Effects of plyometric training on skill and physical performance in healthy tennis players: A systematic review and meta-analysis

Nuannuan Deng, Kim Geok Soh, Dandan Huang, Borhannudin Abdullah, Shengyao Luo, Watnawat Rattanakoses, Nuannuan Deng, Kim Geok Soh, Dandan Huang, Borhannudin Abdullah, Shengyao Luo, Watnawat Rattanakoses

Abstract

Background: Plyometric training (PT) has been researched extensively in athletic populations. However, the effects of PT on tennis players are less clear. Methods: We aim to consolidate the existing research on the effects of PT on healthy tennis players' skill and physical performance. On 30th May 2022, a comprehensive search of SCOPUS, PubMed, Web of Science, and SPORTDiscus (via EBSCOhost) databases was performed. PICOS was employed to define the inclusion criteria: 1) healthy tennis players; 2) a PT program; 3) compared a plyometric intervention to a control group or another exercise group, and single-group trials; 4) tested at least one measures of tennis skill or physical performance; and 5) non-randomized study trials and randomized control designs. Individual studies' methodological quality was evaluated by using the Cochrane RoB-2 and ROBINS-I instruments. Using Grading of Recommendations Assessment, Development, and Evaluation (GRADE), the certainty of the body of evidence for each outcome was assessed, and Comprehensive Meta-Analysis software was employed for the meta-analysis. Results: Twelve studies comprising 443 tennis players aged 12.5-25 years were eligible for inclusion. The PT lasted from 3 to 9 weeks. Eight studies provided data to allow for the pooling of results in a meta-analysis. A moderate positive effect was detected for PT programs on maximal serve velocity (ES = 0.75; p < 0.0001). In terms of measures of physical performance, small to moderate (ES = 0.43-0.88; p = 0.046 to < 0.001) effects were noted for sprint speed, lower extremity muscle power, and agility. While no significant and small effect was noted for lower extremity muscle strength (ES = 0.30; p = 0.115). We found no definitive evidence that PT changed other parameters (i.e., serve accuracy, upper extremity power and strength, reaction time, and aerobic endurance). Based on GRADE, the certainty of evidence across the included studies varied from very low to moderate. Conclusion: PT may improve maximal serve velocity and physical performance components (sprint speed, lower extremity muscular power, and agility) for healthy tennis players; however, more high-quality evidence about the effects of PT on the skill and physical performance of tennis players merits further investigation. Systematic Review Registration: [https://inplasy.com/], identifier [INPLASY202250146].

Keywords: agility; muscular strength; plyometric training; power; skill; speed.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Deng, Soh, Huang, Abdullah, Luo and Rattanakoses.

Figures

FIGURE 1
FIGURE 1
PRISMA flow diagram.
FIGURE 2
FIGURE 2
Risk of bias. (A) Results for RCTs, (B) results for non-RCTs. *Created using Robvis (visualization tool): McGuinness and Higgins (2021).

