-reported versus accelerometer-measured physical activity. Med. Sci. Sports Exerc. 2014;46:99–106. doi: 10.1249/MSS.0b013e3182a0595f.
    1. Fortune E., Lugade V.A., Kaufman K.R. Posture and movement classification: The comparison of tri-axial accelerometer numbers and anatomical placement. J. Biomech. Eng. 2014;136:051003. doi: 10.1115/1.4026230.
    1. Zijlstra W., Hof A.L. Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture. 2003;18:1–10. doi: 10.1016/S0966-6362(02)00190-X.
    1. Kamišalić A., Fister I., Turkanović M., Karakatič S. Sensors and Functionalities of Non-Invasive Wrist-Wearable Devices: A Review. Sensors. 2018;18:1714. doi: 10.3390/s18061714.
    1. Joseph C., Strömbäck B., Hagströmer M., Conradsson D. Accelerometry: A feasible method to monitor physical activity during sub-acute rehabilitation of persons with stroke. J. Rehabil. Med. 2018;50:429–434. doi: 10.2340/16501977-2326.
    1. Lee J., Park S., Shin H. Detection of Hemiplegic Walking Using a Wearable Inertia Sensing Device. Sensors. 2018;18:1736. doi: 10.3390/s18061736.
    1. Fini N.A., Burge A.T., Bernhardt J., Holland A.E. Two Days of Measurement Provides Reliable Estimates of Physical Activity Poststroke: An Observational Study. Arch. Phys. Med. Rehabil. 2019;100:883–890. doi: 10.1016/j.apmr.2018.10.006.
    1. Bernhard F.P., Sartor J., Bettecken K., Hobert M.A., Arnold C., Weber Y.G., Poli S., Margraf N.G., Schlenstedt C., Hansen C., et al. Wearables for gait and balance assessment in the neurological ward—Study design and first results of a prospective cross-sectional feasibility study with 384 inpatients. BMC Neurol. 2018;18:114. doi: 10.1186/s12883-018-1111-7.
    1. Ancillao A., Tedesco S., Barton J., O’Flynn B. Indirect Measurement of Ground Reaction Forces and Moments by Means of Wearable Inertial Sensors: A Systematic Review. Sensors. 2018;18:2564. doi: 10.3390/s18082564.
    1. Da-Silva R.H., Moore S.A., Rodgers H., Shaw L., Sutcliffe L., van Wijck F., Price C.I. Wristband Accelerometers to motiVate arm Exercises after Stroke (WAVES): A pilot randomized controlled trial. Clin. Rehabil. 2019;33:1391–1403. doi: 10.1177/0269215519834720.
    1. Valkenet K., Bor P., van Delft L., Veenhof C. Measuring physical activity levels in hospitalized patients: A comparison between behavioural mapping and data from an accelerometer. Clin. Rehabil. 2019;33:1233–1240. doi: 10.1177/0269215519836454.
    1. Thakkar N., Jamnik V., Ardern C.I. Cross-associations between physical activity and sedentary time on metabolic health: A comparative assessment using self-reported and objectively measured activity. J. Public Health. 2018;40:e464–e473. doi: 10.1093/pubmed/fdy060.
    1. Kanai M., Izawa K.P., Kobayashi M., Onishi A., Kubo H., Nozoe M., Mase K., Shimada S. Effect of accelerometer-based feedback on physical activity in hospitalized patients with ischemic stroke: A randomized controlled trial. Clin. Rehabil. 2018;32:1047–1056. doi: 10.1177/0269215518755841.
    1. Lee J.-Y., Kwon S., Kim W.-S., Hahn S.J., Park J., Paik N.-J. Feasibility, reliability, and validity of using accelerometers to measure physical activities of patients with stroke during inpatient rehabilitation. PLoS ONE. 2018;13:e0209607. doi: 10.1371/journal.pone.0209607.
    1. Shull P.B., Jirattigalachote W., Hunt M.A., Cutkosky M.R., Delp S.L. Quantified self and human movement: A review on the clinical impact of wearable sensing and feedback for gait analysis and intervention. Gait Posture. 2014;40:11–19. doi: 10.1016/j.gaitpost.2014.03.189.
