Olfactory Disturbances as Presenting Manifestation Among Egyptian Patients with COVID-19: Possible Role of Zinc

Aida A Abdelmaksoud, Ali A Ghweil, Mohammed H Hassan, Alaa Rashad, Ashraf Khodeary, Zaky F Aref, Mennatallah Ali Abdelrhman Sayed, Mahmoud K Elsamman, Shamardan E S Bazeed, Aida A Abdelmaksoud, Ali A Ghweil, Mohammed H Hassan, Alaa Rashad, Ashraf Khodeary, Zaky F Aref, Mennatallah Ali Abdelrhman Sayed, Mahmoud K Elsamman, Shamardan E S Bazeed

Abstract

COVID-19 is a severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2). Deficiency of zinc has been supposed to contribute to loss of smell and taste in COVID-19 patients. Our study aimed to assess the serum zinc levels among patients with COVID-19 of various severities, with and without olfaction dysfunction, and to evaluate the effect of zinc therapy in recovery of smell dysfunction among such patients. This study included 134 patients; real-time reverse transcription-polymerase chain reaction (rRT-PCR) proved SARS-CoV-2. Serum zinc levels were measured for all infected patients. One hundred and five patients were detected to have anosmia and/or hyposmia and were categorized randomly into 2 groups; the first group included 49 patients who received zinc therapy and the second group included 56 patients who did not received zinc. All patients were followed up for the recovery duration of olfactory and gustatory symptoms and duration of complete recovery of COVID-19. Olfactory dysfunction was reported in 105 patients (78.4%). Serum zinc levels were not significantly different between the patient subgroups regarding disease severity or the presence or absence of olfactory and/or gustatory dysfunction (p ˃ 0.05). The median duration of recovery of gustatory and/or olfactory function was significantly shorter among patients who received zinc therapy than those who did not received zinc (p < 0.001), while the median duration of complete recovery from COVID-19 was not significantly different among the two groups (p ˃ 0.05). Although the zinc status of COVID-19 patients did not exhibit a significant role in development of anosmia and/or hyposmia or disease severity, zinc therapy may have a significant role in shortening the duration of smell recovery in those patients without affecting the total recovery duration from COVID-19.

Keywords: Anosmia; COVID-19; Hyposmia; Zinc.

Conflict of interest statement

The authors declare that they have no conflict of interest.

© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.

Figures

Fig. 1
Fig. 1
Recovery days of olfactory dysfunction among patients with COVID-19 in relation to zinc therapy

