Branched-chain amino acids in liver diseases

Kazuto Tajiri, Yukihiro Shimizu, Kazuto Tajiri, Yukihiro Shimizu

Abstract

Branched chain amino acids (BCAAs) are involved in various bioprocess such as protein metabolism, gene expression, insulin resistance and proliferation of hepatocytes. BCAAs have also been reported to suppress the growth of hepatocellular carcinoma (HCC) cells in vitro and to be required for immune cells to perform the function. In advanced cirrhotic patients, it has been clarified that serum concentrations of BCAA are decreased, whereas those of aromatic amino acids (AAAs) are increased. These alterations are thought to be the causes of hepatic encephalopathy (HE), sarcopenia and hepatocarcinogenesis and may be associated with the poor prognosis of patients with these conditions. Administration of BCAA-rich medicines has shown positive results in patients with cirrhosis.

Keywords: Branched chain amino acids (BCAAs); cirrhosis; hepatocarcinogenesis; immunity; mammalian target of rapamycin signal (mTOR signal).

Conflict of interest statement

Conflicts of Interest: The authors have no conflicts of interest to declare.

Figures

Figure 1
Figure 1
Mechanism of BCAAs-stimulated mTOR signaling and hepatocarcinogenesis. PI3K-Akt, phosohoinositide-3-kinase protein kinase B; p70S6K1, p70 S6 kinase 1; IRS-1, insulin receptor substrate; mTOR, mammalian target of rapamycin; BCAAs, branched-chain amino acids.

References

    1. Tajiri K, Shimizu Y. Branched-chain amino acids in liver diseases. World J Gastroenterol 2013;19:7620-9. 10.3748/wjg.v19.i43.7620
    1. Nishitani S, Ijichi C, Takehana K, et al. Pharmacological activities of branched-chain amino acids: specificity of tissue and signal transduction. Biochem Biophys Res Commun 2004;313:387-9. 10.1016/j.bbrc.2003.11.023
    1. Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol 2014;10:723-36. 10.1038/nrendo.2014.171
    1. Zhenyukh O, Civantos E, Ruiz-Ortega M, et al. High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation. Free Radic Biol Med 2017;104:165-77. 10.1016/j.freeradbiomed.2017.01.009
    1. Liu KA, Lashinger LM, Rasmussen AJ, et al. Leucine supplementation differentially enhances pancreatic cancer growth in lean and overweight mice. Cancer Metab 2014;2:6. 10.1186/2049-3002-2-6
    1. Jang C, Oh SF, Wada S, et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat Med 2016;22:421-6. 10.1038/nm.4057
    1. Doi M, Yamaoka I, Fukunaga T, et al. Isoleucine, a potent plasma glucose-lowering amino acid, stimulates glucose uptake in C2C12 myotubes. Biochem Biophys Res Commun 2003;312:1111-7. 10.1016/j.bbrc.2003.11.039
    1. Nishitani S, Matsumura T, Fujitani S, et al. Leucine promotes glucose uptake in skeletal muscles of rats. Biochem Biophys Res Commun 2002;299:693-6. 10.1016/S0006-291X(02)02717-1
    1. Du Y, Meng Q, Zhang Q, et al. Isoleucine or valine deprivation stimulates fat loss via increasing energy expenditure and regulating lipid metabolism in WAT. Amino Acids 2012;43:725-34. 10.1007/s00726-011-1123-8
    1. Bai J, Greene E, Li W, et al. Branched-chain amino acids modulate the expression of hepatic fatty acid metabolism-related genes in female broiler chickens. Mol Nutr Food Res 2015;59:1171-81. 10.1002/mnfr.201400918
    1. Hinault C, Mothe-Satney I, Gautier N, et al. Amino acids and leucine allow insulin activation of the PKB/mTOR pathway in normal adipocytes treated with wortmannin and in adipocytes from db/db mice. Faseb J 2004;18:1894-6. 10.1096/fj.03-1409fje
    1. Duan Y, Li F, Wang W, et al. Alteration of muscle fiber characteristics and the AMPK-SIRT1-PGC-1alpha axis in skeletal muscle of growing pigs fed low-protein diets with varying branched-chain amino acid ratios. Oncotarget 2017;8:107011-21. 10.18632/oncotarget.22205
    1. Arakawa M, Masaki T, Nishimura J, et al. The effects of branched-chain amino acid granules on the accumulation of tissue triglycerides and uncoupling proteins in diet-induced obese mice. Endocr J;58:161-70. 10.1507/endocrj.K10E-221
