Manual bag valve mask ventilation performance among respiratory therapists

Rachel E Culbreth, Douglas S Gardenhire, Rachel E Culbreth, Douglas S Gardenhire

Abstract

Background: High peak pressures delivered via bag valve mask (BVM) can be dangerous for patients.

Objective: To examine manual ventilation performance among respiratory therapists (RTs) in a simulation model.

Methods: Respiratory therapists (n=98) were instructed to ventilate a manikin for 18 breaths. Linear regression was utilized to determine associated predictors with the outcomes: delivered tidal volume, pressure and flow rate.

Results: Among all participants, the mean ventilation parameters include a tidal volume of 599.70 ml, peak pressure of 26.35 cmH2O, and flow rate of 77.20 l/min. Higher confidence values were positively associated with delivered peak pressure (p=0.01) and flow rate (p=0.008). Those with the most confidence in using the BVM actually delivered higher peak pressures and flow rates compared to those with lower confidence levels.

Conclusions: Our results emphasize the urgent need to create an intervention that allows providers to deliver safe and optimal manual ventilation.

Keywords: Manual ventilation; Peak pressures; Respiratory therapists; Tidal volume.

Conflict of interest statement

Declaration of Competing Interest The authors report no conflicts of interest.

Copyright © 2020 Elsevier Inc. All rights reserved.

References

    1. Bucher JT, Cooper JS. StatPearls Publishing; 2020. Bag Mask Ventilation (Bag Valve Mask, BVM). In: StatPearls. Accessed March 2, 2020.
    1. Weiler N, Latorre F, Eberle B, Goedecke R, Heinrichs W. Respiratory mechanics, gastric insufflation pressure, and air leakage of the laryngeal mask airway. Anesth Analg. 1997;84(5):1025–1028. doi: 10.1097/00000539-199705000-00013.
    1. Lucy MJ, Gamble JJ, Peeling A, Lam JTH, Balbuena L. Artificial ventilation during transport: a randomized crossover study of manual resuscitators with comparison to mechanical ventilators in a simulation model. Paediatr Anaesth. 2018;28(9):788–794. doi: 10.1111/pan.13389.
    1. Mumma JM, Durso FT, Dyes M, Dela Cruz R, Fox VP, Hoey M. Bag valve mask ventilation as a perceptual-cognitive skill. Hum Factors. 2018;60(2):212–221. doi: 10.1177/0018720817744729.
    1. O'Neill JF, Deakin CD. Do we hyperventilate cardiac arrest patients. Resuscitation. 2007;73(1):82–85. doi: 10.1016/j.resuscitation.2006.09.012.
    1. Khoury A, Sall FS, De Luca A, et al. Evaluation of bag-valve-mask ventilation in manikin studies: what are the current limitations. Biomed Res Int. 2016;2016 doi: 10.1155/2016/4521767.
    1. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, et al. Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis. Travel Med Infect Dis. 2020;13 doi: 10.1016/j.tmaid.2020.101623. Published online March.
    1. Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome: advances in diagnosis and treatment. JAMA. 2018;319(7):698–710. doi: 10.1001/jama.2017.21907.
    1. Hu X, Ramadeen A, Laurent G, et al. The effects of an automatic, low pressure and constant flow ventilation device versus manual ventilation during cardiovascular resuscitation in a porcine model of cardiac arrest. Resuscitation. 2013;84(8):1150–1155. doi: 10.1016/j.resuscitation.2013.02.017.
    1. Analytics IMT. Testlung: The Unique Simulation. 2019
    1. Acute Respiratory Distress Syndrome Network. RG Brower, Matthay MA, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–1308. doi: 10.1056/NEJM200005043421801.
    1. Wenzel V, Idris AH, Dörges V, Stallinger A, Gabrielli A, Lindner KH. Ventilation in the unprotected airway. Best Pract Res Clin Anaesthesiol. 2000;14(3):511–526. doi: 10.1053/bean.2000.0103.
    1. von Goedecke A, Bowden K, Wenzel V, Keller C, Gabrielli A. Effects of decreasing inspiratory times during simulated bag-valve-mask ventilation. Resuscitation. 2005;64(3):321–325. doi: 10.1016/j.resuscitation.2004.09.003.
    1. Bouvet L, Albert M-L, Augris C, et al. Real-time detection of gastric insufflation related to facemask pressure-controlled ventilation using ultrasonography of the antrum and epigastric auscultation in nonparalyzed patients: a prospective, randomized, double-blind study. Anesthesiology. 2014;120(2):326–334. doi: 10.1097/ALN.0000000000000094.
    1. Turki M, Young MP, Wagers SS, Bates JHT. Peak pressures during manual ventilation. Respir Care. 2005;50(3):340–344.
    1. Otten D, Liao MM, Wolken R, et al. Comparison of bag-valve-mask hand-sealing techniques in a simulated model. Ann Emerg Med. 2014;63(1):6–12. doi: 10.1016/j.annemergmed.2013.07.014.
    1. Hess D, Baran C. Ventilatory volumes using mouth-to-mouth, mouth-to-mask, and bag-valve-mask techniques. Am J Emerg Med. 1985;3(4):292–296. doi: 10.1016/0735-6757(85)90049-x.
    1. Qian X, Hu Q, Zhao H, et al. Determination of the optimal inspiratory pressure providing adequate ventilation while minimizing gastric insufflation using real-time ultrasonography in Chinese children: a prospective, randomized, double-blind study. BMC Anesthesiol. 2017;17(1):126. doi: 10.1186/s12871-017-0417-0.
    1. Jiang C, Zhao Y, Chen Z, Chen S, Yang X. Improving cardiopulmonary resuscitation in the emergency department by real-time video recording and regular feedback learning. Resuscitation. 2010;81(12):1664–1669. doi: 10.1016/j.resuscitation.2010.06.023.
    1. White L, Thang C, Hodsdon A, Melhuish T, Vlok R. Cricoid pressure during intubation: A systematic review and meta-analysis of randomised controlled trials. Heart Lung. 2019;1 doi: 10.1016/j.hrtlng.2019.10.001. Published online November.

Source: PubMed

3
Subskrybuj