References

    1. Agostini B. R., Palomares E. M. D. G., Andrade R. D. A., Uchôa F. N. M., Alves N. (2017). Analysis of the influence of plyometric training in improving the performance of athletes in rhythmic gymnastics. Motricidade 13, 71–80. 10.6063/motricidade.9770
    1. Ahmadi M., Nobari H., Ramirez-Campillo R., Pérez-Gómez J., Ribeiro A. L. de A., Martínez-Rodríguez A. (2021). Effects of plyometric jump training in sand or rigid surface on jump-related biomechanical variables and physical fitness in female volleyball players. Int. J. Environ. Res. Public Health 18, 13093. 10.3390/ijerph182413093
    1. Arazi H., Asadi A., Roohi S. (2014). Enhancing muscular performance in women: Compound versus complex, traditional resistance and plyometric training alone. J. Musculoskelet. Res. 17, 1450007–1450010. 10.1142/S0218957714500079
    1. Asadi A., Arazi H., Young W. B., de Villarreal E. S. (2016). The effects of plyometric training on change-of-direction ability: A meta-analysis. Int. J. Sports Physiol. Perform. 11, 563–573. 10.1123/ijspp.2015-0694
    1. Asadi A. (2013). Effects of in-season short-term plyometric training on jumping and agility performance of basketball players. Sport Sci. Health 9, 133–137. 10.1007/s11332-013-0159-4159-4
    1. Bal B. S., Singh S., Dhesi S. S., Singh M. (2012). Effects of 6-week plyometric training on biochemical and physical fitness parameters of Indian jumpers. J. Phys. Educ. Sport Manag. 3, 35–40. 10.5897/JPESM11.072
    1. Bashir S. F., Nuhmani S., Dhall R., Muaidi Q. I. (2019). Effect of core training on dynamic balance and agility among Indian junior tennis players. J. Back Musculoskelet. Rehabil. 32, 245–252. 10.3233/BMR-170853
    1. Behringer M., Neuerburg S., Matthews M., Mester J. (2013). Effects of two different resistance-training programs on mean tennis-serve velocity in adolescents. Pediatr. Exerc. Sci. 25, 370–384. 10.1123/pes.25.3.370
    1. Björklund G., Swarén M., Norman M., Alonso J., Johansson F. (2020). Metabolic demands, center of mass movement and fractional utilization of V˙O2max in elite adolescent tennis players during on-court drills. Front. Sports Act. Living 2, 92. 10.3389/fspor.2020.00092
    1. Bogdanis G., Donti O., Papia A., Donti A., Apostolidis N., Sands W. (2019). Effect of plyometric training on jumping, sprinting and change of direction speed in child female athletes. Sports 7, 166. 10.3390/sports7050116
    1. Bompa T. O., Haff G. G. (2009). Periodization: The theory and methodology of training. Fifth Edition. United States: Human Kinetics Press.
    1. Bouteraa I., Negra Y., Shephard R. J., Chelly M. S. (2020). Effects of combined balance and plyometric training on athletic performance in female basketball players. J. Strength Cond. Res. 34, 1967–1973. 10.1519/JSC.0000000000002546
    1. Brughelli M., Cronin J., Levin G., Chaouachi A. (2008). Understanding change of direction ability in sport: A review of resistance training studies. Sports Med. 38, 1045–1063. 10.2165/00007256-200838120-00007
    1. Carter C. W., Micheli L. J. (2011). Training the child athlete: Physical fitness, health and injury. Br. J. Sports Med. 45, 880–885. 10.1136/bjsports-2011-090201
    1. Cauraugh J. H., Gabert T. E., White J. J. (1990). Tennis serving velocity and accuracy. Percept. Mot. Ski. 70, 719–722. 10.2466/pms.1990.70.3.719
    1. Cavagna G. A. (1977). Storage and utilization of elastic energy in skeletal muscle. Exerc. Sport Sci. Rev. 5, 89–130. 10.1249/00003677-197700050-00004
    1. Chunlei L. (2016). Design and implementation of physical fitness training of China national badminton team in preparing for 2012 London Olympic Games. J. Beijing Sport Univ. 5, 60–69. 10.19582/j.cnki.11-3785/g8.2016.05.015
    1. Clark M., Lucett S., Kirkendall D. T. (2016). Plyometric training concepts for performance enhancement raining concepts. Natl. Acad. Sport Med. 24, 207–226.
    1. Colomar J., Corbi F., Baiget E. (2022). Improving tennis serve velocity: Review of training methods and recommendations. Strength Cond. Res. J. 10, 15–19. 10.1519/SSC.0000000000000733
    1. Davies G., Riemann B. L., Manske R. (2015). Current concepts of plyometric exercise. Int. J. Sports Phys. Ther. 10, 760–786. Available at: .
