Premature ventricular contractions activate vagal afferents and alter autonomic tone: implications for premature ventricular contraction-induced cardiomyopathy

Siamak Salavatian, Naoko Yamaguchi, Jonathan Hoang, Nicole Lin, Saloni Patel, Jeffrey L Ardell, J Andrew Armour, Marmar Vaseghi, Siamak Salavatian, Naoko Yamaguchi, Jonathan Hoang, Nicole Lin, Saloni Patel, Jeffrey L Ardell, J Andrew Armour, Marmar Vaseghi

Abstract

Mechanisms behind development of premature ventricular contraction (PVC)-induced cardiomyopathy remain unclear. PVCs may adversely modulate the autonomic nervous system to promote development of heart failure. Afferent neurons in the inferior vagal (nodose) ganglia transduce cardiac activity and modulate parasympathetic output. Effects of PVCs on cardiac parasympathetic efferent and vagal afferent neurotransmission are unknown. The purpose of this study was to evaluate effects of PVCs on vagal afferent neurotransmission and compare these effects with a known powerful autonomic modulator, myocardial ischemia. In 16 pigs, effects of variably coupled PVCs on heart rate variability (HRV) and vagal afferent neurotransmission were evaluated. Direct nodose neuronal recordings were obtained in vivo, and cardiac-related afferent neurons were identified based on their response to cardiovascular interventions, including ventricular chemical and mechanical stimuli, left anterior descending (LAD) coronary artery occlusion, and variably coupled PVCs. On HRV analysis before versus after PVCs, parasympathetic tone decreased (normalized high frequency: 83.6 ± 2.8 to 72.5 ± 5.3; P < 0.05). PVCs had a powerful impact on activity of cardiac-related afferent neurons, altering activity of 51% of neurons versus 31% for LAD occlusion (P < 0.05 vs. LAD occlusion and all other cardiac interventions). Both chemosensitive and mechanosensitive neurons were activated by PVCs, and their activity remained elevated even after cessation of PVCs. Cardiac afferent neural responses to PVCs were greater than any other intervention, including ischemia of similar duration. These data suggest that even brief periods of PVCs powerfully modulate vagal afferent neurotransmission, reflexly decreasing parasympathetic efferent tone.NEW & NOTEWORTHY Premature ventricular contractions (PVCs) are common in many patients and, at an increased burden, are known to cause heart failure. This study determined that PVCs powerfully modulate cardiac vagal afferent neurotransmission (exerting even greater effects than ventricular ischemia) and reduce parasympathetic efferent outflow to the heart. PVCs activated both mechano- and chemosensory neurons in the nodose ganglia. These peripheral neurons demonstrated adaptation in response to PVCs. This study provides additional data on the potential role of the autonomic nervous system in PVC-induced cardiomyopathy.

Keywords: afferent; autonomic; nodose ganglia; parasympathetic; premature ventricular contractions; vagus nerve.

Conflict of interest statement

M. Vaseghi and J. L. Ardell have founder shares in Neurcures, Inc. University of California, Los Angeles, has patents developed by M. Vaseghi and J. L. Ardell relating to cardiac neural diagnostics.

