Blood Flow Restriction Training

Daniel S Lorenz, Lane Bailey, Kevin E Wilk, Robert E Mangine, Paul Head, Terry L Grindstaff, Scot Morrison, Daniel S Lorenz, Lane Bailey, Kevin E Wilk, Robert E Mangine, Paul Head, Terry L Grindstaff, Scot Morrison

Abstract

Muscle weakness and atrophy are common impairments after musculoskeletal injury. Blood flow restriction (BFR) training offers the ability to mitigate weakness and atrophy without overloading healing tissues. It appears to be a safe and effective approach to therapeutic exercise in sports medicine environments. This approach requires consideration of a wide range of factors, and the purpose of our article is to provide insights into proposed mechanisms of effectiveness, safety considerations, application guidelines, and clinical recommendations for BFR training after musculoskeletal injury. Whereas training with higher loads produces the most substantial increases in strength and hypertrophy, BFR training appears to be a reasonable option for bridging earlier phases of rehabilitation when higher loads may not be tolerated by the patient and later stages that are consistent with return to sport.

Keywords: clinical rehabilitation; hypertrophy; occlusion training; resistance training.

© by the National Athletic Trainers' Association, Inc.

Figures

Figure 1
Figure 1
Cuff placement: A and B, upper extremity. C and D, lower extremity. The cuff should be placed proximally on the limb, which allows occlusion to occur in the majority of the muscle without interfering with movement.
Figure 2
Figure 2
Determining arterial occlusion pressure using a pulse oximeter or A, a handheld Doppler ultrasound. A pulse oximeter can be placed on a finger. The Doppler ultrasound is placed on a distal artery: B, upper extremity, radial artery; C, lower extremity, dorsalis pedis. Once the pulse has been identified, the cuff is slowly inflated (eg, start at 50 mm Hg and increase by 10-mm Hg increments every 10 seconds) to the point at which full occlusion occurs (ie, pulse is absent).

