Non-invasive Low-level Tragus Stimulation in Cardiovascular Diseases

Yunqiu Jiang, Sunny S Po, Faris Amil, Tarun W Dasari, Yunqiu Jiang, Sunny S Po, Faris Amil, Tarun W Dasari

Abstract

Low-level tragus stimulation (LLTS) is a non-invasive approach of transcutaneous vagus nerve stimulation. LLTS has applications in diseases of multiple systems, including epilepsy, depression, headache and potentially several cardiovascular diseases. LLTS has shown promising results in suppressing AF, alleviating post-MI ventricular arrhythmias and ischaemia-reperfusion injury along with improving diastolic parameters in heart failure with preserved left ventricular ejection fraction (HFpEF). Preliminary pilot clinical studies in patients with paroxysmal AF, HFpEF, heart failure with reduced ejection fraction and acute MI have demonstrated promising results. The beneficial effects are likely secondary to favourable alteration of the sympathovagal imbalance. On-going exploratory work focused on underlying mechanisms of LLTS in cardiovascular disease states and larger scale clinical trials will shed more light on the non-invasive modulation of the neuro-immune axis.

Keywords: Arrhythmia; autonomic nervous system; neuromodulation; tragus.

Conflict of interest statement

Disclosure: The authors have no conflicts of interest to declare.

Copyright © 2020, Radcliffe Cardiology.

Figures

Figure 1:. Low-level Tragus Stimulation
Figure 1:. Low-level Tragus Stimulation
Figure 2:. Innervation of the Auricular Skin
Figure 2:. Innervation of the Auricular Skin