    1. Vanroy C., Vissers D., Cras P., Beyne S., Feys H., Vanlandewijck Y., Truijen S. Physical activity monitoring in stroke: SenseWear Pro2 activity accelerometer versus Yamax Digi-Walker SW-200 pedometer. Disabil. Rehabil. 2014;36:1695–1703. doi: 10.3109/09638288.2013.859307.
    1. Gebruers N., Vanroy C., Truijen S., Engelborghs S., De Deyn P.P. Monitoring of physical activity after stroke: A systematic review of accelerometry-based measures. Arch. Phys. Med. Rehabil. 2010;91:288–297. doi: 10.1016/j.apmr.2009.10.025.
    1. Klassen T.D., Simpson L.A., Lim S.B., Louie D.R., Parappilly B., Sakakibara B.M., Zbogar D., Eng J.J. “Stepping Up” Activity Poststroke: Ankle-Positioned Accelerometer Can Accurately Record Steps During Slow Walking. Phys. Ther. 2016;96:355–360. doi: 10.2522/ptj.20140611.
    1. Beyaert C., Vasa R., Frykberg G.E. Gait post-stroke: Pathophysiology and rehabilitation strategies. Neurophysiol. Clin. Clin. Neurophysiol. 2015;45:335–355. doi: 10.1016/j.neucli.2015.09.005.
    1. O’Brien M.K., Hidalgo-Araya M.D., Mummidisetty C.K., Vallery H., Ghaffari R., Rogers J.A., Lieber R., Jayaraman A. Augmenting Clinical Outcome Measures of Gait and Balance with a Single Inertial Sensor in Age-Ranged Healthy Adults. Sensors. 2019;19:4537. doi: 10.3390/s19204537.
    1. Job M., Dottor A., Viceconti A., Testa M. Ecological Gait as a Fall Indicator in Older Adults: A Systematic Review. Gerontologist. 2019 doi: 10.1093/geront/gnz113.
    1. Trojaniello D., Ravaschio A., Hausdorff J.M., Cereatti A. Comparative assessment of different methods for the estimation of gait temporal parameters using a single inertial sensor: Application to elderly, post-stroke, Parkinson’s disease and Huntington’s disease subjects. Gait Posture. 2015;42:310–316. doi: 10.1016/j.gaitpost.2015.06.008.
    1. Hui J., Heyden R., Bao T., Accettone N., McBay C., Richardson J., Tang A. Validity of the Fitbit One for Measuring Activity in Community-Dwelling Stroke Survivors. Physiother. Can. 2018;70:81–89. doi: 10.3138/ptc.2016-40.ep.
    1. Salvo D., Torres C., Villa U., Rivera J.A., Sarmiento O.L., Reis R.S., Pratt M. Accelerometer-based physical activity levels among Mexican adults and their relation with sociodemographic characteristics and BMI: A cross-sectional study. Int. J. Behav. Nutr. Phys. Act. 2015;12:79. doi: 10.1186/s12966-015-0243-z.
    1. Joseph C., Conradsson D., Hagströmer M., Lawal I., Rhoda A. Objectively assessed physical activity and associated factors of sedentary behavior among survivors of stroke living in Cape Town, South Africa. Disabil. Rehabil. 2018;40:2509–2515. doi: 10.1080/09638288.2017.1338761.
    1. Ouyang F., Wang Y., Huang W., Chen Y., Zhao Y., Dang G., Zhang C., Lin Y., Zeng J. Association between socioeconomic status and post-stroke functional outcome in deprived rural southern China: A population-based study. BMC Neurol. 2018;18:12. doi: 10.1186/s12883-018-1017-4.
    1. De Ridder R., De Blaiser C. Activity trackers are not valid for step count registration when walking with crutches. Gait Posture. 2019;70:30–32. doi: 10.1016/j.gaitpost.2019.02.009.
    1. Jayaraman C., Mummidisetty C.K., Mannix-Slobig A., McGee Koch L., Jayaraman A. Variables influencing wearable sensor outcome estimates in individuals with stroke and incomplete spinal cord injury: A pilot investigation validating two research grade sensors. J. Neuroeng. Rehabil. 2018;15:19. doi: 10.1186/s12984-018-0358-y.
