Full-length 16S rRNA gene amplicon analysis of human gut microbiota using MinION™ nanopore sequencing confers species-level resolution

Yoshiyuki Matsuo, Shinnosuke Komiya, Yoshiaki Yasumizu, Yuki Yasuoka, Katsura Mizushima, Tomohisa Takagi, Kirill Kryukov, Aisaku Fukuda, Yoshiharu Morimoto, Yuji Naito, Hidetaka Okada, Hidemasa Bono, So Nakagawa, Kiichi Hirota, Yoshiyuki Matsuo, Shinnosuke Komiya, Yoshiaki Yasumizu, Yuki Yasuoka, Katsura Mizushima, Tomohisa Takagi, Kirill Kryukov, Aisaku Fukuda, Yoshiharu Morimoto, Yuji Naito, Hidetaka Okada, Hidemasa Bono, So Nakagawa, Kiichi Hirota

Abstract

Background: Species-level genetic characterization of complex bacterial communities has important clinical applications in both diagnosis and treatment. Amplicon sequencing of the 16S ribosomal RNA (rRNA) gene has proven to be a powerful strategy for the taxonomic classification of bacteria. This study aims to improve the method for full-length 16S rRNA gene analysis using the nanopore long-read sequencer MinION™. We compared it to the conventional short-read sequencing method in both a mock bacterial community and human fecal samples.

Results: We modified our existing protocol for full-length 16S rRNA gene amplicon sequencing by MinION™. A new strategy for library construction with an optimized primer set overcame PCR-associated bias and enabled taxonomic classification across a broad range of bacterial species. We compared the performance of full-length and short-read 16S rRNA gene amplicon sequencing for the characterization of human gut microbiota with a complex bacterial composition. The relative abundance of dominant bacterial genera was highly similar between full-length and short-read sequencing. At the species level, MinION™ long-read sequencing had better resolution for discriminating between members of particular taxa such as Bifidobacterium, allowing an accurate representation of the sample bacterial composition.

Conclusions: Our present microbiome study, comparing the discriminatory power of full-length and short-read sequencing, clearly illustrated the analytical advantage of sequencing the full-length 16S rRNA gene.

Keywords: 16S rRNA; Gut microbiota; MinION™; Nanopore sequencing.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
16S rRNA gene sequence analysis using the MinION™ nanopore sequencer. a Workflow of 16S rRNA gene amplicon sequencing on the MinION™ platform. Sequencing libraries are generated by the four-primer PCR-based strategy, enabling simplified post-PCR adapter attachment. At the initial stage of PCR, the 16S rRNA gene is amplified with the inner primer pairs. The resulting PCR products are targeted for amplification with the outer primers to introduce the barcode and tag sequences at both ends, to which adapter molecules can be attached in a single-step reaction. b, c Taxonomic assignments of a mock community analyzed by MinION™ sequencing. The V1-V9 or V3-V4 region of the 16S rRNA gene was amplified from a pre-characterized mock community sample comprising ten bacterial species and sequenced on the MinION™ platform. Three thousand reads were randomly selected from the processed data set and aligned directly to the reference genome database of 5850 representative bacterial species. The pie charts represent taxonomic profiles at the (b) genus and (c) species levels. Even with the full-length 16S rRNA gene analysis, species-level resolution is not possible for Bacillus and Escherichia. Slices corresponding to misclassified (assigned to bacteria not present in the mock community) or unclassified (not classified at the given level but placed in a higher taxonomic rank) reads are exploded. The relative abundance (%) of each taxon is shown
Fig. 2
Fig. 2
Accurate taxonomic assignment afforded by full-length MinION™ sequencing of the 16S rRNA gene. Classification accuracy compared between full-length (V1-V9) and partial (V3-V4) 16S rRNA gene sequencing data obtained from composition profiling of the ten-species mock community. The donut charts show the proportions of reads correctly assigned to the species constituting the mock community. The percentage of correctly classified reads is shown in the center hole. ND: not determined (species-level resolution is not possible for Escherichia)
Fig. 3
Fig. 3
16S rRNA gene sequence analysis of human gut microbiota. Six human fecal samples (F1-F6) were subjected to full-length 16S rRNA gene amplicon sequencing via MinION™. Numbers of detected species are plotted against numbers of reads used for taxonomic classification
Fig. 4
Fig. 4
Comparison of taxonomic profiles of human gut microbiota between sequencing methodologies. Six fecal samples (F1-F6) were analyzed by sequencing the entire 16S rRNA gene using MinION™ (N_V1-V9). For comparison, the V3-V4 region was sequenced on MinION™ (N_V3-V4) or MiSeq™ platforms (I_V1-V9). Randomly sampled 20,000 reads from each data set were allocated to the reference genome database of 5850 representative bacterial species. A heat map shows the relative genus abundance (%) of classified reads. The 15 most abundant taxa are shown. The Pearson correlation coefficient (r) between sequencing methods was computed. Asterisks indicate significant correlations at P < 0.05
Fig. 5
Fig. 5
Comparison of taxonomic resolution. The percentages of ambiguous reads not assigned to the species level are plotted for six fecal samples analyzed by MinION™ (N_V1-V9 and N_V3-V4) or MiSeq™ (I_V3-V4). Horizontal bars represent mean values. * P < 0.05 (statistically significant)
Fig. 6
Fig. 6
Species composition of Bifidobacterium in six fecal samples. MinION™ V1-V9 sequencing confers species-level resolution for bacterial composition profiling. Results obtained by the three sequencing methods are shown. The legends show the 14 most abundant Bifidobacterium species