References

    1. Andersson U, Tracey KJ. Neural reflexes in inflammation and immunity. J Exp Med. 2012;209:1057–68. doi: 10.1084/jem.20120571.
    1. Chavan SS, Tracey KJ. Essential neuroscience in immunology. J Immunol. 2017;198:3389–97. doi: 10.4049/jimmunol.1601613.
    1. Bonaz B, Sinniger V, Pellissier S. The vagus nerve in the neuro-immune axis: Implications in the pathology of the gastrointestinal tract. Front Immunol. 2017;8:1452. doi: 10.3389/fimmu.2017.01452.
    1. Chatterjee NA, Singh JP. Novel interventional therapies to modulate the autonomic tone in heart failure. JACC Heart Fail. 2015;3:786–802. doi: 10.1016/j.jchf.2015.05.008.
    1. Giordano F, Zicca A, Barba C et al. Vagus nerve stimulation: Surgical technique of implantation and revision and related morbidity. Epilepsia. 2017;58(Suppl 1):85–90. doi: 10.1111/epi.13678.
    1. Carreno FR, Frazer A. Vagal nerve stimulation for treatment-resistant depression. Neurotherapeutics. 2017;14:716–27. doi: 10.1007/s13311-017-0537-8.
    1. Lendvai IS, Maier A, Scheele D et al. Spotlight on cervical vagus nerve stimulation for the treatment of primary headache disorders: a review. J Pain Res. 2018;11:1613–25. doi: 10.2147/JPR.S129202.
    1. Braunwald E, Epstein SE, Glick G et al. Relief of angina pectoris by electrical stimulation of the carotid-sinus nerves. N Engl J Med. 1967;277:1278–83. doi: 10.1056/NEJM196712142772402.
    1. Annoni EM, Xie X, Lee SW et al. Intermittent electrical stimulation of the right cervical vagus nerve in saltsensitive hypertensive rats: effects on blood pressure, arrhythmias, and ventricular electrophysiology. Physiol Rep. 2015;3:e12476. doi: 10.14814/phy2.12476.
    1. Meyers EC, Solorzano BR, James J et al. Vagus nerve stimulation enhances stable plasticity and generalization of stroke recovery. Stroke. 2018;49:710–7. doi: 10.1161/STROKEAHA.117.019202.
    1. Kimberley TJ, Pierce D, Prudente CN et al. Vagus nerve stimulation paired with upper limb rehabilitation after chronic stroke. Stroke. 2018;49:2789–92. doi: 10.1161/STROKEAHA.118.022279.
    1. Dicarlo L, Libbus I, Amurthur B et al. Autonomic regulation therapy for the improvement of left ventricular function and heart failure symptoms: the ANTHEM-HF study. J Card Fail. 2013;19:655–60. doi: 10.1016/j.cardfail.2013.07.002.
    1. Gold MR, Van Veldhuisen DJ, Hauptman PJ et al. Vagus nerve stimulation for the treatment of heart failure: the INOVATE-HF trial. J Am Coll Cardiol. 2016;68:149–58. doi: 10.1016/j.jacc.2016.03.525.
    1. De Ferrari GM, Stolen C, Tuinenburg AE et al. Long-term vagal stimulation for heart failure: eighteen month results from the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) trial. Int J Cardiol. 2017;244:229–34. doi: 10.1016/j.ijcard.2017.06.036.
    1. Akdemir B, Benditt DG. Vagus nerve stimulation: An evolving adjunctive treatment for cardiac disease. Anatol J Cardiol. 2016;16:804–10. doi: 10.14744/AnatolJCardiol.2016.7129.
    1. Deuchars SA, Lall VK, Clancy J et al. Mechanisms underpinning sympathetic nervous activity and its modulation using transcutaneous vagus nerve stimulation. Exp Physiol. 2018;103:326–31. doi: 10.1113/EP086433.
    1. Clancy JA, Deuchars SA, Deuchars J. The wonders of the wanderer. Exp Physiol. 2013;98:38–45. doi: 10.1113/expphysiol.2012.064543.
    1. Schwaber JS, Cohen DH. Electrophysiological and electron microscopic analysis of the vagus nerve of the pigeon, with particular reference to the cardiac innervation. Brain Res. 1978;147:65–78. doi: 10.1016/0006-8993(78)90772-2.
    1. Jones JF, Wang Y, Jordan D. Heart rate responses to selective stimulation of cardiac vagal C fibres in anaesthetized cats, rats and rabbits. J Physiol. 1995;489:203–14. doi: 10.1113/jphysiol.1995.sp021042.
    1. Peuker ET, Filler TJ. The nerve supply of the human auricle. Clin Anat. 2002;15:35–7. doi: 10.1002/ca.1089.
    1. Eshraghi AA, Buchman CA, Telischi FF. Sensory auricular branch of the facial nerve. Otol Neurotol. 2002;23:393–6. doi: 10.1097/00129492-200205000-00028.
    1. Frangos E, Ellrich J, Komisaruk BR. Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimul. 2015;8:624–36. doi: 10.1016/j.brs.2014.11.018.