    1. Ma X, Han M, Li D, et al. L-Arginine promotes protein synthesis and cell growth in brown adipocyte precursor cells via the mTOR signal pathway. Amino Acids 2017;49:957-64. 10.1007/s00726-017-2399-0
    1. Fan L, Hsieh PN, Sweet DR, et al. Kruppel-like factor 15: Regulator of BCAA metabolism and circadian protein rhythmicity. Pharmacol Res 2018;130:123-6. 10.1016/j.phrs.2017.12.018
    1. Kimball SR, Jefferson LS. New functions for amino acids: effects on gene transcription and translation. Am J Clin Nutr 2006;83:500S-7S. 10.1093/ajcn/83.2.500S
    1. Okuno M, Moriwaki H, Kato M, et al. Changes in the ratio of branched-chain to aromatic amino acids affect the secretion of albumin in cultured rat hepatocytes. Biochem Biophys Res Commun 1995;214:1045-50. 10.1006/bbrc.1995.2391
    1. Ijichi C, Matsumura T, Tsuji T, et al. Branched-chain amino acids promote albumin synthesis in rat primary hepatocytes through the mTOR signal transduction system. Biochem Biophys Res Commun 2003;303:59-64. 10.1016/S0006-291X(03)00295-X
    1. Montoya A, Gomez-Lechon MJ, Castell JV. Influence of branched-chain amino acid composition of culture media on the synthesis of plasma proteins by serum-free cultured rat hepatocytes. In Vitro Cell Dev Biol 1989;25:358-64. 10.1007/BF02624599
    1. Kuwahata M, Yoshimura T, Sawai Y, et al. Localization of polypyrimidine-tract-binding protein is involved in the regulation of albumin synthesis by branched-chain amino acids in HepG2 cells. J Nutr Biochem 2008;19:438-47. 10.1016/j.jnutbio.2007.05.011
    1. Nie C, He T, Zhang W, et al. Branched Chain Amino Acids: Beyond Nutrition Metabolism. Int J Mol Sci 2018;19. doi: .10.3390/ijms19040954
    1. Guo X, Huang C, Lian K, et al. BCKA down-regulates mTORC2-Akt signal and enhances apoptosis susceptibility in cardiomyocytes. Biochem Biophys Res Commun 2016;480:106-13. 10.1016/j.bbrc.2016.09.162
    1. Wilkinson DJ, Hossain T, Limb MC, et al. Impact of the calcium form of beta-hydroxy-beta-methylbutyrate upon human skeletal muscle protein metabolism. Clin Nutr 2017. [Epub ahead of print]. 10.1016/j.clnu.2017.09.024
    1. Giron MD, Vilchez JD, Salto R, et al. Conversion of leucine to beta-hydroxy-beta-methylbutyrate by alpha-keto isocaproate dioxygenase is required for a potent stimulation of protein synthesis in L6 rat myotubes. J Cachexia Sarcopenia Muscle 2016;7:68-78. 10.1002/jcsm.12032
    1. Kao M, Columbus DA, Suryawan A, et al. Enteral beta-hydroxy-beta-methylbutyrate supplementation increases protein synthesis in skeletal muscle of neonatal pigs. Am J Physiol Endocrinol Metab 2016;310:E1072-84. 10.1152/ajpendo.00520.2015
    1. She P, Reid TM, Bronson SK, et al. Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle. Cell Metab 2007;6:181-94. 10.1016/j.cmet.2007.08.003
    1. Ikehara O, Kawasaki N, Maezono K, et al. Acute and chronic treatment of L-isoleucine ameliorates glucose metabolism in glucose-intolerant and diabetic mice. Biol Pharm Bull 2008;31:469-72. 10.1248/bpb.31.469
    1. Zhang Y, Guo K, LeBlanc RE, et al. Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes 2007;56:1647-54. 10.2337/db07-0123
    1. Higuchi N, Kato M, Miyazaki M, et al. Potential role of branched-chain amino acids in glucose metabolism through the accelerated induction of the glucose-sensing apparatus in the liver. J Cell Biochem 2011;112:30-8. 10.1002/jcb.22688
    1. Zhang Y, Kobayashi H, Mawatari K, et al. Effects of branched-chain amino acid supplementation on plasma concentrations of free amino acids, insulin, and energy substrates in young men. J Nutr Sci Vitaminol (Tokyo) 2011;57:114-7. 10.3177/jnsv.57.114
    1. Kawaguchi T, Nagao Y, Matsuoka H, et al. Branched-chain amino acid-enriched supplementation improves insulin resistance in patients with chronic liver disease. Int J Mol Med 2008;22:105-12.
