Effects of the Multidimensional Treatment on Pain, Disability, and Sitting Posture in Patients with Low Back Pain: A Randomized Controlled Trial

Tae-Sung In, Jin-Hwa Jung, Kyoung-Sim Jung, Hwi-Young Cho, Tae-Sung In, Jin-Hwa Jung, Kyoung-Sim Jung, Hwi-Young Cho

Abstract

The purpose of this study was to investigate the effects of multidimensional approach model on the pain, disability, and sitting posture in patients with nonspecific low back pain (LBP). Sixty LBP patients were recruited and were randomly divided into two groups: multidimensional treatment (MT) group (n = 30) and unimodal treatment (UT) group (n = 30). All participants underwent 48 sessions of treatment (40 min/session, two sessions per day, 2 days per week) for 12 weeks. The MT group conducted a core stability exercise twice a day and additionally provided training on pain principles and management methods. The UT group only performed a core stability exercise twice a day. The visual analog scale (VAS) and Oswestry Disability index (ODI) were used to measure pain intensity and disability. Thoracolumbar kyphosis and lumbar lordosis in the sitting position were measured using a motion capture system. After training, the pain and disability in the MT group improved significantly greater than the UT group (p < 0.05). In the MT group, the pain relief effect persisted 3 months after the end of training. Thoracolumbar kyphosis and lumbar lordosis in the MT group were significantly improved compared to the UT group (p < 0.05). Thus, MT combined with core stability exercise may be used to improve the pain, disability, and sitting posture in patients with LBP.

Conflict of interest statement

The authors have declared that no conflicts of interest exist.

Copyright © 2021 Tae-Sung In et al.

Figures

Figure 1
Figure 1
Flow diagram of participants through the study.
Figure 2
Figure 2
Measurement of thoracolumbar kyphosis and lumbar lordosis through 3D motion analysis system. (A) Thoracolumbar kyphosis angle and (B) lumbar lordosis angle.
Figure 3
Figure 3
Change of VAS score after training. Significant difference between pre and post (p < 0.05). #Significant difference between post and after 3 months (p < 0.05). †Significant difference between pre and after 3 months (p < 0.05). ‡Significant difference between MT and UT group (p < 0.05).
Figure 4
Figure 4
Change of ODI score after training. Significant difference between pre and post (p < 0.05). #Significant difference between MT and UT group (p < 0.05).
Figure 5
Figure 5
Change of spinal angle after training. Significant difference between pre and post (p < 0.05). #Significant difference between MT and UT group (p < 0.05).