    1. Badran BW, Dowdle LT, Mithoefer OJ et al. Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review. Brain Stimul. 2018;11:492–500. doi: 10.1016/j.brs.2017.12.009.
    1. Andreas M, Arzl P, Mitterbauer A et al. Electrical stimulation of the greater auricular nerve to reduce postoperative atrial fibrillation. Circ Arrhythm Electrophysiol. 2019;12:e007711. doi: 10.1161/CIRCEP.119.007711.
    1. Zhou L, Filiberti A, Humphrey MB, Po SS et al. Low-level transcutaneous vagus nerve stimulation attenuates cardiac remodelling in a rat model of heart failure with preserved ejection fraction. Exp Physiol. 2019;104:28–38. doi: 10.1113/EP087351.
    1. Wang Z, Yu L, Huang B, Wang S et al. Low-level transcutaneous electrical stimulation of the auricular branch of vagus nerve ameliorates left ventricular remodeling and dysfunction by downregulation of matrix metalloproteinase 9 and transforming growth factor beta1. J Cardiovasc Pharmacol. 2015;65:342–8. doi: 10.1097/FJC.0000000000000201.
    1. Yu L, Wang S, Zhou X et al. Chronic intermittent low-level stimulation of tragus reduces cardiac autonomic remodeling and ventricular arrhythmia inducibility in a post-infarction canine model. JACC Clin Electrophysiol. 2016;2:330–9. doi: 10.1016/j.jacep.2015.11.006.
    1. Chen M, Zhou X, Liu Q, Sheng X, Yu L, Wang Z et al. Left-sided noninvasive vagus nerve stimulation suppresses atrial fibrillation by upregulating atrial gap junctions in canines. J Cardiovasc Pharmacol. 2015;66:593–9. doi: 10.1097/FJC.0000000000000309.
    1. Yu L, Huang B, Po SS et al. Low-level tragus stimulation for the treatment of ischemia and reperfusion injury in patients with st-segment elevation myocardial infarction: A proof-ofconcept study. JACC Cardiovasc Interv. 2017;10:1511–20. doi: 10.1016/j.jcin.2017.04.036.
    1. Stavrakis S, Humphrey MB, Scherlag BJ et al. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. J Am Coll Cardiol. 2015;65:867–75. doi: 10.1016/j.jacc.2014.12.026.
    1. Badran BW, Mithoefer OJ, Summer CE et al. Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate. Brain Stimul. 2018;11:699–708. doi: 10.1016/j.brs.2018.04.004.
    1. Premchand RK, Sharma K, Mittal S et al. Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial. J Card Fail. 2014;20:808–16. doi: 10.1016/j.cardfail.2014.08.009.
    1. Ardell JL, Nier H, Hammer M et al. Defining the neural fulcrum for chronic vagus nerve stimulation: implications for integrated cardiac control. J Physiol. 2017;595:6887–903. doi: 10.1113/JP274678.
    1. Clancy JA, Mary DA, Witte KK et al. Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul. 2014;7:871–7. doi: 10.1016/j.brs.2014.07.031.
    1. Sclocco R, Garcia RG, Kettner NW et al. The influence of respiration on brainstem and cardiovagal response to auricular vagus nerve stimulation: a multimodal ultrahigh-field (7T) fMRI study. Brain Stimul. 2019;12:911–21. doi: 10.1016/j.brs.2019.02.003.
    1. Sclocco R, Tana MG, Visani E et al. EEG-informed fMRI analysis during a hand grip task: estimating the relationship between EEG rhythms and the BOLD signal. Front Hum Neurosci. 2014;8:186. doi: 10.3389/fnhum.2014.00186.
    1. Yu L, Scherlag BJ, Li S et al. Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve: a noninvasive approach to treat the initial phase of atrial fibrillation. Heart Rhythm. 2013;10:428–35. doi: 10.1016/j.hrthm.2012.11.019.
    1. Yu L, Li X, Huang B et al. Atrial fibrillation in acute obstructive sleep apnea: autonomic nervous mechanism and modulation. J Am Heart Assoc. 2017;6:e006264. doi: 10.1161/JAHA.117.006264.
    1. Cao JM, Chen LS, KenKnight BH et al. Nerve sprouting and sudden cardiac death. Circ Res. 2000;86:816–21. doi: 10.1161/01.res.86.7.816.
    1. Swissa M, Zhou S, Gonzalez-Gomez I et al. Long-term subthreshold electrical stimulation of the left stellate ganglion and a canine model of sudden cardiac death. J Am Coll Cardiol. 2004;43:858–64. doi: 10.1016/j.jacc.2003.07.053.
    1. Nasi-Er BG, Wenhui Z, HuaXin S et al. Vagus nerve stimulation reduces ventricular arrhythmias and increases ventricular electrical stability. Pacing Clin Electrophysiol. 2019;42:247–56. doi: 10.1111/pace.13585.
    1. Dunlay SM, Roger VL, Redfield MM. Epidemiology of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2017;14:591–602. doi: 10.1038/nrcardio.2017.65.