References

    1. Chiu CY, Miller SA. Clinical metagenomics. Nat Rev Genet. 2019;20(6):341–355. doi: 10.1038/s41576-019-0113-7.
    1. Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol. 2012;30(5):434–439. doi: 10.1038/nbt.2198.
    1. Didelot X, Bowden R, Wilson DJ, Peto TEA, Crook DW. Transforming clinical microbiology with bacterial genome sequencing. Nat Rev Genet. 2012;13(9):601–612. doi: 10.1038/nrg3226.
    1. Clarridge JE, 3rd. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev. 2004;17(4):840–62, table of contents.
    1. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31(9):814–821. doi: 10.1038/nbt.2676.
    1. Johnson JS, Spakowicz DJ, Hong BY, Petersen LM, Demkowicz P, Chen L, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun. 2019;10(1):5029. doi: 10.1038/s41467-019-13036-1.
    1. Ravi RK, Walton K, Khosroheidari M. MiSeq: a next generation sequencing platform for genomic analysis. Methods Mol Biol. 1706;2018:223–232.
    1. Kuczynski J, Lauber CL, Walters WA, Parfrey LW, Clemente JC, Gevers D, et al. Experimental and analytical tools for studying the human microbiome. Nat Rev Genet. 2011;13(1):47–58. doi: 10.1038/nrg3129.
    1. Leggett RM, Clark MD. A world of opportunities with nanopore sequencing. J Exp Bot. 2017;68(20):5419–5429. doi: 10.1093/jxb/erx289.
    1. Quick J, Ashton P, Calus S, Chatt C, Gossain S, Hawker J, et al. Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of salmonella. Genome Biol. 2015;16:114. doi: 10.1186/s13059-015-0677-2.
    1. Leggett RM, Alcon-Giner C, Heavens D, Caim S, Brook TC, Kujawska M, et al. Rapid MinION profiling of preterm microbiota and antimicrobial-resistant pathogens. Nat Microbiol. 2020;5(3):430–442. doi: 10.1038/s41564-019-0626-z.
    1. Benitez-Paez A, Sanz Y. Multi-locus and long amplicon sequencing approach to study microbial diversity at species level using the MinION portable nanopore sequencer. Gigascience. 2017;6(7):1–12. doi: 10.1093/gigascience/gix043.
    1. Shin H, Lee E, Shin J, Ko SR, Oh HS, Ahn CY, et al. Elucidation of the bacterial communities associated with the harmful microalgae Alexandrium tamarense and Cochlodinium polykrikoides using nanopore sequencing. Sci Rep. 2018;8(1):5323. doi: 10.1038/s41598-018-23634-6.
    1. Mitsuhashi S, Kryukov K, Nakagawa S, Takeuchi JS, Shiraishi Y, Asano K, et al. A portable system for rapid bacterial composition analysis using a nanopore-based sequencer and laptop computer. Sci Rep. 2017;7(1):5657. doi: 10.1038/s41598-017-05772-5.
    1. Nakagawa S, Inoue S, Kryukov K, Yamagishi J, Ohno A, Hayashida K, et al. Rapid sequencing-based diagnosis of infectious bacterial species from meningitis patients in Zambia. Clin Transl Immunology. 2019;8(11):e01087. doi: 10.1002/cti2.1087.
    1. Kono N, Arakawa K. Nanopore sequencing: review of potential applications in functional genomics. Develop Growth Differ. 2019;61(5):316–326. doi: 10.1111/dgd.12608.
    1. Genome Search Toolkit.
    1. GenomeSync.
    1. Kai S, Matsuo Y, Nakagawa S, Kryukov K, Matsukawa S, Tanaka H, et al. Rapid bacterial identification by direct PCR amplification of 16S rRNA genes using the MinION nanopore sequencer. FEBS Open Bio. 2019;9(3):548–557. doi: 10.1002/2211-5463.12590.
    1. Kim SW, Suda W, Kim S, Oshima K, Fukuda S, Ohno H, et al. Robustness of gut microbiota of healthy adults in response to probiotic intervention revealed by high-throughput pyrosequencing. DNA Res. 2013;20(3):241–253. doi: 10.1093/dnares/dst006.
    1. Arboleya S, Watkins C, Stanton C, Ross RP. Gut Bifidobacteria populations in human health and aging. Front Microbiol. 2016;7:1204. doi: 10.3389/fmicb.2016.01204.
    1. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307(5717):1915–1920. doi: 10.1126/science.1104816.
    1. Tanaka H, Matsuo Y, Nakagawa S, Nishi K, Okamoto A, Kai S, et al. Real-time diagnostic analysis of MinION-based metagenomic sequencing in clinical microbiology evaluation: a case report. JA Clin Rep. 2019;5(1):24. doi: 10.1186/s40981-019-0244-z.