    1. Schieke SM, Phillips D, McCoy JP, Jr, et al. The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 2006;281:27643-52. 10.1074/jbc.M603536200
    1. Kuwahata M, Kubota H, Kanouchi H, et al. Supplementation with branched-chain amino acids attenuates hepatic apoptosis in rats with chronic liver disease. Nutr Res 2012;32:522-9. 10.1016/j.nutres.2012.06.007
    1. Kim SJ, Kim DG, Lee MD. Effects of branched-chain amino acid infusions on liver regeneration and plasma amino acid patterns in partially hepatectomized rats. Hepatogastroenterology 2011;58:1280-5. 10.5754/hge10389
    1. Tomiya T, Omata M, Fujiwara K. Significance of branched chain amino acids as possible stimulators of hepatocyte growth factor. Biochem Biophys Res Commun 2004;313:411-6. 10.1016/j.bbrc.2003.07.017
    1. Kakazu E, Kanno N, Ueno Y, et al. Extracellular branched-chain amino acids, especially valine, regulate maturation and function of monocyte-derived dendritic cells. J Immunol 2007;179:7137-46. 10.4049/jimmunol.179.10.7137
    1. Chuang JC, Yu CL, Wang SR. Modulation of human lymphocyte proliferation by amino acids. Clin Exp Immunol 1990;81:173-6. 10.1111/j.1365-2249.1990.tb05310.x
    1. Tsukishiro T, Shimizu Y, Higuchi K, et al. Effect of branched-chain amino acids on the composition and cytolytic activity of liver-associated lymphocytes in rats. J Gastroenterol Hepatol 2000;15:849-59. 10.1046/j.1440-1746.2000.02220.x
    1. Kakazu E, Ueno Y, Kondo Y, et al. Branched chain amino acids enhance the maturation and function of myeloid dendritic cells ex vivo in patients with advanced cirrhosis. Hepatology 2009;50:1936-45. 10.1002/hep.23248
    1. Nakamura I, Ochiai K, Imai Y, et al. Restoration of innate host defense responses by oral supplementation of branched-chain amino acids in decompensated cirrhotic patients. Hepatol Res 2007;37:1062-7. 10.1111/j.1872-034X.2007.00166.x
    1. Nakamura I. Impairment of innate immune responses in cirrhotic patients and treatment by branched-chain amino acids. World J Gastroenterol 2014;20:7298-305. 10.3748/wjg.v20.i23.7298
    1. Nuwer N, Cerra FB, Shronts EP, et al. Does modified amino acid total parenteral nutrition alter immune-response in high level surgical stress. JPEN J Parenter Enteral Nutr 1983;7:521-4. 10.1177/0148607183007006521
    1. Cerra FB, Mazuski JE, Chute E, et al. Branched chain metabolic support. A prospective, randomized, double-blind trial in surgical stress. Ann Surg 1984;199:286-91. 10.1097/00000658-198403000-00007
    1. Honda M, Takehana K, Sakai A, et al. Malnutrition impairs interferon signaling through mTOR and FoxO pathways in patients with chronic hepatitis C. Gastroenterology 2011;141:128-40, 40.e1-2.