    1. Dawson B. (2012). Repeated-sprint ability: Where are we? Int. J. Sports Physiol. Perform. 7, 285–289. 10.1123/ijspp.7.3.285
    1. de Villarreal E. S. S., Requena B., Newton R. U. (2010). Does plyometric training improve strength performance? A meta-analysis. J. Sci. Med. Sport 13, 513–522. 10.1016/j.jsams.2009.08.005ams.2009.08.005
    1. Deeks J. J., Higgins J. P., Altman D. G. (2008). “Analysing data and undertaking meta-analyses,” in Cochrane handbook for systematic reviews of interventions. Editors Higgins J. P., Green S. (Chichester: The Cochrane Collaboration; ), 243–296. 10.1002/9780470712184.ch9
    1. Egger M., Davey Smith G., Schneider M., Minder C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634. 10.1136/bmj.315.7109.629
    1. Elferink-Gemser M. T., Kannekens R., Lyons J., Tromp Y., Visscher C. (2010). Knowing what to do and doing it: Differences in self-assessed tactical skills of regional, sub-elite, and elite youth field hockey players. J. Sports Sci. 28, 521–528. 10.1080/0264041090358274382743
    1. Elgueta-Cancino E., Evans E., Martinez-Valdes E., Falla D. (2022). The effect of resistance training on motor unit firing properties: A systematic review and meta-analysis. Front. Physiol. 13, 817631. 10.3389/fphys.2022.817631
    1. Ellenbecker T. S., Roetert E. P. (2004). An isokinetic profile of trunk rotation strength in elite tennis players. Med. Sci. Sports Exerc. 36, 1959–1963. 10.1249/01.mss.0000145469.08559.0e
    1. Elliott B. (2006). Biomechanics and tennis. Br. J. Sports Med. 40, 392–396. 10.1136/bjsm.2005.023150
    1. Elliott M. C. C. W., Wagner P. P., Chiu L. (2007). Power athletes and distance training: Physiological and biomechanical rationale for change. Sports Med. 37, 47–57. 10.2165/00007256-200737010-00004
    1. Fathi A., Hammami R., Moran J., Borji R., Sahli S., Rebai H. (2019). Effect of a 16-week combined strength and plyometric training program followed by a detraining period on athletic performance in pubertal volleyball players. J. Strength Cond. Res. 33, 2117–2127. 10.1519/JSC.0000000000002461
    1. Fauzi D., Hanif A. S., Siregar N. M. (2021). The effect of a game-based mini tennis training model on improving the skills of groundstroke forehand drive tennis. J. Phys. Educ. Sport. 21, 2325–2331. 10.7752/jpes.2021.s4311
    1. Fernandez-Fernandez J., Sanz D., Mendez A. (2009). A review of the activity profile and physiological demands of tennis match play. Strength Cond. J. 31, 15–26. 10.1519/SSC.0b013e3181ada1cb
    1. Fernandez-Fernandez J., Ellenbecker T., Sanz-Rivas D., Ulbricht A., Ferrauti A. (2013). Effects of a 6-week junior tennis conditioning program on service velocity. J. Sports Sci. Med. 12, 232–239. Available at: .
    1. Fernandez-Fernandez J., Sanz-Rivas D., Kovacs M. S., Moya M. I. (2015). In-season effect of a combined repeated sprint and explosive strength training program on elite junior tennis players. J. Strength Cond. Res. 29, 351–357. 10.1519/JSC.0000000000000759
    1. Fernandez-Fernandez J., De Villarreal E. S., Sanz-Rivas D., Moya M. (2016). The effects of 8-week plyometric training on physical performance in young tennis players. Pediatr. Exerc. Sci. 28, 77–86. 10.1123/pes.2015-0019
    1. Fernandez-Fernandez J., Sanz D., Sarabia J. M., Moya M. (2017). The effects of sport-specific drills training or high-intensity interval training in young tennis players. Int. J. Sports Physiol. Perform. 12, 90–98. 10.1123/ijspp.2015-0684
    1. Fernandez-Fernandez J., Granacher U., Sanz-Rivas D., Sarabia Marı´n J. M., Hernandez-Davo J. L., Moya M. (2018). Sequencing effects of neuromuscular training on physical fitness in youth elite tennis players. J. Strength Cond. Res. 25, 849–856. 10.1519/JSC.0000000000002319
    1. Ferrauti A., Bastiaens K. (2007). Short-term effects of light and heavy load interventions on service velocity and precision in elite young tennis players. Br. J. Sports Med. 41, 750–753. 10.1136/bjsm.2007.036855
    1. Garcia-Pallares J., Izquierdo M. (2011). Strategies to optimize concurrent training of strength and aerobic fitness for rowing and canoeing. Sports Med. 41, 329–343. 10.2165/11539690-000000000-00000
    1. Gelen E., Dede M., Bingul B. M., Bulgan C., Aydin M. (2012). Acute effects of static stretching, dynamic exercises, and high volume upper extremity plyometric activity on tennis serve performance. J. Sports Sci. Med. 11, 600–605. 10.1055/s-0032-1327645
    1. Gillet E., Leroy D., Thouvarecq R., Stein J. F. (2009). A notational analysis of elite tennis serve and serve-return strategies on slow surface. J. Strength Cond. Res. 23, 532–539. 10.1519/JSC.0b013e31818efe29
    1. Grgic J., Schoenfeld B. J., Mikulic P. (2020). Effects of plyometric vs. resistance training on skeletal muscle hypertrophy: A review. J. Sport Health Sci. 5, 530–536. 10.1016/j.jshs.2020.06.010
    1. Guillot A., Desliens S., Rouyer C., Rogowski I. (2013). Motor imagery and tennis serve performance: The external focus efficacy. J. Sports Sci. Med. 12, 332–338. Available at: .