Figures

Fig. 1.
Fig. 1.
Nodose ganglia in vivo neuronal recordings. A: anatomic locations of the nodose ganglion and carotid artery are shown. Protein gene product (PGP) 9.5 staining of the nodose ganglion was used to confirm location of the ganglion at the end of the experiments. B: customized 16-channel linear microelectrode array was used for individual neuronal recordings. C: representative sorted neuronal action potentials from the nodose ganglion of 1 animal. Representative action potentials from individual neurons are illustrated in the boxes. D: representative activities generated by 6 nodose neuronal soma in response to premature ventricular contractions (PVCs) in 1 animal. Increase in the activity of these nodose neurons (P < 0.05) can be observed during PVCs in this animal. CH, electrode channel; LVP, left ventricular pressure (mmHg).
Fig. 2.
Fig. 2.
Response of neurons to cardiovascular stimuli. A: 89 cardiac afferent neurons (each row is an individual neuron) were identified based on their response to cardiovascular interventions, including PVCs. B: percentage of cardiac neurons that responded to each stressor is shown. PVCs engaged the highest number of afferent neurons. *P < 0.05 vs. other interventions (ANOVA). C: average change in firing rate of all nodose cardiac afferent neurons (n = 89). PVCs, left anterior descending (LAD) occlusion, and IVC occlusion caused the greatest change in firing rates of neurons. *P < 0.01 (ANOVA).
Fig. 3.
Fig. 3.
Type of afferent neurons modulated by premature ventricular contractions (PVCs). A: location of right ventricular (RV) and left ventricular (LV) application of mechanical and chemical stimuli is shown by the shaded area (white square). Mechanical and chemical stimuli were applied to the same receptive field. B: PVCs activated both mechanosensitive and chemosensitive neurons. C: percentages of mechanical, chemical, and multimodal neurons that responded to PVCs are shown. ADE, adenosine; BRA, bradykinin; C, chemical neurons; CAP, capsaicin; CHEM, chemical stimulation; EMS, epicardial mechanical stimulation; LAD, left anterior descending; M, mechanical neurons; MM, multimodal neurons; VER, veratridine.
Fig. 4.
Fig. 4.
Response of cardiac afferent neurons activated with premature ventricular contractions (PVCs). A: response of neurons that were activated during PVCs shows elevated firing rates even after cessation of PVCs (response evaluated over the minute following discontinuation of PVCs). B: response of neurons as a function of the PVC number during the 1-min period is shown. C: representative example of a PVC coupling interval and underlying sinus cycle length. Ratio of the coupling interval to the sinus cycle length was used to assess effect of early vs. late-coupled PVCs on neuronal activation. Representative sinus cycle length (569 ms, as shown) and PVC coupling interval (395 ms, as shown) are shown. D: response of neurons to PVCs as a function of the coupling interval to sinus rhythm ratio. Late-coupled PVCs (ratio of 80–90%) caused the greatest neuronal activity. *P < 0.05 (ANOVA). BL, baseline; CI, coupling interval; CL, cycle length; LVP, left ventricular pressure.