    1. Lee J.A., Laurson K.R. Validity of the SenseWear armband step count measure during controlled and free-living conditions. J. Exerc. Sci. Fit. 2015;13:16–23. doi: 10.1016/j.jesf.2014.11.002.
    1. Perera S., Mody S.H., Woodman R.C., Studenski S.A. Meaningful change and responsiveness in common physical performance measures in older adults. J. Am. Geriatr. Soc. 2006;54:743–749. doi: 10.1111/j.1532-5415.2006.00701.x.
    1. Hachiya M., Murata S., Otao H., Kamijou K., Mizota K., Asami T. Reproducibility and validity of the 50-meter walking test in community-dwelling elderly. J. Phys. Ther. Sci. 2015;27:1511–1514. doi: 10.1589/jpts.27.1511.
    1. van der Krogt M.M., Delp S.L., Schwartz M.H. How robust is human gait to muscle weakness? Gait Posture. 2012;36:113–119. doi: 10.1016/j.gaitpost.2012.01.017.
    1. Perry J., Garrett M., Gronley J.K., Mulroy S.J. Classification of walking handicap in the stroke population. Stroke. 1995;26:982–989. doi: 10.1161/01.STR.26.6.982.
    1. Fulk G.D., Combs S.A., Danks K.A., Nirider C.D., Raja B., Reisman D.S. Accuracy of 2 activity monitors in detecting steps in people with stroke and traumatic brain injury. Phys. Ther. 2014;94:222–229. doi: 10.2522/ptj.20120525.
    1. Carroll S.L., Greig C.A., Lewis S.J., McMurdo M.E., Sniehotta F.F., Johnston M., Johnston D.W., Scopes J., Mead G.E. The use of pedometers in stroke survivors: Are they feasible and how well do they detect steps? Arch. Phys. Med. Rehabil. 2012;93:466–470. doi: 10.1016/j.apmr.2011.08.047.
    1. Koo T.K., Li M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016;15:155–163. doi: 10.1016/j.jcm.2016.02.012.
    1. Clay L., Webb M., Hargest C., Adhia D.B. Gait quality and velocity influences activity tracker accuracy in individuals post-stroke. Top. Stroke Rehabil. 2019;26:412–417. doi: 10.1080/10749357.2019.1623474.
    1. Schaffer S.D., Holzapfel S.D., Fulk G., Bosch P.R. Step count accuracy and reliability of two activity tracking devices in people after stroke. Physiother. Theory Pract. 2017;33:788–796. doi: 10.1080/09593985.2017.1354412.
    1. Campos C., DePaul V.G., Knorr S., Wong J.S., Mansfield A., Patterson K.K. Validity of the ActiGraph activity monitor for individuals who walk slowly post-stroke. Top. Stroke Rehabil. 2018;25:295–304. doi: 10.1080/10749357.2018.1446487.
    1. Van Criekinge T., Saeys W., Hallemans A., Velghe S., Viskens P.-J., Vereeck L., De Hertogh W., Truijen S. Trunk biomechanics during hemiplegic gait after stroke: A systematic review. Gait Posture. 2017;54:133–143. doi: 10.1016/j.gaitpost.2017.03.004.
    1. Masse F., Gonzenbach R., Paraschiv-Ionescu A., Luft A.R., Aminian K. Wearable Barometric Pressure Sensor to Improve Postural Transition Recognition of Mobility-Impaired Stroke Patients. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 2016;24:1210–1217. doi: 10.1109/TNSRE.2016.2532844.
    1. Shumway-Cook A., Patla A.E., Stewart A., Ferrucci L., Ciol M.A., Guralnik J.M. Environmental demands associated with community mobility in older adults with and without mobility disabilities. Phys. Ther. 2002;82:670–681. doi: 10.1093/ptj/82.7.670.
    1. Lord S.E., Rochester L. Measurement of community ambulation after stroke: Current status and future developments. Stroke. 2005;36:1457–1461. doi: 10.1161/01.STR.0000170698.20376.2e.
    1. Bergmann J.H.M., McGregor A.H. Body-worn sensor design: What do patients and clinicians want? Ann. Biomed. Eng. 2011;39:2299–2312. doi: 10.1007/s10439-011-0339-9.

Source: PubMed

3
Subskrybuj