References

    1. WHO Coronavirus Disease (COVID-19) Dashboard. Available . Accessed October 11, 2020
    1. Eurosurveillance ET. Updated rapid risk assessment from ECDC on coronavirus disease 2019 (COVID-19) pandemic: increased transmission in the EU/EEA and the UK. Euro Surveill. 2020;25:2003121. doi: 10.2807/1560-7917.ES.2020.25.10.2003121.
    1. Wu Z, McGoogan JM (2020) Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 10.1001/jama.2020.26
    1. Cain WS, Gent JF, Goodspeed RB, Leonard G. Evaluation of olfactory dysfunction in the Connecticut Chemosensory Clinical Research Center. Laryngoscope. 1988;98(1):83–88. doi: 10.1288/00005537-198801000-00017.
    1. Miwa T, Furukawa M, Tsukatani T, Costanzo RM, DiNardo LJ, Reiter ER. Impact of olfactory impairment on quality of life and disability. Arch Otolaryngol Head Neck Surg. 2001;127(5):497–503. doi: 10.1001/archotol.127.5.497.
    1. Seiden AM, Duncan HJ. The diagnosis of a conductive olfactory loss. Laryngoscope. 2001;111(1):9–14. doi: 10.1097/00005537-200101000-00002.
    1. Temmel AF, Quint C, Schickinger-Fischer B, Klimek L, Stoller E, Hummel T. Characteristics of olfactory disorders in relation to major causes of olfactory loss. Arch Otolaryngol Head Neck Surg. 2002;128(6):635–641. doi: 10.1001/archotol.128.6.635.
    1. Wessels I, Maywald M, Rink L. Zinc as a gatekeeper of immune function. Nutrients. 2017;9:1286. doi: 10.3390/nu9121286.
    1. Lozada-Nur F, Chainani-Wu N, Fortuna G, Sroussi H. Dysgeusia in COVID-19: possible mechanisms and implications. Oral Surg Oral Med Oral Pathol Oral Radiol. 2020;130(3):344–346. doi: 10.1016/j.oooo.2020.06.016.
    1. Gammoh NZ, Rink L. Zinc in infection and inflammation. Nutrients. 2017;9:624. doi: 10.3390/nu9060624.
    1. Maywald M, Wessels I, Rink L. Zinc signals and immunity. Int J Mol Sci. 2017;18:2222. doi: 10.3390/ijms18102222.
    1. Huang L, Tepaamorndech S. The SLC30 family of zinc transporters – a review of current understanding of their biological and pathophysiological roles. Mol Asp Med. 2013;34:548–560. doi: 10.1016/j.mam.2012.05.008.
    1. Jeong J, Eide DJ. The SLC39 family of zinc transporters. Mol Asp Med. 2013;34:612–619. doi: 10.1016/j.mam.2012.05.011.
    1. Olechnowicz J, Tinkov A, Skalny A, Suliburska J. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J Physiol Sci. 2018;68:19–31. doi: 10.1007/s12576-017-0571-7.
    1. Braun LA, Rosenfeldt F. Pharmaco-nutrient interactions - a systematic review of zinc and antihypertensive therapy. Int J Clin Pract. 2013;67:717–725. doi: 10.1111/ijcp.12040.
    1. Lowe NM, Fekete K, Decsi T. Methods of assessment of zinc status in humans: a systematic review. Am J Clin Dermatol. 2009;89:2040S–2051S. doi: 10.3945/ajcn.2009.27230G.
    1. Lian H, Zang R, Wei J, Ye W, Hu MM, Chen YD, Zhang XN, Guo Y, Lei CQ, Yang Q, Luo WW, Li S, Shu HB. The zinc-finger protein ZCCHC3 binds RNA and facilitates viral RNA sensing and activation of the RIG-I-like receptors. Immunity. 2018;49(3):438–448.e5. doi: 10.1016/j.immuni.2018.08.014.
    1. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–701. doi: 10.1016/j.cell.2006.02.015.
    1. Yasuda H, Tsutsui T. Infants and elderlies are susceptible to zinc deficiency. Sci Rep. 2016;6:21850. doi: 10.1038/srep21850.
    1. Sandstead HH. Zinc deficiency. A public health problem? Am J Dis Child. 1991;145:853–859. doi: 10.1001/archpedi.1991.02160080029016.
    1. Prasad AS. Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr. 2013;4:176–190. doi: 10.3945/an.112.003210.
    1. Haase H, Rink L. Multiple impacts of zinc on immune function. Metallomics. 2014;6:1175–1180. doi: 10.1039/c3mt00353a.
    1. Malik A, Taneja DK, Devasenapathy N, Rajeshwari K. Zinc supplementation for prevention of acute respiratory infections in infants: a randomized controlled trial. Indian Pediatr. 2014;51:780–784. doi: 10.1007/s13312-014-0503-z.
    1. te Velthuis AJ, van denWorm SH, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 2010;e1001176:6. doi: 10.1371/journal.ppat.1001176.
    1. Xue J, Moyer A, Peng B, Wu J, Hannafon BN, Ding WQ. Chloroquine is a zinc ionophore. PLoS One. 2014;9:e109180. doi: 10.1371/journal.pone.0109180.
