Effect of Low-Load Blood Flow Restriction Training After Anterior Cruciate Ligament Reconstruction: A Systematic Review

Baris B Koc, Alexander Truyens, Marion J L F Heymans, Edwin J P Jansen, Martijn G M Schotanus, Baris B Koc, Alexander Truyens, Marion J L F Heymans, Edwin J P Jansen, Martijn G M Schotanus

Abstract

Background: Quadriceps strength and mass deficits are common after anterior cruciate ligament (ACL) reconstruction. Postoperatively, heavy load resistance training can have detrimental effects on knee joint pain and ACL graft laxity. Therefore, low-load blood flow restriction (LL-BFR) training has been suggested as an alternative to traditional strength rehabilitation.

Purpose: The present systematic review aimed to investigate the effect of LL-BFR training on quadriceps strength, quadriceps mass, knee joint pain, and ACL graft laxity after ACL reconstruction compared to non-BFR training.

Study design: Systematic review.

Methods: A systematic literature search of PubMed, EMBASE.com, Cochrane Library/Wiley, CINAHL/Ebsco and Web of Science/Clarivate Analytics was performed on 19 February 2021. Studies were included if they compared LL-BFR and non-BFR training after ACL reconstruction with pre- and post-intervention quadriceps strength, quadriceps mass, knee joint pain or ACL graft laxity measurement. Systematic reviews, editorials, case reports and studies not published in a scientific peer reviewed journal were excluded. The risk of bias of randomized studies was assessed with the use of the Cochrane Risk of Bias Tool.

Results: A total of six randomized controlled trials were included. Random sequence generation and allocation concealment was defined as high risk in two of the six studies. In all studies blinding of participants and personnel was unclear or could not be performed. The included studies used different LL-BFR and non-BFR protocols with heterogeneous outcome measurements. Therefore, a qualitative analysis was performed. Two of the six studies assessed quadriceps strength and demonstrated significant greater quadriceps strength after LL-BFR compared to non-BFR training. Quadriceps mass was evaluated in four studies. Two studies observed significant greater quadriceps mass after LL-BFR compared to non-BFR training, while two studies observed no significant difference in quadriceps mass. Knee joint pain was assessed in three studies with significantly less knee joint pain after LL-BFR compared to non-BFR training. Two studies evaluated ACL graft laxity and observed no significant difference in ACL graft laxity between LL-BFR and non-BFR training.

Conclusion: The results of this systematic review indicate that LL-BFR training after ACL reconstruction may be beneficial on quadriceps strength, quadriceps mass, and knee joint pain compared to non-BFR training with non-detrimental effects on ACL graft laxity. However, more randomized controlled trials with standardized intervention protocols and outcome measurements are needed to add evidence on the clinical value of LL-BFR training.

Level of evidence: 2a.

Keywords: graft laxity; knee pain; postoperative rehabilitation; quadriceps mass; quadriceps strength; resistance training.

Conflict of interest statement

The authors declare no conflicts.

Figures

Figure 1.. Flow chart of the literature…
Figure 1.. Flow chart of the literature search and selection procedure.
Figure 2.. Review authors’ judgements about each…
Figure 2.. Review authors’ judgements about each risk of bias domain with the use of the Cochrane Risk of Bias Tool.