References

    1. Agarwal V, Vittinghoff E, Whitman IR, Dewland TA, Dukes JW, Marcus GM. Relation between ventricular premature complexes and incident heart failure. Am J Cardiol 119: 1238–1242, 2017. doi:10.1016/j.amjcard.2016.12.029.
    1. Armour JA, Huang MH, Pelleg A, Sylvén C. Responsiveness of in situ canine nodose ganglion afferent neurones to epicardial mechanical or chemical stimuli. Cardiovasc Res 28: 1218–1225, 1994. doi:10.1093/cvr/28.8.1218.
    1. Askin L, Cetin M, Turkmen S. Ambulatory blood pressure results and heart rate variability in patients with premature ventricular contractions. Clin Exp Hypertens 40: 251–256, 2018. doi:10.1080/10641963.2017.1356846.
    1. Baman TS, Lange DC, Ilg KJ, Gupta SK, Liu TY, Alguire C, Armstrong W, Good E, Chugh A, Jongnarangsin K, Pelosi F Jr, Crawford T, Ebinger M, Oral H, Morady F, Bogun F. Relationship between burden of premature ventricular complexes and left ventricular function. Heart Rhythm 7: 865–869, 2010. doi:10.1016/j.hrthm.2010.03.036.
    1. Beaumont E, Salavatian S, Southerland EM, Vinet A, Jacquemet V, Armour JA, Ardell JL. Network interactions within the canine intrinsic cardiac nervous system: implications for reflex control of regional cardiac function. J Physiol 591: 4515–4533, 2013. doi:10.1113/jphysiol.2013.259382.
    1. Bogun F, Crawford T, Reich S, Koelling TM, Armstrong W, Good E, Jongnarangsin K, Marine JE, Chugh A, Pelosi F, Oral H, Morady F. Radiofrequency ablation of frequent, idiopathic premature ventricular complexes: comparison with a control group without intervention. Heart Rhythm 4: 863–867, 2007. doi:10.1016/j.hrthm.2007.03.003.
    1. Boyett M, Wang Y, D’Souza A. CrossTalk opposing view: heart rate variability as a measure of cardiac autonomic responsiveness is fundamentally flawed. J Physiol 597: 2599–2601, 2019. doi:10.1113/JP277501.
    1. Boyett M, Wang Y, D’Souza A. Rebuttal from Mark Boyett, Yanwen Wang and Alicia D’Souza. J Physiol 597: 2605, 2019. doi:10.1113/JP277963.
    1. Cardona-Guarache R, Padala SK, Velazco-Davila L, Cassano A, Abbate A, Ellenbogen KA, Koneru JN. Stellate ganglion blockade and bilateral cardiac sympathetic denervation in patients with life-threatening ventricular arrhythmias. J Cardiovasc Electrophysiol 28: 903–908, 2017. doi:10.1111/jce.13249.
    1. Casati R, Lombardi F, Malliani A. Afferent sympathetic unmyelinated fibres with left ventricular endings in cats. J Physiol 292: 135–148, 1979. doi:10.1113/jphysiol.1979.sp012842.
    1. Chen HY. Relationship of heart rate turbulence, heart rate variability and the number of ventricular premature beats in patients with mitral valve prolapse and non-significant regurgitation. Int J Cardiol 135: 269–271, 2009. doi:10.1016/j.ijcard.2008.03.060.
    1. Duffee DF, Shen WK, Smith HC. Suppression of frequent premature ventricular contractions and improvement of left ventricular function in patients with presumed idiopathic dilated cardiomyopathy. Mayo Clin Proc 73: 430–433, 1998. doi:10.1016/S0025-6196(11)63724-5.
    1. Dukes JW, Dewland TA, Vittinghoff E, Mandyam MC, Heckbert SR, Siscovick DS, Stein PK, Psaty BM, Sotoodehnia N, Gottdiener JS, Marcus GM. Ventricular ectopy as a predictor of heart failure and death. J Am Coll Cardiol 66: 101–109, 2015. doi:10.1016/j.jacc.2015.04.062.
    1. Ezzat VA, Liew R, Ward DE. Catheter ablation of premature ventricular contraction-induced cardiomyopathy. Nat Clin Pract Cardiovasc Med 5: 289–293, 2008. doi:10.1038/ncpcardio1180.
    1. Grassi G, Seravalle G, Bertinieri G, Stella ML, Turri C, Mancia G. Sympathetic response to ventricular extrasystolic beats in hypertension and heart failure. Hypertension 39: 886–891, 2002. doi:10.1161/01.HYP.0000013265.48954.A5.
    1. Hamon D, Rajendran PS, Chui RW, Ajijola OA, Irie T, Talebi R, Salavatian S, Vaseghi M, Bradfield JS, Armour JA, Ardell JL, Shivkumar K. Premature ventricular contraction coupling interval variability destabilizes cardiac neuronal and electrophysiological control: insights from simultaneous cardioneural mapping. Circ Arrhythm Electrophysiol 10: e004937, 2017. doi:10.1161/CIRCEP.116.004937.