    1. Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents. 2020;55:105938. doi: 10.1016/j.ijantimicag.2020.105938.
    1. Speth R, Carrera E, Jean-Baptiste JA, Linares A. Concentration dependent effects of zinc on angiotensin-converting enzyme-2 activity (1067.4) FASEB J. 2014;28(1):1067. doi: 10.1096/fasebj.28.1_supplement.1067.4.
    1. Pisano M, Hilas O. Zinc and taste disturbances in older adults: a review of the literature. Consult Pharm. 2016;31:267–270. doi: 10.4140/TCP.n.2016.267.
    1. Vaira LA, Salzano G, Deiana G, De Riu G. Anosmia and ageusia: common findings in COVID-19 patients. Laryngoscope. 2020;130:1787. doi: 10.1002/lary.28692.
    1. Wang YY, Jin YH, Ren XQ, Li YR, Zhang XC, Zeng XT, Wang XH, Zhongnan Hospital of Wuhan University Novel Coronavirus Management and Research Team Updating the diagnostic criteria of COVID-19 “suspected case” and “confirmed case” is necessary. Mil Med Res. 2020;7(1):17. doi: 10.1186/s40779-020-00245-9.
    1. Medicine. GOoNHCOoSAoTC. Notice on the issuance of a program for the diagnosis and treatment of novel coronavirus (2019-nCoV) infected pneumonia (trial sixth edition). (2020-02-19) [EB/OL] http://yzssatcmgovcn/zhengcewenjian/2020-02-19/13221html
    1. Li L, Li R, Wu Z, Yang X, Zhao M, Liu J, Chen D. Therapeutic strategies for critically ill patients with COVID-19. Ann Intensive Care. 2020;10(1):45. doi: 10.1186/s13613-020-00661-z.
    1. COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. Available at . Accessed [17 July, 2020]
    1. Ghweil AA, Hassan MH, Khodeary A, Mohamed AO, Mohammed HM, Abdelazez AA, Osman HA, Bazeed SES. Characteristics, outcomes and indicators of severity for COVID-19 among sample of ESNA Quarantine Hospital’s Patients, Egypt: a retrospective study. Infect Drug Resist. 2020;13:2375–2383. doi: 10.2147/IDR.S263489.
    1. El-Masry HMA, Sadek AA, Hassan MH, Ameen HH, Ahmed HA. Metabolic profile of oxidative stress and trace elements in febrile seizures among children. Metab Brain Dis. 2018;33:1509–1515. doi: 10.1007/s11011-018-0258-7.
    1. Sakhr HM, Hassan MH, Desoky T. Possible associations of disturbed neurometals and ammonia with glycaemic control in type 1 diabetic children with attention deficit hyperactivity disorder. Biol Trace Elem Res. 2020;198:68–76. doi: 10.1007/s12011-020-02063-5.
    1. Ahmed AE, Hassan MH, Rashwan NI, Sayed MM, Meki AMA. Myocardial injury induced by scorpion sting envenoming and evidence of oxidative stress in Egyptian children. Toxicon. 2018;153:72–77. doi: 10.1016/j.toxicon.2018.08.008.
    1. Ahmed AE, Abd-Elmawgood EA, Hassan MH. Circulating protein carbonyls, antioxidant enzymes and related trace minerals among preterms with respiratory distress syndrome. J Clin Diagn Res. 2017;11:17–21.
    1. Saleem TH, Okasha M, Ibrahim HM, Abu El-Hamd M, Fayed HM, Hassan MH (2020) Biochemical assessments of seminal plasma zinc, testis-expressed sequence 101 and free amino acids and their correlations with reproductive hormones in male infertility. Biol Trace Elem Res. 10.1007/s12011-020-02310-9
    1. Zhang J, Wang X, Jia X, Li J, Hu K, Chen G, Wei J, Gong Z, Zhou C, Yu H, Yu M, Lei H, Cheng F, Zhang B, Xu Y, Wang G, Dong W. Risk factors for disease severity, unimprovement, and mortality in COVID-19 patients in Wuhan, China. Clin Microbiol Infect. 2020;26(6):767–772. doi: 10.1016/j.cmi.2020.04.012..
    1. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C, Zhang Y, Song J, Wang S, Chao Y, Yang Z, Xu J, Zhou X, Chen D, Xiong W, Xu L, Zhou F, Jiang J, Bai C, Zheng J, Song Y. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934–943. doi: 10.1001/jamainternmed.2020.0994..
    1. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, DSC H, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS, China Medical Treatment Expert Group for Covid-19 Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. doi: 10.1056/NEJMoa2002032.
    1. Liu K, Chen Y, Lin R, Han K (2020) Clinical features of COVID-19 in elderly patients: a comparison with young and middle-aged patients. J Inf Secur. 10.1016/j.jinf.2020.03.005
    1. Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, Ji R, Wang H, Wang Y, Zhou Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91–95. doi: 10.1016/j.ijid.2020.03.017..