References

    1. Ithurburn MP, Altenburger AR, Thomas S, Hewett TE, Paterno MV, Schmitt LC. Young athletes after ACL reconstruction with quadriceps strength asymmetry at the time of return-to-sport demonstrate decreased knee function 1 year later. Knee Surg Sports Traumatol Arthrosc. 2018;26(2):426-433. doi:10.1007/s00167-017-4678-4
    1. Grapar Žargi T, Drobnič M, Vauhnik R, Koder J, Kacin A. Factors predicting quadriceps femoris muscle atrophy during the first 12 weeks following anterior cruciate ligament reconstruction. Knee. 2017;24(2):319-328. doi:10.1016/j.knee.2016.11.003
    1. Piussi R, Broman D, Musslinder E, Beischer S, Thomeé R, Hamrin Senorski E. Recovery of preoperative absolute knee extension and flexion strength after ACL reconstruction. BMC Sports Sci Med Rehabil. 2020;12(1):77-84. doi:10.1186/s13102-020-00222-8
    1. Harput G, Tunay VB, Ithurburn M. Quadriceps and hamstring strength symmetry after anterior cruciate ligament reconstruction: a prospective study. J Sports Rehabil. 2020;30:1-8.
    1. Birchmeier T, Lisee C, Kane K, Brazier B, Triplett A, Kuenze C. Quadriceps muscle size following ACL injury and reconstruction: a systematic review. J Orthop Res. 2020;38(3):598-608. doi:10.1002/jor.24489
    1. Garcia SA, Curran MT, Palmieri-Smith RM. Longitudinal assessment of quadriceps muscle morphology before and after anterior cruciate ligament reconstruction and its associations with patient-reported outcomes. Sports Health. 2020;12(3):271-278. doi:10.1177/1941738119898210
    1. Fukunaga T, Johnson CD, Nicholas SJ, McHugh MP. Muscle hypotrophy, not inhibition, is responsible for quadriceps weakness during rehabilitation after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2019;27(2):573-579. doi:10.1007/s00167-018-5166-1
    1. Kuenze CM, Blemker SS, Hart JM. Quadriceps function relates to muscle size following ACL reconstruction. J Orthop Res. 2016;34(9):1656-1662. doi:10.1002/jor.23166
    1. Thomas AC, Wojtys EM, Brandon C, Palmieri-Smith RM. Muscle atrophy contributes to quadriceps weakness after anterior cruciate ligament reconstruction. J Sci Med Sport. 2016;19(1):7-11. doi:10.1016/j.jsams.2014.12.009
    1. Lepley AS, Pietrosimone B, Cormier ML. Quadriceps function, knee pain, and self-reported outcomes in patients with anterior cruciate ligament reconstruction. J Athl Train. 2018;53(4):337-346. doi:10.4085/1062-6050-245-16
    1. Welling W, Benjaminse A, Seil R, Lemmink K, Zaffagnini S, Gokeler A. Low rates of patients meeting return to sport criteria 9 months after anterior cruciate ligament reconstruction: a prospective longitudinal study. Knee Surg Sports Traumatol Arthrosc. 2018;26(12):3636-3644. doi:10.1007/s00167-018-4916-4
    1. Pua YH, Mentiplay BF, Clark RA, Ho JY. Associations among quadriceps strength and rate of torque development 6 weeks post anterior cruciate ligament reconstruction and future hop and vertical jump performance: a prospective cohort study. J Orthop Sports Phys Ther. 2017;47:845-852. doi:10.2519/jospt.2017.7133
    1. Ithurburn MP, Paterno MV, Ford KR, Hewett TE, Schmitt LC. Young athletes with quadriceps femoris strength asymmetry at return to sport after anterior cruciate ligament reconstruction demonstrate asymmetric single-leg drop-landing mechanics. Am J Sports Med. 2015;43(11):2727-2737. doi:10.1177/0363546515602016
    1. Shi H, Huang H, Ren S, et al. The relationship between quadriceps strength asymmetry and knee biomechanics asymmetry during walking in individuals with anterior cruciate ligament reconstruction. Gait Posture. 2019;73:74-79. doi:10.1016/j.gaitpost.2019.07.151