References

    1. Van Tulder M., Koes B. Evidence-Based Medicine for Low Back Pain. Berlin, Germany: Springer; 2007. Spinal imaging.
    1. Wippert P. M., Drießlein D., Beck H., et al. The feasibility and effectiveness of a new practical multidisciplinary treatment for low-back pain: a randomized controlled trial. Journal of Clinical Medicine. 2019;9(1):p. 115. doi: 10.3390/jcm9010115.
    1. Keegan J. J. Alterations of the lumbar curve related to posture and seating. The Journal of Bone & Joint Surgery. 1953;35(3):589–603. doi: 10.2106/00004623-195335030-00007.
    1. Wong A. Y. L., Chan T. P. M., Chau A. W. M., et al. Do different sitting postures affect spinal biomechanics of asymptomatic individuals? Gait & Posture. 2019;67:230–235. doi: 10.1016/j.gaitpost.2018.10.028.
    1. O’Sullivan P. B., Mitchell T., Bulich P., Waller R., Holte J. The relationship between posture and back muscle endurance in industrial workers with flexion-related low back pain. Manual Therapy. 2006;11(4):264–271.
    1. Womersley L., May S. Sitting posture of subjects with postural backache. Journal of Manipulative and Physiological Therapeutics. 2006;29(3):213–218. doi: 10.1016/j.jmpt.2006.01.002.
    1. Costa L. O. P., Maher C. G., Latimer J., et al. Motor control exercise for chronic low back pain: a randomized placebo-controlled trial. Physical Therapy. 2009;89(12):1275–1286. doi: 10.2522/ptj.20090218.
    1. Hodges P. W. Core stability exercise in chronic low back pain. Orthopedic Clinics of North America. 2003;34(2):245–254. doi: 10.1016/s0030-5898(03)00003-8.
    1. Richardson C., Hodges P., Hides J. Therapeutic Exercise for Lumbopelvic Stabilization: A Motor Control Approach for the Treatment and Prevention of Low Back Pain. London, UK: Churchill Livingstone; 2004.
    1. O’Sullivan P. B., Phyty G. D., Twomey L. T., Allison G. T. Evaluation of specific stabilizing exercise in the treatment of chronic low back pain with radiologic diagnosis of spondylolysis or spondylolisthesis. Spine. 1997;22(24):2959–2967.
    1. Pourahmadi M. R., Taghipour M., Ebrahimi Takamjani I., Sanjari M. A., Mohseni-Bandpei M. A., Keshtkar A. A. Motor control exercise for symptomatic lumbar disc herniation: protocol for a systematic review and meta-analysis. BMJ Open. 2016;6(9) doi: 10.1136/bmjopen-2016-012426.e012426
    1. Coulombe B. J., Games K. E., Neil E. R., Eberman L. E. Core stability exercise versus general exercise for chronic low back pain. Journal of Athletic Training. 2017;52(1):71–72. doi: 10.4085/1062-6050-51.11.16.
    1. Matarán-Peñarrocha G. A., Lara Palomo I. C., Antequera Soler E., et al. Comparison of efficacy of a supervised versus non-supervised physical therapy exercise program on the pain, functionality and quality of life of patients with non-specific chronic low-back pain: a randomized controlled trial. Clinical Rehabilitation. 2020;34(7):948–959. doi: 10.1177/0269215520927076.
    1. Oliveira C. B., Maher C. G., Pinto R. Z., et al. Clinical practice guidelines for the management of non-specific low back pain in primary care: an updated overview. European Spine Journal. 2018;27(11):2791–2803. doi: 10.1007/s00586-018-5673-2.
    1. Engers A. J., Jellema P., Wensing M., van der Windt D. A., Grol R., van Tulder M. W. Individual patient education for low back pain. The Cochrane Database of Systematic Reviews. 2008;2008(1) doi: 10.1002/14651858.cd004057.pub3.CD004057
    1. Heymans M. W., van Tulder M. W., Esmail R., Bombardier C., Koes B. W. Back schools for non-specific low-back pain. The Cochrane Database of Systematic Reviews. 2004;2004(4) doi: 10.1002/14651858.CD000261.pub2.CD000261
    1. Henschke N., Ostelo R. W., van Tulder M. W., et al. Behavioural treatment for chronic low-back pain. The Cochrane Database of Systematic Reviews. 2000;2010(7) doi: 10.1002/14651858.CD002014.pub3.CD0002014
    1. Shamsi M. B., Rezaei M., Zamanlou M., Sadeghi M., Pourahmadi M. R. Does core stability exercise improve lumbopelvic stability (through endurance tests) more than general exercise in chronic low back pain? a quasi-randomized controlled trial. Physiotherapy Theory and Practice. 2016;32(3):171–178. doi: 10.3109/09593985.2015.1117550.
    1. Wewers M. E., Lowe N. K. A critical review of visual analogue scales in the measurement of clinical phenomena. Research in Nursing & Health. 1990;13(4):227–236. doi: 10.1002/nur.4770130405.
    1. Sindhu B. S., Shechtman O., Tuckey L. Validity, reliability, and responsiveness of a digital version of the visual analog scale. Journal of Hand Therapy. 2011;24(4):356–364. doi: 10.1016/j.jht.2011.06.003.
    1. Vogler D., Paillex R., Norberg M., de Goumoëns P., Cabri J. Validation transculturelle de l’oswestry disability index en français. Annales de Réadaptation et de Médecine Physique. 2008;51(5):379–385. doi: 10.1016/j.annrmp.2008.03.006.