    1. Hakkinen A., Komi P. V. (1985). The effect of explosive type strength training on electromyographic and force production characteristics of leg extensor muscles during concentric and various stretch-shortening cycle exercises. Scand. J. Sports Sci. 7, 65–76.
    1. Hall E., Bishop D. C., Gee T. I. (2016). Effect of plyometric training on handspring vault performance and functional power in youth female gymnasts. PLoS One 11, e0148790. 10.1371/journal.pone.0148790
    1. Hammami M., Ramirez-Campillo R., Gaamouri N., Aloui G., Shephard R. J., Chelly M. S. (2019). Effects of a combined upper- and lower-limb plyometric training program on high-intensity actions in female U14 handball players. Pediatr. Exerc. Sci. 31, 465–472. 10.1123/pes.2018-0278
    1. Hammami M., Gaamouri N., Suzuki K., Shephard R. J., Chelly M. S. (2020). Effects of upper and lower limb plyometric training program on components of physical performance in young female handball players. Front. Physiol. 11, 1028. 10.3389/fphys.2020.01028
    1. Higgins J. P., Thompson S. G., Deeks J. J., Altman D. G. (2003). Measuring inconsistency in meta-analyses. BMJ 327, 557–560. 10.1136/bmj.327.7414.557
    1. Higgins J. P., Deeks J. J., Altman D. G. (2008). “Special topics in statistics,” in Cochrane handbook for systematic reviews of interventions. Editors Higgins J. P., Green S. (Chichester: The Cochrane Collaboration; ), 481–529. 10.1002/9780470712184.ch16
    1. Higgins J., Thomas J., Chandler J., Cumpston M., Li T., Page M., et al. (2022). Cochrane handbook for systematic reviews of interventions version 6.3 (updated August 2022). London, UK: Cochrane. Available at: (Accessed October 6, 2022).
    1. Hopkins W. G., Marshall S. W., Batterham A. M., Hanin J. (2009). Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 41, 3–13. 10.1249/MSS.0b013e31818cb278
    1. Hotwani R., Dass B., Shedge S., Bhatnagar A. (2021). Effectiveness of speed and plyometric training on agility in lawn tennis players. Ann. R.S.C.B. 25, 18557–18569. Available at: .
    1. Huang P. Y., Jankaew A., Lin C. F. (2021). Effects of plyometric and balance training on neuromuscular control of recreational athletes with functional ankle instability: A randomized controlled laboratory study. Int. J. Environ. Res. Public Health 18, 5269. 10.3390/ijerph18105269
    1. Jlid M. C., Coquart J., Maffulli N., Paillard T., Bisciotti G. N., Chamari K. (2020). Effects of in season multi-directional plyometric training on vertical jump performance, change of direction, speed and dynamic postural control in U-21 soccer players. Front. Physiol. 11, 374. 10.3389/fphys.2020.00374
    1. Kim S., Rhi S. Y., Kim J., Chung J. S. (2022). Plyometric training effects on physical fitness and muscle damage in high school baseball players. Phys. Act. Nutr. 26, 1–7. 10.20463/pan.2022.0001
    1. Kolman N. S., Kramer T., Elferink-Gemser M. T., Huijgen B. C. H., Visscher C. (2019). Technical and tactical skills related to performance levels in tennis: A systematic review. J. Sports Sci. 37, 108–121. 10.1080/02640414.2018.1483699
    1. Komal M., Singh T. N. (2013). Effect of eight weeks plyometric training on the performance of national level female basketball players. Int. J. Manag. Econ. Soc. Sci. 2, 51–53.