    1. Kyritsis P, Bahr R, Landreau P, Miladi R, Witvrouw E. Likelihood of ACL graft rupture: not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture. Br J Sports Med. 2016;50(15):946-951. doi:10.1136/bjsports-2015-095908
    1. Grindem H, Snyder-Mackler L, Moksnes H, Engebretsen L, Risberg MA. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med. 2016;50(13):804-808. doi:10.1136/bjsports-2016-096031
    1. American College of Sports Medicine. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687-708. doi:10.1249/mss.0b013e3181915670
    1. Hughes L, Patterson SD, Haddad F, et al. Examination of the comfort and pain experienced with blood flow restriction training during post-surgery rehabilitation of anterior cruciate ligament reconstruction patients: a UK national health service trial. Phys Ther Sport. 2019;39:90-98. doi:10.1016/j.ptsp.2019.06.014
    1. Fujimoto E, Sumen Y, Urabe Y, et al. An early return to vigorous activity may destabilize anterior cruciate ligaments reconstructed with hamstring grafts. Arch Phys Med Rehabil. 2004;85(2):298-302. doi:10.1016/s0003-9993(03)00621-x
    1. Ménétrey J, Duthon VB, Laumonier T, Fritschy D. “Biological failure” of the anterior cruciate ligament graft. Knee Surg Sports Traumatol Arthr. 2008;16(3):224-231. doi:10.1007/s00167-007-0474-x
    1. Janssen RPA, Scheffler SU. Intra-articular remodelling of hamstring tendon grafts after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2014;22(9):2102-2108. doi:10.1007/s00167-013-2634-5
    1. Beynnon BD, Uh BS, Johnson RJ, et al. Rehabilitation after anterior cruciate ligament reconstruction: a prospective, randomized, double-blind comparison of programs administered over 2 different time intervals. Am J Sports Med. 2005;33(3):347-359. doi:10.1177/0363546504268406
    1. DePhillipo NN, Kennedy MI, Aman ZS, Bernhardson AS, O’Brien LT, LaPrade RF. The role of blood flow restriction therapy following knee surgery: expert opinion. Arthroscopy. 2018;34(8):2506-2510. doi:10.1016/j.arthro.2018.05.038
    1. Humes C, Aguero S, Chahla J, Foad A. Blood flow restriction and its function in post-operative anterior cruciate ligament reconstruction therapy: expert opinion. Arch Bone Jt Surg. 2020;8:570-574.
    1. Vopat BG, Vopat LM, Bechtold MM, Hodge KA. Blood flow restriction therapy: where we are and where we are going. J Am Acad Orthop Surg. 2020;28(12):e493-e500. doi:10.5435/jaaos-d-19-00347
    1. Pearson SJ, Hussain SR. A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med. 2015;45(2):187-200. doi:10.1007/s40279-014-0264-9
    1. Hwang PS, Willoughby DS. Mechanisms behind blood flow-restricted training and its effect toward muscle growth. J Strength Cond Res. 2019;33(1):S167-S179. doi:10.1519/jsc.0000000000002384
    1. Charles D, White R, Reyes C, Palmer D. A systematic review of the effects of blood flow restriction training on muscle atrophy and circumference post ACL reconstruction. Intl J Sports Phys Ther. 2020;15(6):882-891. doi:10.26603/ijspt20200882
    1. Shamseer L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;349:g7647. doi:10.1136/bmj.g7647
    1. RefWorks Ann Arbour. Proquest LLC. Accessed February 2021.
    1. Review Manager (RevMan) 5.4. Accessed February 2021.
    1. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919. doi:10.1136/bmj.i4919
    1. Higgins JPT, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343(oct18 2):d5928-d5928. doi:10.1136/bmj.d5928
    1. Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Editorial Unit, ed. Cochrane Database of Systematic Reviews. 2019;10:ed000142. doi:10.1002/14651858.ed000142