    1. Kawaguchi T, Torimura T, Takata A, et al. Valine, a branched-chain amino Acid, reduced HCV viral load and led to eradication of HCV by interferon therapy in a decompensated cirrhotic patient. Case Rep Gastroenterol 2012;6:660-7. 10.1159/000343094
    1. Ma N, Guo P, Zhang J, et al. Nutrients Mediate Intestinal Bacteria-Mucosal Immune Crosstalk. Front Immunol 2018;9:5. 10.3389/fimmu.2018.00005
    1. Campollo O, Sprengers D, McIntyre N. The BCAA/AAA ratio of plasma amino acids in three different groups of cirrhotics. Rev Invest Clin 1992;44:513-8.
    1. Steigmann F, Szanto PB, Poulos A, et al. Significance of serum aminograms in diagnosis and prognosis of liver diseases. J Clin Gastroenterol 1984;6:453-60. 10.1097/00004836-198410000-00012
    1. Watanabe A, Higashi T, Sakata T, et al. Serum amino acid levels in patients with hepatocellular carcinoma. Cancer 1984;54:1875-82. 10.1002/1097-0142(19841101)54:9<1875::AID-CNCR2820540918>;2-O
    1. Suzuki K, Suzuki K, Koizumi K, et al. Measurement of serum branched-chain amino acids to tyrosine ratio level is useful in a prediction of a change of serum albumin level in chronic liver disease. Hepatol Res 2008;38:267-72. 10.1111/j.1872-034X.2007.00268.x
    1. Ishikawa T, Imai M, Ko M, et al. Evaluation of the branched-chain amino acid-to-tyrosine ratio prior to treatment as a prognostic predictor in patients with liver cirrhosis. Oncotarget 2017;8:79480-90. 10.18632/oncotarget.18447
    1. Charlton MR. Protein metabolism and liver disease. Baillieres Clin Endocrinol Metab 1996;10:617-35. 10.1016/S0950-351X(96)80771-3
    1. Miwa Y, Moriwaki H. Nocturnal energy and BCAA supplementation in patients with liver cirrhosis. Hepatol Res 2004;30S:63-6. 10.1016/j.hepres.2004.08.012
    1. Marchesini G, Bianchi G, Merli M, et al. Nutritional supplementation with branched-chain amino acids in advanced cirrhosis: a double-blind, randomized trial. Gastroenterology 2003;124:1792-801. 10.1016/S0016-5085(03)00323-8
    1. Muto Y, Sato S, Watanabe A, et al. Effects of oral branched-chain amino acid granules on event-free survival in patients with liver cirrhosis. Clin Gastroenterol Hepatol 2005;3:705-13. 10.1016/S1542-3565(05)00017-0
    1. Nakaya Y, Okita K, Suzuki K, et al. BCAA-enriched snack improves nutritional state of cirrhosis. Nutrition 2007;23:113-20. 10.1016/j.nut.2006.10.008
    1. Ichikawa T, Naota T, Miyaaki H, et al. Effect of an oral branched chain amino acid-enriched snack in cirrhotic patients with sleep disturbance. Hepatol Res 2010;40:971-8. 10.1111/j.1872-034X.2010.00701.x
    1. Sato S, Watanabe A, Muto Y, et al. Clinical comparison of branched-chain amino acid (l-Leucine, l-Isoleucine, l-Valine) granules and oral nutrition for hepatic insufficiency in patients with decompensated liver cirrhosis (LIV-EN study). Hepatol Res 2005;31:232-40. 10.1016/j.hepres.2005.01.009
    1. Habu D, Nishiguchi S, Nakatani S, et al. Comparison of the effect of BCAA granules on between decompensated and compensated cirrhosis. Hepatogastroenterology 2009;56:1719-23.