    1. Kim D.-Y., Lee S.-H., Lee H.-Y., et al. Validation of the Korean version of the oswestry disability index. Spine. 2005;30(5):E123–E127. doi: 10.1097/01.brs.0000157172.00635.3a.
    1. Claus A. P., Hides J. A., Moseley G. L., Hodges P. W. Different ways to balance the spine in sitting: muscle activity in specific postures differs between individuals with and without a history of back pain in sitting. Clinical Biomechanics. 2018;52:25–32. doi: 10.1016/j.clinbiomech.2018.01.003.
    1. Muyor J. M., Arrabal-Campos F. M., Martínez-Aparicio C., Sánchez-Crespo A., Villa-Pérez M. Test-retest reliability and validity of a motion capture (MOCAP) system for measuring thoracic and lumbar spinal curvatures and sacral inclination in the sagittal plane. Journal of Back and Musculoskeletal Rehabilitation. 2017;30(6):1319–1325. doi: 10.3233/bmr-169750.
    1. Panjabi M. M. The stabilizing system of the spine. part II. neutral zone and instability hypothesis. Journal of Spinal Disorders. 1992;5(4):390–397. doi: 10.1097/00002517-199212000-00002.
    1. Urquhart D. M., Barker P. J., Hodges P. W., Story I. H., Briggs C. A. Regional morphology of the transversus abdominis and obliquus internus and externus abdominis muscles. Clinical Biomechanics. 2005;20(3):233–241. doi: 10.1016/j.clinbiomech.2004.11.007.
    1. Kader D. F., Wardlaw D., Smith F. W. Correlation between the MRI changes in the lumbar multifidus muscles and leg pain. Clinical Radiology. 2000;55(2):145–149. doi: 10.1053/crad.1999.0340.
    1. Danneels L. A., Vanderstraeten G. G., Cambier D. C., et al. Effects of three different training modalities on the cross sectional area of the lumbar multifidus muscle in patients with chronic low back pain. British Journal of Sports Medicine. 2001;35(3):186–191. doi: 10.1136/bjsm.35.3.186.
    1. Hides J., Gilmore C., Stanton W., Bohlscheid E. Multifidus size and symmetry among chronic LBP and healthy asymptomatic subjects. Manual Therapy. 2008;13(1):43–49. doi: 10.1016/j.math.2006.07.017.
    1. Wallwork T. L., Stanton W. R., Freke M., Hides J. A. The effect of chronic low back pain on size and contraction of the lumbar multifidus muscle. Manual Therapy. 2009;14(5):496–500. doi: 10.1016/j.math.2008.09.006.
    1. Freeman M. D., Woodham M. A., Woodham A. W. The role of the lumbar multifidus in chronic low back pain: a review. Physical Medicine and Rehabilitation. 2010;2(2):142–146. doi: 10.1016/j.pmrj.2009.11.006.
    1. Cho H.-Y., Kim E.-H., Kim J. Effects of the CORE exercise program on pain and active range of motion in patients with chronic low back pain. Journal of Physical Therapy Science. 2014;26(8):1237–1240. doi: 10.1589/jpts.26.1237.
    1. Hoppes C. W., Sperier A. D., Hopkins C. F., et al. The efficacy of an eight-week core stabilization program on core muscle function and endurance: a randomized trial. International Journal of Sports Physical Therapy. 2016;11(4):507–519.
    1. Shahvarpour A., Gagnon D., Preuss R., Henry S. M., Larivière C. Trunk postural balance and low back pain: reliability and relationship with clinical changes following a lumbar stabilization exercise program. Gait & Posture. 2018;61:375–381. doi: 10.1016/j.gaitpost.2018.02.006.
    1. Baker R., Coenen P., Howie E., Williamson A., Straker L. The short term musculoskeletal and cognitive effects of prolonged sitting during office computer work. International Journal of Environmental Research and Public Health. 2018;15(8):p. 1678. doi: 10.3390/ijerph15081678.
    1. Kwon Y., Kim J.-W., Heo J.-H., Jeon H.-M., Choi E.-B., Eom G.-M. The effect of sitting posture on the loads at cervico-thoracic and lumbosacral joints. Technology and Health Care. 2018;26(S1):409–418. doi: 10.3233/thc-174717.
    1. Edmondston S. J., Sharp M., Symes A., Alhabib N., Allison G. T. Changes in mechanical load and extensor muscle activity in the cervico-thoracic spine induced by sitting posture modification. Ergonomics. 2011;54(2):179–186. doi: 10.1080/00140139.2010.544765.
    1. O’Sullivan P. B., Dankaerts W., Burnett A. F., et al. Effect of different upright sitting postures on spinalepelvic curvature and trunk muscle activation in a pain-free population. Spine. 2006;31(19):707–712. doi: 10.1097/01.brs.0000234735.98075.50.
    1. Mörl F., Bradl I. Lumbar posture and muscular activity while sitting during office work. Journal of Electromyography and Kinesiology. 2013;23(2):362–368. doi: 10.1016/j.jelekin.2012.10.002.
    1. Dankaerts W., OʼSullivan P., Burett A., Straker L. Differences in sitting postures are associated with nonspecific chronic low back pain disorders when patients are subclassified. Spine. 2006;31(6):698–704. doi: 10.1097/01.brs.0000202532.76925.d2.

Source: PubMed

3
Subskrybuj