    1. Hughes L, Rosenblatt B, Haddad F, et al. Comparing the effectiveness of blood flow restriction and traditional heavy load resistance training in the post-surgery rehabilitation of anterior cruciate ligament reconstruction patients: a UK national health service randomised controlled trial. Sports Med. 2019;49(11):1787-1805. doi:10.1007/s40279-019-01137-2
    1. Hughes L, Paton B, Haddad F, Rosenblatt B, Gissane C, Patterson SD. Comparison of the acute perceptual and blood pressure response to heavy load and light load blood flow restriction resistance exercise in anterior cruciate ligament reconstruction patients and non-injured populations. Phys Ther Sport. 2018;33:54-61. doi:10.1016/j.ptsp.2018.07.002
    1. Ohta H, Kurosawa H, Ikeda H, Iwase Y, Satou N, Nakamura S. Low-load resistance muscular training with moderate restriction of blood flow after anterior cruciate ligament reconstruction. Acta Orthop Scand. 2003;74(1):62-68. doi:10.1080/00016470310013680
    1. Takarada Y, Takazawa H, Ishii N. Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med Sci Sports Exerc. 2000;32(12):2035-2039. doi:10.1097/00005768-200012000-00011
    1. Iversen E, Røstad V, Larmo A. Intermittent blood flow restriction does not reduce atrophy following anterior cruciate ligament reconstruction. J Sports Health Sci. 2016;5(1):115-118. doi:10.1016/j.jshs.2014.12.005
    1. Van Cant J, Dawe-Coz A, Aoun E, Esculier JF. Quadriceps strengthening with blood flow restriction for the rehabilitation of patients with knee conditions: a systematic review with meta-analysis. J Back Musculoskelet Rehabil. 2020;33(4):529-544. doi:10.3233/bmr-191684
    1. Ferlito JV, Pecce SAP, Oselame L, De Marchi T. The blood flow restriction training effect in knee osteoarthritis people: a systematic review and meta-analysis. Clin Rehabil. 2020;34(11):1378-1390. doi:10.1177/0269215520943650
    1. Grønfeldt BM, Lindberg Nielsen J, Mieritz RM, Lund H, Aagaard P. Effect of blood‐flow restricted vs heavy‐load strength training on muscle strength: systematic review and meta‐analysis. Scand J Med Sci Sports. 2020;30(5):837-848. doi:10.1111/sms.13632
    1. Barber-Westin S, Noyes FR. Blood flow-restricted training for lower extremity muscle weakness due to knee pathology: a systematic review. Sports Health. 2019;11(1):69-83. doi:10.1177/1941738118811337
    1. Centner C, Wiegel P, Gollhofer A, König D. Effects of blood flow restriction training on muscular strength and hypertrophy in older individuals: a systematic review and meta-Analysis. Sports Med. 2019;49(1):95-108. doi:10.1007/s40279-018-0994-1
    1. Hughes L, Paton B, Rosenblatt B, Gissane C, Patterson SD. Blood flow restriction training in clinical musculoskeletal rehabilitation: a systematic review and meta-analysis. Br J Sports Med. 2017;51(13):1003-1011. doi:10.1136/bjsports-2016-097071
    1. Lixandrão ME, Ugrinowitsch C, Berton R, et al. Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associate with blood-flow restriction: a systematic review and meta-analysis. Sports Med. 2018;48(2):361-378. doi:10.1007/s40279-017-0795-y
    1. Ferraz RB, Gualano B, Rodrigues R, et al. Benefits of resistance training with blood flow restriction in knee osteoarthritis. Med Sci Sports Exerc. 2018;50(5):897-905. doi:10.1249/mss.0000000000001530
    1. Bryk FF, dos Reis AC, Fingerhut D, et al. Exercises with partial vascular occlusion in patients with knee osteoarthritis: a randomized clinical trial. Knee Surg Sports Traumatol Arthrosc. 2016;24(5):1580-1586. doi:10.1007/s00167-016-4064-7
    1. Ladlow P, Coppack RJ, Dharm-Datta S, et al. Low-load resistance training with blood flow restriction improves clinical outcomes in musculoskeletal rehabilitation: a single-blind randomized controlled Trial. Front Physiol. 2018;9:1269. doi:10.3389/fphys.2018.01269