    1. Koreeda C, Seki T, Okazaki K, et al. Effects of late evening snack including branched-chain amino acid on the function of hepatic parenchymal cells in patients with liver cirrhosis. Hepatol Res 2011;41:417-22. 10.1111/j.1872-034X.2011.00795.x
    1. Habu D, Nishiguchi S, Nakatani S, et al. Effect of oral supplementation with branched-chain amino acid granules on serum albumin level in the early stage of cirrhosis: a randomized pilot trial. Hepatol Res 2003;25:312-8. 10.1016/S1386-6346(02)00267-X
    1. Nishiguchi S, Habu D. Effect of oral supplementation with branched-chain amino acid granules in the early stage of cirrhosis. Hepatol Res 2004;30S:36-41. 10.1016/j.hepres.2004.08.009
    1. Nakaya Y, Harada N, Kakui S, et al. Severe catabolic state after prolonged fasting in cirrhotic patients: effect of oral branched-chain amino-acid-enriched nutrient mixture. J Gastroenterol 2002;37:531-6. 10.1007/s005350200082
    1. Tsuchiya M, Sakaida I, Okamoto M, et al. The effect of a late evening snack in patients with liver cirrhosis. Hepatol Res 2005;31:95-103. 10.1016/j.hepres.2004.11.009
    1. Kato M, Miwa Y, Tajika M, et al. Preferential use of branched-chain amino acids as an energy substrate in patients with liver cirrhosis. Intern Med 1998;37:429-34. 10.2169/internalmedicine.37.429
    1. Plauth M, Cabre E, Riggio O, et al. ESPEN Guidelines on Enteral Nutrition: Liver disease. Clin Nutr 2006;25:285-94. 10.1016/j.clnu.2006.01.018
    1. Kumada H, Okanoue T, Onji M, et al. Guidelines for the treatment of chronic hepatitis and cirrhosis due to hepatitis C virus infection for the fiscal year 2008 in Japan. Hepatol Res 2010;40:8-13. 10.1111/j.1872-034X.2009.00634.x
    1. Bak LK, Iversen P, Sorensen M, et al. Metabolic fate of isoleucine in a rat model of hepatic encephalopathy and in cultured neural cells exposed to ammonia. Metab Brain Dis 2009;24:135-45. 10.1007/s11011-008-9123-4
    1. Plauth M, Schutz T. Branched-chain amino acids in liver disease: new aspects of long known phenomena. Curr Opin Clin Nutr Metab Care 2011;14:61-6. 10.1097/MCO.0b013e3283413726
    1. Als-Nielsen B, Koretz RL, Kjaergard LL, et al. Branched-chain amino acids for hepatic encephalopathy. Cochrane Database Syst Rev 2003:CD001939.
    1. Gluud LL, Dam G, Les I, et al. Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst Rev 2017;5:CD001939.
    1. Kanematsu T, Koyanagi N, Matsumata T, et al. Lack of preventive effect of branched-chain amino acid solution on postoperative hepatic encephalopathy in patients with cirrhosis: a randomized, prospective trial. Surgery 1988;104:482-8.
    1. Les I, Doval E, García-Martínez R, et al. Effects of branched-chain amino acids supplementation in patients with cirrhosis and a previous episode of hepatic encephalopathy: a randomized study. Am J Gastroenterol 2011;106:1081-8. 10.1038/ajg.2011.9
    1. Gluud LL, Dam G, Borre M, et al. Lactulose, rifaximin or branched chain amino acids for hepatic encephalopathy: what is the evidence? Metab Brain Dis 2013;28:221-5. 10.1007/s11011-012-9372-0
    1. Fujita S, Volpi E. Amino acids and muscle loss with aging. J Nutr 2006;136:277S-80S. 10.1093/jn/136.1.277S
    1. Montano-Loza AJ, Meza-Junco J, Prado CM, et al. Muscle wasting is associated with mortality in patients with cirrhosis. Clin Gastroenterol Hepatol 2012;10:166-73.e1. 10.1016/j.cgh.2011.08.028
    1. Periyalwar P, Dasarathy S. Malnutrition in cirrhosis: contribution and consequences of sarcopenia on metabolic and clinical responses. Clin Liver Dis 2012;16:95-131. 10.1016/j.cld.2011.12.009
    1. Hanai T, Shiraki M, Nishimura K, et al. Sarcopenia impairs prognosis of patients with liver cirrhosis. Nutrition 2015;31:193-9. 10.1016/j.nut.2014.07.005
    1. Welle S, Thornton C, Jozefowicz R, et al. Myofibrillar protein synthesis in young and old men. Am J Physiol 1993;264:E693-8.