    1. Kontopantelis E., Springate D. A., Reeves D. (2013). A re-analysis of the Cochrane library data: The dangers of unobserved heterogeneity in meta-analyses. PLoS ONE 8, e69930. 10.1371/journal.pone.0069930
    1. Kosova S., Beyhan R., Kosova M. K. (2022). The effect of 8-week plyometric training on jump height, agility, speed and asymmetry. ppcs. 26, 13–18. 10.15561/26649837.2022.0102
    1. Kovacs M., Ellenbecker T. (2011). A performance evaluation of the tennis serve: Implications for strength, speed, power, and flexibility training. Strength Cond. J. 33, 22–30. 10.1519/SSC.0b013e318225d59a
    1. Kraemer W. J., Ratamess N., Fry A. C., Triplett-McBride T., Koziris L. P., Bauer J. A., et al. (2000). Influence of resistance training volume and periodization on physiological and performance adaptations in collegiate women tennis players. Am. J. Sports Med. 28, 626–633. 10.1177/03635465000280050201
    1. Kraemer W. J., Häkkinen K., Triplett-McBride N. T., Fry A. C., Koziris L. P., Ratamess N. A., et al. (2003). Physiological changes with periodized resistance training in women tennis players. Med. Sci. Sports Exerc. 35, 157–168. 10.1097/00005768-200301000-00024
    1. Kramer T., Valente-Dos-Santos J., Visscher C., Coelho-e-Silva M., Huijgen B. C. H., Elferink-Gemser M. T. (2021). Longitudinal development of 5m sprint performance in young female tennis players. J. Sports Sci. 39, 296–303. 10.1080/02640414.2020.1816313
    1. Lakshmikanth V. P., Paul J., Ebenezer B., Ramanthan (2018). Effects of plyometric training and conventional training on agility performance in tennis players. IJAMES 4, 492–499. 10.36678/ijmaes.2018.v04i03.003
    1. Lambrich J., Muehlbauer T. (2022). Physical fitness and stroke performance in healthy tennis players with different competition levels: A systematic review and meta-analysis. PLoS One 17, e0269516. 10.1371/journal.pone.0269516
    1. Li F., Wang R., Newton R. U., Sutton D., Shi Y., Ding H. (2019). Effects of complex training versus heavy resistance training on neuromuscular adaptation, running economy and 5-km performance in well-trained distance runners. PeerJ 7, e6787. 10.7717/peerj.6787
    1. MacCurdy D. (2018). Talent identification around the world and recommendations for the Chinese tennis association. Available at: .
    1. Malisoux L., Francaux M., Nielens H., Theisen D. (2005). Stretch-shortening cycle exercises: An effective training paradigm to enhance power output of human single muscle fibers. J. Appl. Physiol. 100, 771–779. 10.1152/japplphysiol.01027.2005
    1. Markovic G., Mikulic P. (2010). Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med. 40, 859–895. 10.2165/11318370-000000000-00000
    1. McGuinness L. A., Higgins J. P. T. (2021). Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods 12, 55–61. 10.1002/jrsm.1411
    1. Mohanta N., Kalra S., Pawaria S. (2019). A comparative study of circuit training and plyometric training on strength, speed and agility in state level lawn tennis players. J. Clin. Diagn. Res. 13, 5–10. 10.7860/JCDR/2019/42431.13348
    1. Moya-Ramon M., Nakamura F. Y., Teixeira A. S., Granacher U., Santos-Rosa F. J., Sanz-Rivas D., et al. (2020). Effects of resisted vs. Conventional sprint training on physical fitness in young elite tennis players. J. Hum. Kinet. 73, 181–192. 10.2478/hukin-2019-0142
    1. Ölçücü B., Erdil G., Altinkök M. (2013). Evaluation of the effect of Plyometric exercises on the speed of the ball and the hitting percentage during a service. Nigde Univ. J. Phys. Educ. Sport Sci. 7, 49–60. Available at: .