References

    1. Lisee C, Lepley AS, Birchmeier T, O'Hagan K, Kuenze C. Quadriceps strength and volitional activation after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Sports Health. 2019;11(2):163–179. doi: 10.1177/1941738118822739.
    1. Ratamess NA, Alvar BA, Evetoch TK, et al. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708. doi: 10.1249/MSS.0b013e3181915670.
    1. Schoenfeld BJ, Grgic J, Ogborn D, Krieger JW. Strength and hypertrophy adaptations between low- vs. high-load resistance training: a systematic review and meta-analysis. J Strength Cond Res. 2017;31(12):3508–3523. doi: 10.1519/JSC.0000000000002200.
    1. Barber-Westin S, Noyes FR. Blood flow-restricted training for lower extremity muscle weakness due to knee pathology: a systematic review. Sports Health. 2019;11(1):69–83. doi: 10.1177/1941738118811337.
    1. Hughes L, Paton B, Rosenblatt B, Gissane C, Patterson SD. Blood flow restriction training in clinical musculoskeletal rehabilitation: a systematic review and meta-analysis. Br J Sports Med. 2017;51(13):1003–1011. doi: 10.1136/bjsports-2016-097071.
    1. Hughes L, Rosenblatt B, Haddad F, et al. Comparing the effectiveness of blood flow restriction and traditional heavy load resistance training in the post-surgery rehabilitation of anterior cruciate ligament reconstruction patients: a UK National Health Service randomised controlled trial. Sports Med. 2019;49(11):1787–1805. doi: 10.1007/s40279-019-01137-2.
    1. Ferraz RB, Gualano B, Rodrigues R, et al. Benefits of resistance training with blood flow restriction in knee osteoarthritis. Med Sci Sports Exerc. 2018;50(5):897–905. doi: 10.1249/MSS.0000000000001530.
    1. Slysz J, Stultz J, Burr JF. The efficacy of blood flow restricted exercise: a systematic review & meta-analysis. J Sci Med Sport. 2016;19(8):669–675. doi: 10.1016/j.jsams.2015.09.005.
    1. Patterson SD, Hughes L, Warmington S, et al. Blood flow restriction exercise position stand: considerations of methodology, application, and safety. Front Physiol. 2019;10:533. doi: 10.3389/fphys.2019.00533.
    1. DePhillipo NN, Kennedy MI, Aman ZS, Bernhardson AS, O'Brien LT, LaPrade RF. The role of blood flow restriction therapy following knee surgery: expert opinion. Arthroscopy. 2018;34(8):2506–2510. doi: 10.1016/j.arthro.2018.05.038.
    1. Ebell MH, Siwek J, Weiss BD, et al. Strength of Recommendation Taxonomy (SORT): a patient-centered approach to grading evidence in the medical literature. Am Fam Physician. 2004;69(3):548–556. doi: 10.3122/jabfm.17.1.59.
    1. Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res. 2010;24(10):2857–2872. doi: 10.1519/JSC.0b013e3181e840f3.
    1. Pearson SJ, Hussain SR. A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med Feb. 2015;45(2):187–200. doi: 10.1007/s40279-014-0264-9.
    1. Rossi FE, de Freitas MC, Zanchi NE, Lira FS, Cholewa JM. The role of inflammation and immune cells in blood flow restriction training adaptation: a review. Front Physiol. 2018;9:1376. doi: 10.3389/fphys.2018.01376.
    1. Jessee MB, Mattocks KT, Buckner SL, et al. Mechanisms of blood flow restriction: the new testament. Tech Orthop. 2018;33(2):72–79. doi: 10.1097/BTO.0000000000000252.
    1. Lecker SH, Jagoe RT, Gilbert A, et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J. 2004;18(1):39–51. doi: 10.1096/fj.03-0610com.
    1. Amann M. Significance of group III and IV muscle afferents for the endurance exercising human. Clin Exp Pharmacol Physiol. 2012;39(9):831–835. doi: 10.1111/j.1440-1681.2012.05681.x.
    1. Reis JF, Fatela P, Mendonca GV, et al. Tissue oxygenation in response to different relative levels of blood-flow restricted exercise. Front Physiol. 2019;10:407. doi: 10.3389/fphys.2019.00407.
    1. Anderson AB, Owens JG, Patterson SD, Dickens JF, LeClere LE. Blood flow restriction therapy: from development to applications. Sports Med Arthrosc Rev. 2019;27(3):119–123. doi: 10.1097/JSA.0000000000000240.