    1. Hasten DL, Pak-Loduca J, Obert KA, et al. Resistance exercise acutely increases MHC and mixed muscle protein synthesis rates in 78-84 and 23-32 yr olds. Am J Physiol Endocrinol Metab 2000;278:E620-6. 10.1152/ajpendo.2000.278.4.E620
    1. Volpi E, Kobayashi H, Sheffield-Moore M, et al. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr 2003;78:250-8. 10.1093/ajcn/78.2.250
    1. Wahren J, Felig P, Hagenfeldt L. Effect of protein ingestion on splanchnic and leg metabolism in normal man and in patients with diabetes mellitus. J Clin Invest 1976;57:987-99. 10.1172/JCI108375
    1. Anthony JC, Yoshizawa F, Anthony TG, et al. Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J Nutr 2000;130:2413-9. 10.1093/jn/130.10.2413
    1. Anthony TG, Anthony JC, Yoshizawa F, et al. Oral administration of leucine stimulates ribosomal protein mRNA translation but not global rates of protein synthesis in the liver of rats. J Nutr 2001;131:1171-6. 10.1093/jn/131.4.1171
    1. Dardevet D, Sornet C, Balage M, et al. Stimulation of in vitro rat muscle protein synthesis by leucine decreases with age. J Nutr 2000;130:2630-5. 10.1093/jn/130.11.2630
    1. Tsien C, Davuluri G, Singh D, et al. Metabolic and molecular responses to leucine-enriched branched chain amino acid supplementation in the skeletal muscle of alcoholic cirrhosis. Hepatology 2015;61:2018-29. 10.1002/hep.27717
    1. Kitajima Y, Takahashi H, Akiyama T, et al. Supplementation with branched-chain amino acids ameliorates hypoalbuminemia, prevents sarcopenia, and reduces fat accumulation in the skeletal muscles of patients with liver cirrhosis. J Gastroenterol 2018;53:427-37. 10.1007/s00535-017-1370-x
    1. Fiatarone MA, O'Neill EF, Ryan ND, et al. Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med 1994;330:1769-75. 10.1056/NEJM199406233302501
    1. Agergaard J, Bulow J, Jensen JK, et al. Effect of light-load resistance exercise on postprandial amino acid transporter expression in elderly men. Physiol Rep 2017;5. doi: .10.14814/phy2.13444
    1. Hiraoka A, Michitaka K, Kiguchi D, et al. Efficacy of branched-chain amino acid supplementation and walking exercise for preventing sarcopenia in patients with liver cirrhosis. Eur J Gastroenterol Hepatol 2017;29:1416-23. 10.1097/MEG.0000000000000986
    1. Arrese M, Riquelme A, Soza A. Insulin resistance, hepatic steatosis and hepatitis C: a complex relationship with relevant clinical implications. Ann Hepatol 2010;9 Suppl:112-8.