    1. Tennent DJ, Hylden CM, Johnson AE, Burns TC, Wilken JM, Owens JG. Blood flow restriction training after knee arthroscopy: a randomized controlled pilot study. Clin J Sport Med. 2017;27(3):245-252. doi:10.1097/jsm.0000000000000377
    1. Cuyul-Vásquez I, Leiva-Sepúlveda A, Catalán-Medalla O, Araya-Quintanilla F, Gutiérrez-Espinoza H. The addition of blood flow restriction to resistance exercise in individuals with knee pain: a systematic review and meta-analysis. Braz J Phys Ther. 2020;24(6):465-478. doi:10.1016/j.bjpt.2020.03.001
    1. Spitz RW, Chatakondi RN, Bell ZW, et al. Blood flow restriction exercise: effects of sex, cuff width, and cuff pressure on perceived lower body discomfort. Percept Mot Skills. 2021;128(1):353-374. doi:10.1177/0031512520948295
    1. Weatherholt AM, Vanwye WR, Lohmann J, Owens JG. The effect of cuff width for determining limb occlusion pressure: a comparison of blood flow restriction devices. J Exerc Sci. 2019;12:136-143.
    1. Jessee MB, Buckner SL, Dankel SJ, Counts BR, Abe T, Loenneke JP. The Influence of cuff width, sex, and race on arterial occlusion: implications for blood flow restriction research. Sports Med. 2016;46(6):913-921. doi:10.1007/s40279-016-0473-5
    1. Loenneke JP, Fahs CA, Rossow LM, et al. Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur J Appl Physiol. 2012;112(8):2903-2912. doi:10.1007/s00421-011-2266-8
    1. Spitz RW, Wong V, Bell ZW, et al. Blood flow restricted exercise and discomfort: a review. J Strength Cond Res. 2022;36(3):871-879. doi:10.1519/jsc.0000000000003525
    1. Korakakis V, Whiteley R, Epameinontidis K. Blood flow restriction induces hypoalgesia in recreationally active adult male anterior knee pain patients allowing therapeutic exercise loading. Phys Ther Sport. 2018;32:235-243. doi:10.1016/j.ptsp.2018.05.021
    1. Korakakis V, Whiteley R, Giakas G. Low load resistance training with blood flow restriction decreases anterior knee pain more than resistance training alone. a pilot randomised controlled trial. Phys Ther Sport. 2018;34:121-128. doi:10.1016/j.ptsp.2018.09.007
    1. Janssen RPA, van Melick N, van Mourik JBA, Reijman M, van Rhijn LW. ACL reconstruction with hamstring tendon autograft and accelerated brace-free rehabilitation: a systematic review of clinical outcomes. BMJ Open Sport Exerc Med. 2018;4(1):2017-20000301. doi:10.1136/bmjsem-2017-000301
    1. Kruse LM, Gray B, Wright RW. Rehabilitation after anterior cruciate ligament reconstruction: a systematic review. J Bone Joint Surg Am. 2012;94(19):1737-1748. doi:10.2106/jbjs.k.01246
    1. Smith AH, Capin JJ, Zarzycki R, Snyder-Mackler L. Athletes with bone-patellar tendon bone autograft for anterior cruciate ligament reconstruction were slower to meet rehabilitation milestones and return-to-sport criteria than athletes with hamstring tendon autograft or soft tissue allograft: secondary analysis from the ACL-SPORTS trial. J Orthop Sports Phys Ther. 2020;50(5):259-266. doi:10.2519/jospt.2020.9111
    1. van Groningen B, van der Steen MC, Janssen DM, van Rhijn LW, van der Linden AN, Janssen RPA. Assessment of graft maturity after anterior cruciate ligament reconstruction using autografts: a systematic review of biopsy and magnetic resonance imaging studies. Arthrosc Sports Med Rehabil. 2020;2(4):377-388. doi:10.1016/j.asmr.2020.02.008
    1. Beynnon BD, Johnson RJ, Naud S, et al. Accelerated versus nonaccelerated rehabilitation after anterior cruciate ligament reconstruction: a prospective, randomized, double-blind investigation evaluating knee joint laxity using roentgen stereophotogrammetric analysis. Am J Sports Med. 2011;39(12):2536-2548. doi:10.1177/0363546511422349

Source: PubMed

3
Subskrybuj