    1. Tennent DJ, Hylden CM, Johnson AE, Burns TC, Wilken JM, Owens JG. Blood flow restriction training after knee arthroscopy: a randomized controlled pilot study. Clin J Sport Med. 2017;27(3):245–252. doi: 10.1097/JSM.0000000000000377.
    1. Iversen E, Rostad V, Larmo A. Intermittent blood flow restriction does not reduce atrophy following anterior cruciate ligament reconstruction. J Sport Health Sci. 2016;5(1):115–118. doi: 10.1016/j.jshs.2014.12.005.
    1. Loenneke JP, Wilson JM, Wilson GJ, Pujol TJ, Bemben MG. Potential safety issues with blood flow restriction training. Scand J Med Sci Sports. 2011;21(4):510–518. doi: 10.1111/j.1600-0838.2010.01290.x.
    1. Cancio JM, Sgromolo NM, Rhee PC. Blood flow restriction therapy after closed treatment of distal radius fractures. J Wrist Surg. 2019;8(4):288–294. doi: 10.1055/s-0039-1685455.
    1. Noordin S, McEwen JA, Kragh JF, II, Eisen A, Masri BA. Surgical tourniquets in orthopaedics. J Bone Joint Surg Am. 2009;91(12):2958–2967. doi: 10.2106/JBJS.I.00634.
    1. Laurentino GC, Loenneke JP, Teixeira EL, Nakajima E, Iared W, Tricoli V. The effect of cuff width on muscle adaptations after blood flow restriction training. Med Sci Sports Exerc May. 2016;48(5):920–925. doi: 10.1249/MSS.0000000000000833.
    1. Mouser JG, Dankel SJ, Jessee MB, et al. A tale of three cuffs: the hemodynamics of blood flow restriction. Eur J Appl Physiol. 2017;117(7):1493–1499. doi: 10.1007/s00421-017-3644-7.
    1. Loenneke JP, Allen KM, Mouser JG, et al. Blood flow restriction in the upper and lower limbs is predicted by limb circumference and systolic blood pressure. Eur J Appl Physiol. 2015;115(2):397–405. doi: 10.1007/s00421-014-3030-7.
    1. Wilson JM, Lowery RP, Joy JM, Loenneke JP, Naimo MA. Practical blood flow restriction training increases acute determinants of hypertrophy without increasing indices of muscle damage. J Strength Cond Res. 2013;27(11):3068–3075. doi: 10.1519/JSC.0b013e31828a1ffa.
    1. Scott BR, Loenneke JP, Slattery KM, Dascombe BJ. Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular development. Sports Med. 2015;45(3):313–325. doi: 10.1007/s40279-014-0288-1.
    1. Clarkson MJ, May AK, Warmington SA. Is there rationale for the cuff pressures prescribed for blood flow restriction exercise? A systematic review. Scand J Med Sci Sports. 2020;30(8):1318–1336. doi: 10.1111/sms.13676.
    1. Jessee MB, Buckner SL, Dankel SJ, Counts BR, Abe T, Loenneke JP. The influence of cuff width, sex, and race on arterial occlusion: implications for blood flow restriction research. Sports Med. 2016;46(6):913–921. doi: 10.1007/s40279-016-0473-5.
    1. Sieljacks P, Knudsen L, Wernbom M, Vissing K. Body position influences arterial occlusion pressure: implications for the standardization of pressure during blood flow restricted exercise. Eur J Appl Physiol. 2018;118(2):303–312. doi: 10.1007/s00421-017-3770-2.
    1. Hughes L, Jeffries O, Waldron M, et al. Influence and reliability of lower-limb arterial occlusion pressure at different body positions. PeerJ. 2018;6:e4697. doi: 10.7717/peerj.4697.
    1. Laurentino GC, Loenneke JP, Mouser JG, et al. Validity of the handheld Doppler to determine lower-limb blood flow restriction pressure for exercise protocols. J Strength Cond Res. 2020;34(9):2693–2696. doi: 10.1519/JSC.0000000000002665.
    1. Zeng Z, Centner C, Gollhofer A, Konig D. Blood-flow-restriction training: validity of pulse oximetry to assess arterial occlusion pressure. Int J Sports Physiol Perform. 2019 doi: 10.1123/ijspp.2019-0043. Published online August 9.
    1. Lima-Soares F, Pessoa KA, Torres Cabido CE, et al. Determining the arterial occlusion pressure for blood flow restriction: pulse oximeter as a new method compared with a handheld Doppler. J Strength Cond Res. 2020 doi: 10.1519/JSC.0000000000003628. Published online April 29.
    1. Mattocks KT, Jessee MB, Counts BR, et al. The effects of upper body exercise across different levels of blood flow restriction on arterial occlusion pressure and perceptual responses. Physiol Behav. 2017;171:181–186. doi: 10.1016/j.physbeh.2017.01.015.