    1. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–180. doi: 10.1038/nature09944.
    1. Devanga Ragupathi NK, Muthuirulandi Sethuvel DP, Inbanathan FY, Veeraraghavan B. Accurate differentiation of Escherichia coli and Shigella serogroups: challenges and strategies. New Microbes New Infect. 2018;21:58–62. doi: 10.1016/j.nmni.2017.09.003.
    1. Lukjancenko O, Wassenaar TM, Ussery DW. Comparison of 61 sequenced Escherichia coli genomes. Microb Ecol. 2010;60(4):708–720. doi: 10.1007/s00248-010-9717-3.
    1. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–336. doi: 10.1038/nmeth.f.303.
    1. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852–857. doi: 10.1038/s41587-019-0209-9.
    1. Milani C, Lugli GA, Duranti S, Turroni F, Bottacini F, Mangifesta M, et al. Genomic encyclopedia of type strains of the genus Bifidobacterium. Appl Environ Microbiol. 2014;80(20):6290–6302. doi: 10.1128/AEM.02308-14.
    1. Human Microbiome Project C A framework for human microbiome research. Nature. 2012;486(7402):215–221. doi: 10.1038/nature11209.
    1. Srinivasan R, Karaoz U, Volegova M, MacKichan J, Kato-Maeda M, Miller S, et al. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PLoS One. 2015;10(2):e0117617. doi: 10.1371/journal.pone.0117617.
    1. Santos A, van Aerle R, Barrientos L, Martinez-Urtaza J. Computational methods for 16S metabarcoding studies using Nanopore sequencing data. Comput Struct Biotechnol J. 2020;18:296–305. doi: 10.1016/j.csbj.2020.01.005.
    1. Ma X, Stachler E, Bibby K. Evaluation of Oxford Nanopore MinION™ Sequencing for 16S rRNA Microbiome Characterization. bioRxiv. 2017 10.1101/099960
    1. Quick J, Grubaugh ND, Pullan ST, Claro IM, Smith AD, Gangavarapu K, et al. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat Protoc. 2017;12(6):1261–1276. doi: 10.1038/nprot.2017.066.
    1. Cornelis S, Gansemans Y, Deleye L, Deforce D, Van Nieuwerburgh F. Forensic SNP genotyping using Nanopore MinION sequencing. Sci Rep. 2017;7:41759. doi: 10.1038/srep41759.
    1. Bukin YS, Galachyants YP, Morozov IV, Bukin SV, Zakharenko AS, Zemskaya TI. The effect of 16S rRNA region choice on bacterial community metabarcoding results. Sci Data. 2019;6:190007. doi: 10.1038/sdata.2019.7.
    1. Shin J, Lee S, Go MJ, Lee SY, Kim SC, Lee CH, et al. Analysis of the mouse gut microbiome using full-length 16S rRNA amplicon sequencing. Sci Rep. 2016;6:29681. doi: 10.1038/srep29681.
    1. Magi A, Semeraro R, Mingrino A, Giusti B, D'Aurizio R. Nanopore sequencing data analysis: state of the art, applications and challenges. Brief Bioinform. 2018;19(6):1256–1272.
    1. Rang FJ, Kloosterman WP, de Ridder J. From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy. Genome Biol. 2018;19(1):90. doi: 10.1186/s13059-018-1462-9.
    1. Takagi T, Naito Y, Inoue R, Kashiwagi S, Uchiyama K, Mizushima K, et al. Differences in gut microbiota associated with age, sex, and stool consistency in healthy Japanese subjects. J Gastroenterol. 2019;54(1):53–63. doi: 10.1007/s00535-018-1488-5.
    1. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41(1):e1. doi: 10.1093/nar/gks808.
    1. Shen W, Le S, Li Y, Hu F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One. 2016;11(10):e0163962. doi: 10.1371/journal.pone.0163962.
    1. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(Database issue):D590–D596.
    1. Silva reference files.
    1. De Coster W, D'Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics. 2018;34(15):2666–2669. doi: 10.1093/bioinformatics/bty149.
    1. Frith MC. A new repeat-masking method enables specific detection of homologous sequences. Nucleic Acids Res. 2011;39(4):e23. doi: 10.1093/nar/gkq1212.
    1. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–3100. doi: 10.1093/bioinformatics/bty191.
    1. Federhen S. The NCBI taxonomy database. Nucleic Acids Res. 2012;40(Database issue):D136–D143. doi: 10.1093/nar/gkr1178.

Source: PubMed

3
Subskrybuj