    1. Oxfeldt M., Overgaard K., Hvid L. G., Dalgas U. (2019). Effects of plyometric training on jumping, sprint performance, and lower body muscle strength in healthy adults: A systematic review and meta‐analyses. Scand. J. Med. Sci. Sports 29, 1453–1465. 10.1111/sms.13487
    1. Page M. J., McKenzie J. E., Bossuyt P. M., Boutron I., Hoffmann T. C., Mulrow C. D., et al. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 10, 89–11. 10.1186/s13643-021-01626-4
    1. Pereira T. J. C., Nakamura F. Y., Jesus M. T., Vieira L. R. L., Misuta M. S., Barros R. M. L., et al. (2016). Analysis of the distances covered and technical actions performed by professional tennis players during official matches. J. Sports Sci. 35, 361–368. 10.1080/02640414.2016.1165858
    1. Potach D. H. (2004). “Plyometric and speed training,” in NSCA’s essent pers train. Editors Earle R. W., Baechle T. R. (Champaign Illinois: Human Kinetics; ), 425–458.
    1. Radnor J. M., Oliver J. L., Waugh C. M., Myer G. D., Moore I. S., Lloyd R. S. (2018). The influence of growth and maturation on stretch-shortening cycle function in youth. Sports Med. 48, 57–71. 10.1007/s40279-017-0785-0
    1. Ramachandran A. K., Singh U., Ramirez-Campillo R., Clemente F. M., Afonso J., Granacher U. (2021). Effects of plyometric jump training on balance performance in healthy participants: A systematic review with meta-analysis. Front. Physiol. 12, 730945. 10.3389/fphys.2021.730945
    1. Ramírez-Campillo R., Meylan C., Álvarez C., Henríquez-Olguín C., Martínez C., Cañas-Jamett R., et al. (2014). Effects of in-season low-volume high-intensity plyometric training on explosive actions and endurance of young soccer players. J. Strength Cond. Res. 28, 1335–1342. 10.1519/JSC.0000000000000284
    1. Ramírez-Campillo R., Burgos C. H., Henríquez-Olguín C., Andrade D. C., Martínez C., Álvarez C., et al. (2015). Effect of unilateral, bilateral, and combined plyometric training on explosive and endurance performance of young soccer players. J. Strength Cond. Res. 29, 1317–1328. 10.1519/JSC.0000000000000762
    1. Ramirez-Campillo R., Alvarez C., Garcia-Hermoso A., Ramirez-Velez R., Gentil P., Asadi A., et al. (2018). Methodological characteristics and future directions for plyometric jump training research: A scoping review. Sports Med. 48, 1059–1081. 10.1007/s40279-018-0870-z
    1. Ramirez-Campillo R., Sanchez-Sanchez J., Romero-Moraleda B., Yanci J., García-Hermoso A., Manuel Clemente F. (2020a). Effects of plyometric jump training in female soccer player’s vertical jump height: A systematic review with meta-analysis. J. Sports Sci. 38, 1475–1487. 10.1080/02640414.2020.1745503
    1. Ramirez-Campillo R., Castillo D., Raya-González J., Moran J., de Villarreal E. S., Lloyd R. S. (2020b). Effects of plyometric jump training on jump and sprint performance in young male soccer players: A systematic review and meta-analysis. Sports Med. 50, 2125–2143. 10.1007/s40279-020-01337-1
    1. Ramirez-Campillo R., García-de-Alcaraz A., Chaabene H., Moran J., Negra Y., Granacher U. (2021b). Effects of plyometric jump training on physical fitness in amateur and professional volleyball: A meta-analysis. Front. Physiol. 12, 1–18. 10.3389/fphys.2021.636140
    1. Ramirez-Campillo R., Garcia-Hermoso A., Moran J., Chaabene H., Negra Y., Scanlan A. T. (2021a). The effects of plyometric jump training on physical fitness attributes in basketball players: A meta-analysis. J. Sport Health Sci. 00, 1–15. 10.1016/j.jshs.2020.12.005
    1. Ramirez-Campillo R., Perez-Castilla A., Thapa R. K., Afonso J., Clemente F. M., Colado J. C., et al. (2022). Effects of plyometric jump training on measures of physical fitness and sport-specific performance of water sports athletes: A systematic review with meta-analysis. Sports Med. Open 8, 108–127. 10.1186/s40798-022-00502-2
    1. Rathore M. S. (2016). Effects of plyometric training and resistance training on agility of tennis players. Indian J. Phys. Educ. Sport. Med. exerc. Sci. 16, 32–34. Available at: .