    1. Hasdemir C, Ulucan C, Yavuzgil O, Yuksel A, Kartal Y, Simsek E, Musayev O, Kayikcioglu M, Payzin S, Kultursay H, Aydin M, Can LH. Tachycardia-induced cardiomyopathy in patients with idiopathic ventricular arrhythmias: the incidence, clinical and electrophysiologic characteristics, and the predictors. J Cardiovasc Electrophysiol 22: 663–668, 2011. doi:10.1111/j.1540-8167.2010.01986.x.
    1. He W, Lu Z, Bao M, Yu L, He B, Zhang Y, Hu X, Cui B, Huang B, Jiang H. Autonomic involvement in idiopathic premature ventricular contractions. Clin Res Cardiol 102: 361–370, 2013. doi:10.1007/s00392-013-0545-6.
    1. Huang WA, Shivkumar K, Vaseghi M. Device-based autonomic modulation in arrhythmia patients: the role of vagal nerve stimulation. Curr Treat Options Cardiovasc Med 17: 22, 2015. doi:10.1007/s11936-015-0379-9.
    1. Huizar JF, Kaszala K, Potfay J, Minisi AJ, Lesnefsky EJ, Abbate A, Mezzaroma E, Chen Q, Kukreja RC, Hoke NN, Thacker LR 2nd, Ellenbogen KA, Wood MA. Left ventricular systolic dysfunction induced by ventricular ectopy: a novel model for premature ventricular contraction-induced cardiomyopathy. Circ Arrhythm Electrophysiol 4: 543–549, 2011. doi:10.1161/CIRCEP.111.962381.
    1. Jänig W. The Integrative Action of the Autonomic Nervous System: Neurobiology of Homeostasis. New York: Cambridge Univ. Press, 2008.
    1. Jeong EM, Liu M, Sturdy M, Gao G, Varghese ST, Sovari AA, Dudley SC Jr. Metabolic stress, reactive oxygen species, and arrhythmia. J Mol Cell Cardiol 52: 454–463, 2012. doi:10.1016/j.yjmcc.2011.09.018.
    1. Kennedy HL, Whitlock JA, Sprague MK, Kennedy LJ, Buckingham TA, Goldberg RJ. Long-term follow-up of asymptomatic healthy subjects with frequent and complex ventricular ectopy. N Engl J Med 312: 193–197, 1985. doi:10.1056/NEJM198501243120401.
    1. Krittayaphong R, Bhuripanyo K, Punlee K, Kangkagate C, Chaithiraphan S. Effect of atenolol on symptomatic ventricular arrhythmia without structural heart disease: a randomized placebo-controlled study. Am Heart J 144: e10, 2002. doi:10.1067/mhj.2002.125516.
    1. Lee GK, Klarich KW, Grogan M, Cha YM. Premature ventricular contraction-induced cardiomyopathy: a treatable condition. Circ Arrhythm Electrophysiol 5: 229–236, 2012. [Correction in Circ Arrhythm Electrophysiol 5: e62, 2012.] doi:10.1161/CIRCEP.111.963348.
    1. Lombardi F, Ruscone TG, Malliani A. Premature ventricular contractions and reflex sympathetic activation in cats. Cardiovasc Res 23: 205–212, 1989. doi:10.1093/cvr/23.3.205.
    1. Marín-García J, Goldenthal MJ, Moe GW. Selective endothelin receptor blockade reverses mitochondrial dysfunction in canine heart failure. J Card Fail 8: 326–332, 2002. doi:10.1054/jcaf.2002.127770.
    1. Maslov PZ, Breskovic T, Brewer DN, Shoemaker JK, Dujic Z. Recruitment pattern of sympathetic muscle neurons during premature ventricular contractions in heart failure patients and controls. Am J Physiol Regul Integr Comp Physiol 303: R1157–R1164, 2012. doi:10.1152/ajpregu.00323.2012.
    1. Niwano S, Wakisaka Y, Niwano H, Fukaya H, Kurokawa S, Kiryu M, Hatakeyama Y, Izumi T. Prognostic significance of frequent premature ventricular contractions originating from the ventricular outflow tract in patients with normal left ventricular function. Heart 95: 1230–1237, 2009. doi:10.1136/hrt.2008.159558.
    1. Patel VN, Pierce BR, Bodapati RK, Brown DL, Ives DG, Stein PK. Association of Holter-derived heart rate variability parameters with the development of congestive heart failure in the cardiovascular health study. JACC Heart Fail 5: 423–431, 2017. doi:10.1016/j.jchf.2016.12.015.
    1. Potfay J, Kaszala K, Tan AY, Sima AP, Gorcsan J 3rd, Ellenbogen KA, Huizar JF. Abnormal left ventricular mechanics of ventricular ectopic beats: insights into origin and coupling interval in premature ventricular contraction-induced cardiomyopathy. Circ Arrhythm Electrophysiol 8: 1194–1200, 2015. doi:10.1161/CIRCEP.115.003047.
    1. Salavatian S, Beaumont E, Gibbons D, Hammer M, Hoover DB, Armour JA, Ardell JL. Thoracic spinal cord and cervical vagosympathetic neuromodulation obtund nodose sensory transduction of myocardial ischemia. Auton Neurosci 208: 57–65, 2017. doi:10.1016/j.autneu.2017.08.005.