    1. Kawaguchi T, Yamagishi S, Sata M. Branched-chain amino acids and pigment epithelium-derived factor: novel therapeutic agents for hepatitis c virus-associated insulin resistance. Curr Med Chem 2009;16:4843-57. 10.2174/092986709789909620
    1. Kawaguchi T, Izumi N, Charlton MR, et al. Branched-chain amino acids as pharmacological nutrients in chronic liver disease. Hepatology 2011;54:1063-70. 10.1002/hep.24412
    1. Tabaru A, Shirohara H, Moriyama A, et al. Effects of branched-chain-enriched amino acid solution on insulin and glucagon secretion and blood glucose level in liver cirrhosis. Scand J Gastroenterol 1998;33:853-9. 10.1080/00365529850171521
    1. Korenaga K, Korenaga M, Uchida K, et al. Effects of a late evening snack combined with alpha-glucosidase inhibitor on liver cirrhosis. Hepatol Res 2008;38:1087-97. 10.1111/j.1872-034X.2008.00391.x
    1. Sakaida I, Tsuchiya M, Okamoto M, et al. Late evening snack and the change of blood glucose level in patients with liver cirrhosis. Hepatol Res 2004;30S:67-72. 10.1016/j.hepres.2004.10.010
    1. Kawaguchi T, Taniguchi E, Itou M, et al. Branched-chain amino acids improve insulin resistance in patients with hepatitis C virus-related liver disease: report of two cases. Liver Int 2007;27:1287-92.
    1. Miyake T, Abe M, Furukawa S, et al. Long-term branched-chain amino acid supplementation improves glucose tolerance in patients with nonalcoholic steatohepatitis-related cirrhosis. Intern Med 2012;51:2151-5. 10.2169/internalmedicine.51.7578
    1. Takeshita Y, Takamura T, Kita Y, et al. Beneficial effect of branched-chain amino acid supplementation on glycemic control in chronic hepatitis C patients with insulin resistance: implications for type 2 diabetes. Metabolism 2012;61:1388-94. 10.1016/j.metabol.2012.03.011
    1. Ioannou GN, Green PK, Berry K. HCV eradication induced by direct-acting antiviral agents reduces the risk of hepatocellular carcinoma. J Hepatol 2017. [Epub ahead of print].
    1. Ravaioli F, Conti F, Brillanti S, et al. Hepatocellular carcinoma risk assessment by the measurement of liver stiffness variations in HCV cirrhotics treated with direct acting antivirals. Dig Liver Dis 2018. [Epub ahead of print]. 10.1016/j.dld.2018.02.010
    1. Kawanaka M, Nishino K, Nakamura J, et al. Quantitative Levels of Hepatitis B Virus DNA and Surface Antigen and the Risk of Hepatocellular Carcinoma in Patients with Hepatitis B Receiving Long-Term Nucleos(t)ide Analogue Therapy. Liver Cancer 2014;3:41-52. 10.1159/000343857
    1. Saito Y, Saito H, Nakamura M, et al. Effect of the molar ratio of branched-chain to aromatic amino acids on growth and albumin mRNA expression of human liver cancer cell lines in a serum-free medium. Nutr Cancer 2001;39:126-31. 10.1207/S15327914nc391_17
    1. Wubetu GY, Utsunomiya T, Ishikawa D, et al. Branched chain amino acid suppressed insulin-initiated proliferation of human cancer cells through induction of autophagy. Anticancer Res 2014;34:4789-96.