    1. Reid M., Sibte N., Clarke S., Whiteside D. (2013). “Protocols for the physiological assessment of tennis players,” in Physiological tests for elite athletes (Australia: Human Kinetics Press; ).
    1. Rojano Ortega D., Berral-Aguilar A. J., Berral de la Rosa F. J. (2021). Kinetics and vertical stiffness of female volleyball players: Effect of low-intensity plyometric training. Res. Q. Exerc. Sport 00, 1–7. 10.1080/02701367.2021.1915946
    1. Romero C., Ramirez-Campillo R., Alvarez C., Moran J., Slimani M., Gonzalez J., et al. (2021). Effects of maturation on physical fitness adaptations to plyometric jump training in youth females. J. Strength Cond. Res. 35, 2870–2877. 10.1519/JSC.0000000000003247
    1. Rubley M. D., Haase A. C., Holcomb W. R., Girouard T. J., Tandy R. D. (2011). The effect of plyometric training on power and kicking distance in female adolescent soccer players. J. Strength Cond. Res. 25, 129–134. 10.1519/JSC.0b013e3181b94a3d
    1. Sáez De Villarreal E., Molina J. G., De Castro-Maqueda G., Gutiérrez-Manzanedo J. V. (2021). Effects of plyometric, strength and change of direction training on high-school basketball player’s physical fitness. J. Hum. Kinet. 78, 175–186. 10.2478/hukin-2021-0036
    1. Salonikidis K., Zafeiridis A. (2008). The effects of plyometric, tennis-drills, and combined training on reaction, lateral and linear speed, power, and strength in novice tennis players. J. Strength Cond. Res. 22, 182–191. 10.1519/JSC.0b013e31815f57ad
    1. Sannicandro I., Cofano G., Rosa R. A., Piccinno A. (2014). Balance training exercises decrease lower-limb strength asymmetry in young tennis players. J. Sports Sci. Med. 13, 397–402.
    1. Schünemann H. J., Mustafa R. A., Brozek J., Steingart K. R., Leeflang M., Murad M. H., et al. (2020). GRADE guidelines: 21 part 1. Study design, risk of bias, and indirectness in rating the certainty across a body of evidence for test accuracy. J. Clin. Epidemiol. 122, 129–141. 10.1016/j.jclinepi.2019.12.020
    1. Silva A. F., Clemente F. M., Lima R., Nikolaidis P. T., Rosemann T., Knechtle B. (2019). The effect of plyometric training in volleyball players: A systematic review. Int. J. Environ. Res. Public Health 16, 2960. 10.3390/ijerph16162960
    1. Singla D., Hussain M. E., Moiz J. A. (2018). Effect of upper body plyometric training on physical performance in healthy individuals: A systematic review. Phys. Ther. Sport 29, 51–60. 10.1016/j.ptsp.2017.11.005
    1. Slimani M., Chamari K., Miarka B., Del Vecchio F. B., Chéour F. (2016). Effects of plyometric training on physical fitness in team sport athletes: A systematic review. J. Hum. Kinet. 53, 231–247. 10.1515/hukin-2016-0026
    1. Söhnlein Q., Müller E., Stöggl T. L. (2014). The effect of 16-week plyometric training on explosive actions in early to mid-puberty elite soccer players. J. Strength Cond. Res. 28, 2105–2114. 10.1519/JSC.0000000000000387
    1. Sole S., Ramírez-Campillo R., Andrade D. C., Sanchez-Sanchez J. (2021). Plyometric jump training effects on the physical fitness of individual-sport athletes: A systematic review with meta-analysis. PeerJ 9, e11004. 10.7717/peerj.11004
    1. Strecker E., Foster E. B., Pascoe D. D. (2011). Test-retest reliability for hitting accuracy tennis test. J. Strength Cond. Res. 25, 3501–3505. 10.1519/JSC.0b013e318215fde6