    1. Benedict CR, Weiner DH, Johnstone DE et al. Comparative neurohormonal responses in patients with preserved and impaired left ventricular ejection fraction: results of the Studies of Left Ventricular Dysfunction (SOLVD) Registry. J Am Coll Cardiol. 1993;22(4 Suppl A):146A–53A. doi: 10.1016/0735-1097(93)90480-o.
    1. Kaniusas E, Kampusch S, Tittgemeyer M et al. Current directions in the auricular vagus nerve stimulation ii -An engineering perspective. Front Neurosci. 2019;13:772. doi: 10.3389/fnins.2019.00772.
    1. Stavrakis S, Stoner JA, Humphrey MB et al. TREAT AF (Transcutaneous Electrical Vagus Nerve Stimulation to Suppress Atrial Fibrillation): a randomized clinical trial. JACC Clin Electrophysiol. 2020;6:282–91. doi: 10.1016/j.jacep.2019.11.008.
    1. Zamotrinsky A, Afanasiev S, Karpov RS, Cherniavsky A. Effects of electrostimulation of the vagus afferent endings in patients with coronary artery disease. Coron Artery Dis. 1997;8:551–7.
    1. Tran N, Asad Z, Elkholey K et al. Autonomic neuromodulation acutely ameliorates left ventricular strain in humans. J Cardiovasc Transl Res. 2019;12:221–30. doi: 10.1007/s12265-018-9853-6.
    1. Dasari TW, Gabor F, Csipo T et al. Non-invasive neuromodulation of vagus activity improves endothelial function in patients with heart failure with reduced ejection fraction: a randomized study. J Card Fail. 2018;24(Suppl):S59–60. doi: 10.1016/j.cardfail.2018.07.266.
    1. Antonino D, Teixeira AL, Maia-Lopes PM et al. Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: a randomized placebo-controlled trial. Brain Stimul. 2017;10:875–81. doi: 10.1016/j.brs.2017.05.006.
    1. Bretherton B, Atkinson L, Murray A et al. Effects of transcutaneous vagus nerve stimulation in individuals aged 55 years or above: potential benefits of daily stimulation. Aging. 2019;11:4836–57. doi: 10.18632/aging.102074.
    1. Redgrave J, Day D, Leung H et al. Safety and tolerability of transcutaneous vagus nerve stimulation in humans; a systematic review. Brain Stimul. 2018;11:1225–38. doi: 10.1016/j.brs.2018.08.010.
    1. McGregor A, Wheless J, Baumgartner J, Bettis D. Right-sided vagus nerve stimulation as a treatment for refractory epilepsy in humans. Epilepsia. 2005;46:91–6. doi: 10.1111/j.0013-9580.2005.16404.x.
    1. Tatum WO 4th, Moore DB, Stecker MM et al. Ventricular asystole during vagus nerve stimulation for epilepsy in humans. Neurology. 1999;52:1267–9. doi: 10.1212/wnl.52.6.1267.
    1. Matheny RG, Shaar CJ. Vagus nerve stimulation as a method to temporarily slow or arrest the heart. Ann Thorac Surg. 1997;63(6 Suppl):S28–9. doi: 10.1016/s0003-4975(97)00423-2.
    1. Lewine JD, Paulson K, Bangera N, Simon BJ. Exploration of the impact of brief noninvasive vagal nerve stimulation on EEG and event-related potentials. Neuromodulation. 2019;22:564–72. doi: 10.1111/ner.12864.
    1. Hagen K, Ehlis AC, Schneider S et al. Influence of different stimulation parameters on the somatosensory evoked potentials of the nervus vagus--how varied stimulation parameters affect VSEP. J Clin Neurophysiol. 2014;31:143–8. doi: 10.1097/WNP.0000000000000038.
    1. Fang J, Egorova N, Rong P et al. Early cortical biomarkers of longitudinal transcutaneous vagus nerve stimulation treatment success in depression. Neuroimage Clin. 2017;14:105–11. doi: 10.1016/j.nicl.2016.12.016.
    1. Roberts J. Chapter 63: Otolaryngologic procedures. In: Roberts and Hedges’ Clinical Procedures in Emergency Medicine and Acute Care Philadephia, PA: Elsevier. 2017. pp. 1338–83.e2.
    1. Wang Z, Yu L, Wang S et al. Chronic intermittent low-level transcutaneous electrical stimulation of auricular branch of vagus nerve improves left ventricular remodeling in conscious dogs with healed myocardial infarction. Circ Heart Fail. 2014;7:1014–21. doi: 10.1161/CIRCHEARTFAILURE.114.001564.
    1. Zhou X, Zhou L, Wang S et al. The use of noninvasive vagal nerve stimulation to inhibit sympathetically induced sinus node acceleration: A potential therapeutic approach for inappropriate sinus tachycardia. J Cardiovasc Electrophysiol. 2016;27((2)):217–23. doi: 10.1111/jce.12859.

Source: PubMed

3
Subskrybuj