    1. Mahase E. Covid-19: death rate is 0.66% and increases with age, study estimates. BMJ. 2020;369:m1327. doi: 10.1136/bmj.m1327.
    1. Zhou F, Yu T, Du R, Fan G, Liu Y. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054e62. doi: 10.1016/S0140-6736(20)30566-3.
    1. Cai Q, Chen F, Wang T, Luo F, Liu X, Wu Q, He Q, Wang Z, Liu Y, Liu L, Chen J, Xu L. Obesity and COVID-19 severity in a designated hospital in Shenzhen, China. Diabetes Care. 2020;43(7):1392–1398. doi: 10.2337/dc20-0576.
    1. Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19): people who are at higher risk for severe illness. 2020. Available at: . Accessed April 8, 2020
    1. Garg S, Kim L, Whitaker M, O’Halloran A, Cummings C, Holstein R, Prill M, Chai SJ, Kirley PD, Alden NB, Kawasaki B, Yousey-Hindes K, Niccolai L, Anderson EJ, Openo KP, Weigel A, Monroe ML, Ryan P, Henderson J, Kim S, Como-Sabetti K, Lynfield R, Sosin D, Torres S, Muse A, Bennett NM, Billing L, Sutton M, West N, Schaffner W, Talbot HK, Aquino C, George A, Budd A, Brammer L, Langley G, Hall AJ, Fry A. Hospitalization rates and characteristics of patients hospitalized with laboratory-confirmed coronavirus disease 2019 - COVID-NET, 14 States, March 1-30, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(15):458–464. doi: 10.15585/mmwr.mm6915e3.
    1. Aly MH, Rahman SS, Ahmed WA, Alghamedi MH, Al Shehri AA, Alkalkami AM, Hassan MH. Indicators of critical illness and predictors of mortality in COVID-19 patients. Infect Drug Resist. 2020;13:1995–2000. doi: 10.2147/IDR.S261159..
    1. Marhl M, Grubelnik V, Magdič M, Markovič R. Diabetes and metabolic syndrome as risk factors for COVID-19. Diabetes Metab Syndr. 2020;14(4):671–677. doi: 10.1016/j.dsx.2020.05.013.
    1. Singh AK, Gupta R, Ghosh A, Misra A. Diabetes in COVID-19: prevalence, pathophysiology, prognosis and practical considerations. Diabetes Metab Syndr. 2020;14(4):303–310. doi: 10.1016/j.dsx.2020.04.004.
    1. Cai G, Cui X, Zhu X, Zhou J (2020) A hint on the COVID-19 risk: population disparities in gene expression of three receptors of SARS-CoV. Preprints, 2020020408. 10.20944/preprints202002.0408.v1
    1. Vardavas CI, Nikitara K. COVID-19 and smoking: a systematic review of the evidence. Tob Induc Dis. 2020;18:20. doi: 10.18332/tid/119324.
    1. Ishida T. Review on the role of Zn2+ ions in viral pathogenesis and the effect of Zn2+ Ions for host cell-virus growth inhibition. AJBSR. 2019;2:28–37. doi: 10.34297/AJBSR.2019.02.000566.
    1. Skalny AV, Rink L, Ajsuvakova OP, Aschner M, Gritsenko VA, Alekseenko SI, Svistunov AA, Petrakis D, Spandidos DA, Aaseth J, Tsatsakis A, Tinkov AA. Zinc and respiratory tract infections: perspectives for COVID-19 (review) Int J Mol Med. 2020;46(1):17–26. doi: 10.3892/ijmm.2020.4575..
    1. Cai H, Zhang Y, Ma Y, Sun J, Liang X, Li J. Zinc binding activity of human metapneumovirus M2-1 protein is indispensable for viral replication and pathogenesis in vivo. J Virol. 2015;89:6391–6405. doi: 10.1128/JVI.03488-14.
    1. Kumar A, Kubota Y, Chernov M, Kasuya H. Potential role of zinc supplementation in prophylaxis and treatment of COVID-19. Med Hypotheses. 2020;144:109848. doi: 10.1016/j.mehy.2020.109848..
    1. Lyckholm L, Heddinger SP, Parker G, Coyne PJ, Ramakrishnan V, Smith TJ, Henkin RI. A randomized, placebo controlled trial of oral zinc for chemotherapy-related taste and smell disorders. J Pain Palliat Care Pharmacother. 2012;26(2):111–114. doi: 10.3109/15360288.2012.676618..
    1. Berg K, Bolt G, Andersen H, Owen TC. Zinc potentiates the antiviral action of human IFN-alpha tenfold. J Interf Cytokine Res. 2001;21:471–474. doi: 10.1089/10799900152434330.
    1. Cakman I, Kirchner H, Rink L. Zinc supplementation reconstitutes the production of interferon-alpha by leukocytes from elderly persons. J Interf Cytokine Res. 1997;17:469–472. doi: 10.1089/jir.1997.17.469.
    1. Mayor-Ibarguren A, Busca-Arenzana C, Robles-Marhuenda Á. A hypothesis for the possible role of zinc in the immunological pathways related to COVID-19 infection. Front Immunol. 2020;11:1736. doi: 10.3389/fimmu.2020.01736.

Source: PubMed

3
Subskrybuj