    1. Tammam A. H., Hashem E. M. (2020). The individual and combined effects of PNF stretching and plyometric training on muscular power and flexibility for volleyball players. Rev. Amaz. Investig. 9, 73–82. 10.34069/ai/2020.36.12.6
    1. Taube W., Leukel C., Gollhofer A. (2012). How neurons make us jump: The neural control of stretch-shortening cycle movements. Exerc. Sport Sci. Rev. 40, 106–115. 10.1097/JES.0b013e31824138da
    1. Terraza-Rebollo M., Baiget E., Corbi F., Planas Anzano A. (2017). Effects of strength training on hitting speed in young tennis players. Rev. Int. Ciencias La Act. Fis. Del Deport. 17, 349–366. 10.15366/rimcafd2017.66.009
    1. Terraza-Rebollo M., Baiget E. (2020). Effects of postactivation potentiation on tennis serve velocity and accuracy. Int. J. Sports Physiol. Perform. 15, 340–345. 10.1123/ijspp.2019-0240
    1. Thapa R. K., Lum D., Moran J., Ramirez-Campillo R. (2021). Effects of complex training on sprint, jump, and change of direction ability of soccer players: A systematic review and meta-analysis. Front. Psychol. 11, 627869. 10.3389/fpsyg.2020.627869
    1. Trajkovic N., Kristicevic T., Baic M. (2016). Effects of plyometric training on sport-specific tests in female volleyball players. Acta kinesiol. 10, 20–24. Available at: .
    1. Turgut E., Cinar-Medeni O., Colakoglu F. F., Baltaci G. (2019). Ballistic Six” upper-extremity plyometric training for the pediatric volleyball players. J. Strength Cond. Res. 33, 1305–1310. 10.1519/JSC.0000000000002060
    1. Ulbricht A., Fernandez-Fernandez J., Mendez-Villanueva A., Ferrauti A. (2016). Impact of fitness characteristics on tennis performance in elite junior tennis players. J. Strength Cond. Res. 30, 989–998. 10.1519/JSC.0000000000001267
    1. van den Tillaar R. (2004). Effect of different training programs on the velocity of overarm throwing: A brief review. J. Strength Cond. Res. 18, 388–396. 10.1519/r-12792.1
    1. Wezenberg D., Van Der Woude L. H., Faber W. X., De Haan A., Houdijk H. (2013). Relation between aerobic capacity and walking ability in older adults with a lower-limb amputation. Arch. Phys. Med. Rehabil. 94, 1714–1720. 10.1016/j.apmr.2013.02.016
    1. Wilk K. E., Voight M. L., Keirns M. A., Gambetta V., Andrews J. R., Dillman C. (1993). Stretch-shortening drills for the upper extremities: Theory and clinical application. J. Orthop. Sports Phys. Ther. 17, 225–239. 10.2519/jospt.1993.17.5.225
    1. Xiao W., Geok S. K., Bai X., Bu T., Norjali Wazir M. R., Talib O., et al. (2022). Effect of exercise training on physical fitness among young tennis players: A systematic review. Front. Public Health 10, 843021. 10.3389/fpubh.2022.843021
    1. Young W. B., McDowell M. H., Scarlett B. J. (2001). Specificity of sprint and agility training methods. J. Strength Cond. Res. 15, 315–319. 10.1519/1533-4287(2001)015<0315:sosaat>;2
    1. Ziagkas E., Zilidou V. I., Loukovitis A., Politopoulos N., Douka S., Tsiatsos T. (2019). in The effects of 8-week plyometric training on tennis agility performance, improving evaluation throw the makey makey. Editors Auer M. E., Tsiatsos T. (Springer International Publishing Press; ), 280–286.

Source: PubMed

3
Subskrybuj