    1. Salavatian S, Beaumont E, Longpré JP, Armour JA, Vinet A, Jacquemet V, Shivkumar K, Ardell JL. Vagal stimulation targets select populations of intrinsic cardiac neurons to control neurally induced atrial fibrillation. Am J Physiol Heart Circ Physiol 311: H1311–H1320, 2016. doi:10.1152/ajpheart.00443.2016.
    1. Schwartz PJ, De Ferrari GM. Sympathetic-parasympathetic interaction in health and disease: abnormalities and relevance in heart failure. Heart Fail Rev 16: 101–107, 2011. doi:10.1007/s10741-010-9179-1.
    1. Sekiguchi Y, Aonuma K, Yamauchi Y, Obayashi T, Niwa A, Hachiya H, Takahashi A, Nitta J, Iesaka Y, Isobe M. Chronic hemodynamic effects after radiofrequency catheter ablation of frequent monomorphic ventricular premature beats. J Cardiovasc Electrophysiol 16: 1057–1063, 2005. doi:10.1111/j.1540-8167.2005.40786.x.
    1. Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health 5: 258, 2017. doi:10.3389/fpubh.2017.00258.
    1. Shanmugam N, Chua TP, Ward D. ‘Frequent’ ventricular bigeminy – a reversible cause of dilated cardiomyopathy. How frequent is ‘frequent’? Eur J Heart Fail 8: 869–873, 2006. doi:10.1016/j.ejheart.2006.02.011.
    1. Shen MJ, Zipes DP. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res 114: 1004–1021, 2014. doi:10.1161/CIRCRESAHA.113.302549.
    1. Shimoike E, Ueda N, Maruyama T, Kaji Y, Kanaya S, Fujino T, Niho Y. Heart rate variability analysis of patients with idiopathic left ventricular outflow tract tachycardia: role of triggered activity. Jpn Circ J 63: 629–635, 1999. doi:10.1253/jcj.63.629.
    1. Shin HC, Aggarwal V, Acharya S, Schieber MH, Thakor NV. Neural decoding of finger movements using Skellam-based maximum-likelihood decoding. IEEE Trans Biomed Eng 57: 754–760, 2010. doi:10.1109/TBME.2009.2020791.
    1. Smith ML, Hamdan MH, Wasmund SL, Kneip CF, Joglar JA, Page RL. High-frequency ventricular ectopy can increase sympathetic neural activity in humans. Heart Rhythm 7: 497–503, 2010. doi:10.1016/j.hrthm.2009.12.029.
    1. Taieb JM, Maury P, Shah D, Duparc A, Galinier M, Delay M, Morice R, Alfares A, Barnay C. Reversal of dilated cardiomyopathy by the elimination of frequent left or right premature ventricular contractions. J Interv Card Electrophysiol 20: 9–13, 2007. doi:10.1007/s10840-007-9157-2.
    1. Tan AY, Hu YL, Potfay J, Kaszala K, Howren M, Sima AP, Shultz M, Koneru JN, Ellenbogen KA, Huizar JF. Impact of ventricular ectopic burden in a premature ventricular contraction-induced cardiomyopathy animal model. Heart Rhythm 13: 755–761, 2016. [Erratum in Heart Rhythm 13: 1171, 2016.] doi:10.1016/j.hrthm.2015.11.016.
    1. Thompson GW, Horackova M, Armour JA. Chemotransduction properties of nodose ganglion cardiac afferent neurons in guinea pigs. Am J Physiol Regul Integr Comp Physiol 279: R433–R439, 2000. doi:10.1152/ajpregu.2000.279.2.R433.
    1. Vaseghi M, Barwad P, Malavassi Corrales FJ, Tandri H, Mathuria N, Shah R, Sorg JM, Gima J, Mandal K, Sàenz Morales LC, Lokhandwala Y, Shivkumar K. Cardiac sympathetic denervation for refractory ventricular arrhythmias. J Am Coll Cardiol 69: 3070–3080, 2017. [Erratum in J Am Coll Cardiol 70: 811, 2017.] doi:10.1016/j.jacc.2017.04.035.
    1. Vaseghi M, Shivkumar K. The role of the autonomic nervous system in sudden cardiac death. Prog Cardiovasc Dis 50: 404–419, 2008. doi:10.1016/j.pcad.2008.01.003.
    1. Walters TE, Rahmutula D, Szilagyi J, Alhede C, Sievers R, Fang Q, Olgin J, Gerstenfeld EP. Left ventricular dyssynchrony predicts the cardiomyopathy associated with premature ventricular contractions. J Am Coll Cardiol 72: 2870–2882, 2018. doi:10.1016/j.jacc.2018.09.059.
    1. Wang Y, Eltit JM, Kaszala K, Tan A, Jiang M, Zhang M, Tseng GN, Huizar JF. Cellular mechanism of premature ventricular contraction-induced cardiomyopathy. Heart Rhythm 11: 2064–2072, 2014. doi:10.1016/j.hrthm.2014.07.022.
    1. Wark B, Lundstrom BN, Fairhall A. Sensory adaptation. Curr Opin Neurobiol 17: 423–429, 2007. doi:10.1016/j.conb.2007.07.001.
    1. Welch WJ, Smith ML, Rea RF, Bauernfeind RA, Eckberg DL. Enhancement of sympathetic nerve activity by single premature ventricular beats in humans. J Am Coll Cardiol 13: 69–75, 1989. doi:10.1016/0735-1097(89)90551-2.

Source: PubMed

3
Subskrybuj