    1. Miuma S, Ichikawa T, Arima K, et al. Branched-chain amino acid deficiency stabilizes insulin-induced vascular endothelial growth factor mRNA in hepatocellular carcinoma cells. J Cell Biochem 2012;113:3113-21. 10.1002/jcb.24188
    1. Nishitani S, Horie M, Ishizaki S, et al. Branched chain amino acid suppresses hepatocellular cancer stem cells through the activation of mammalian target of rapamycin. PLoS One 2013;8:e82346. 10.1371/journal.pone.0082346
    1. Shimizu M, Shirakami Y, Hanai T, et al. Pharmaceutical and nutraceutical approaches for preventing liver carcinogenesis: chemoprevention of hepatocellular carcinoma using acyclic retinoid and branched-chain amino acids. Mol Nutr Food Res 2014;58:124-35. 10.1002/mnfr.201300538
    1. Imanaka K, Ohkawa K, Tatsumi T, et al. Impact of branched-chain amino acid supplementation on survival in patients with advanced hepatocellular carcinoma treated with sorafenib: A multicenter retrospective cohort study. Hepatol Res 2016;46:1002-10. 10.1111/hepr.12640
    1. Yoshiji H, Noguchi R, Kitade M, et al. Branched-chain amino acids suppress insulin-resistance-based hepatocarcinogenesis in obese diabetic rats. J Gastroenterol 2009;44:483-91. 10.1007/s00535-009-0031-0
    1. Iwasa J, Shimizu M, Shiraki M, et al. Dietary supplementation with branched-chain amino acids suppresses diethylnitrosamine-induced liver tumorigenesis in obese and diabetic C57BL/KsJ-db/db mice. Cancer Sci 2010;101:460-7. 10.1111/j.1349-7006.2009.01402.x
    1. Kikuchi Y, Hiroshima Y, Matsuo K, et al. A Randomized Clinical Trial of Preoperative Administration of Branched-Chain Amino Acids to Prevent Postoperative Ascites in Patients with Liver Resection for Hepatocellular Carcinoma. Ann Surg Oncol 2016;23:3727-35. 10.1245/s10434-016-5348-3
    1. Hayaishi S, Chung H, Kudo M, et al. Oral branched-chain amino acid granules reduce the incidence of hepatocellular carcinoma and improve event-free survival in patients with liver cirrhosis. Dig Dis 2011;29:326-32. 10.1159/000327571
    1. Meng WC, Leung KL, Ho RL, et al. Prospective randomized control study on the effect of branched-chain amino acids in patients with liver resection for hepatocellular carcinoma. Aust N Z J Surg 1999;69:811-5. 10.1046/j.1440-1622.1999.01701.x
    1. Togo S, Tanaka K, Morioka D, et al. Usefulness of granular BCAA after hepatectomy for liver cancer complicated with liver cirrhosis. Nutrition 2005;21:480-6. 10.1016/j.nut.2004.07.017
    1. Ichikawa K, Okabayashi T, Maeda H, et al. Oral supplementation of branched-chain amino acids reduces early recurrence after hepatic resection in patients with hepatocellular carcinoma: a prospective study. Surg Today 2013;43:720-6. 10.1007/s00595-012-0288-4
    1. Meng J, Zhong J, Zhang H, et al. Pre-, peri-, and postoperative oral administration of branched-chain amino acids for primary liver cancer patients for hepatic resection: a systematic review. Nutr Cancer 2014;66:517-22. 10.1080/01635581.2013.780628
    1. Kuroda H, Ushio A, Miyamoto Y, et al. Effects of branched-chain amino acid-enriched nutrient for patients with hepatocellular carcinoma following radiofrequency ablation: a one-year prospective trial. J Gastroenterol Hepatol 2010;25:1550-5. 10.1111/j.1440-1746.2010.06306.x
    1. Ishikawa T, Michitaka I, Kamimura H, et al. Oral branched-chain amino acids administration improves impaired liver dysfunction after radiofrequency ablation therapy for hepatocellular carcinoma. Hepatogastroenterology 2009;56:1491-5.
    1. Nishikawa H, Osaki Y, Iguchi E, et al. The effect of long-term supplementation with branched-chain amino acid granules in patients with hepatitis C virus-related hepatocellular carcinoma after radiofrequency thermal ablation. J Clin Gastroenterol 2013;47:359-66. 10.1097/MCG.0b013e31826be9ad
    1. Nishikawa H, Osaki Y, Inuzuka T, et al. Branched-chain amino acid treatment before transcatheter arterial chemoembolization for hepatocellular carcinoma. World J Gastroenterol 2012;18:1379-84. 10.3748/wjg.v18.i12.1379
    1. Lee IJ, Seong J, Bae JI, et al. Effect of Oral Supplementation with Branched-chain Amino Acid (BCAA) during Radiotherapy in Patients with Hepatocellular Carcinoma: A Double-Blind Randomized Study. Cancer Res Treat 2011;43:24-31. 10.4143/crt.2011.43.1.24

Source: PubMed

3
Subskrybuj