    1. Head P, Waldron M, Theis N, Patterson SD. Acute neuromuscular electrical stimulation (NMES) with blood flow restriction: the effect of restriction pressures. J Sport Rehabil. 2020 doi: 10.1123/jsr.2019-0505. Published online July 31.
    1. Kim D, Loenneke JP, Ye X, et al. Low-load resistance training with low relative pressure produces muscular changes similar to high-load resistance training. Muscle Nerve. 2017;56(6):E126–E133. doi: 10.1002/mus.25626.
    1. Lixandrao ME, Ugrinowitsch C, Berton R, et al. Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associated with blood-flow restriction: a systematic review and meta-analysis. Sports Med. 2018;48(2):361–378. doi: 10.1007/s40279-017-0795-y.
    1. Jessee MB, Buckner SL, Mouser JG, et al. Muscle adaptations to high-load training and very low-load training with and without blood flow restriction. Front Physiol. 2018;9:1448. doi: 10.3389/fphys.2018.01448.
    1. Grønfeldt BM, Lindberg Nielsen J, Mieritz RM, Lund H, Aagaard P. Effect of blood-flow restricted vs heavy-load strength training on muscle strength: systematic review and meta-analysis. Scand J Med Sci Sports. 2020;30(5):837–848. doi: 10.1111/sms.13632.
    1. Farup J, de Paoli F, Bjerg K, Riis S, Ringgard S, Vissing K. Blood flow restricted and traditional resistance training performed to fatigue produce equal muscle hypertrophy. Scand J Med Sci Sports. 2015;25(6):754–763. doi: 10.1111/sms.12396.
    1. Schoenfeld BJ. Is there a minimum intensity threshold for resistance training-induced hypertrophic adaptations? Sports Med. 2013;43(12):1279–1288. doi: 10.1007/s40279-013-0088-z.
    1. Schoenfeld BJ. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med. 2013;43(3):179–194. doi: 10.1007/s40279-013-0088-z.
    1. Yasuda T, Fukumura K, Iida H, Nakajima T. Effect of low-load resistance exercise with and without blood flow restriction to volitional fatigue on muscle swelling. Eur J Appl Physiol. 2015;115(5):919–926. doi: 10.1007/s00421-014-3073-9.
    1. Biazon TM, Ugrinowitsch C, Soligon SD, et al. The association between muscle deoxygenation and muscle hypertrophy to blood flow restricted training performed at high and low loads. Front Physiol. 2019;10:446. doi: 10.3389/fphys.2019.00446.
    1. Cayot TE, Lauver JD, Silette CR, Scheuermann BW. Effects of blood flow restriction duration on muscle activation and microvascular oxygenation during low-volume isometric exercise. Clin Physiol Funct Imaging. 2016;36(4):298–305. doi: 10.1111/cpf.12228.
    1. Korakakis V, Whiteley R, Epameinontidis K. Blood flow restriction induces hypoalgesia in recreationally active adult male anterior knee pain patients allowing therapeutic exercise loading. Phys Ther Sport. 2018;32:235–243. doi: 10.1016/j.ptsp.2018.05.021.
    1. Giles L, Webster KE, McClelland J, Cook JL. Quadriceps strengthening with and without blood flow restriction in the treatment of patellofemoral pain: a double-blind randomised trial. Br J Sports Med. 2017;51(23):1688–1694. doi: 10.1136/bjsports-2016-096329.
    1. Skovlund SV, Aagaard P, Larsen P, et al. The effect of low-load resistance training with blood flow restriction on chronic patellar tendinopathy—a case series. Transl Sports Med. 2020;3(4):342–352. doi: 10.1002/tsm2.151.
    1. Baker BS, Stannard MS, Duren DL, Cook JL, Stannard JP. Does blood flow restriction therapy in patients older than age 50 result in muscle hypertrophy, increased strength, or greater physical function? A systematic review. Clin Orthop Relat Res. 2020;478(3):593–606. doi: 10.1097/CORR.0000000000001090.
    1. Abe T, Kearns CF, Sato Y. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J Appl Physiol (1985) 2006;100(5):1460–1466. doi: 10.1152/japplphysiol.01267.2005.
    1. Park S, Kim JK, Choi HM, Kim HG, Beekley MD, Nho H. Increase in maximal oxygen uptake following 2-week walk training with blood flow occlusion in athletes. Eur J Appl Physiol. 2010;109(4):591–600. doi: 10.1007/s00421-010-1377-y.
    1. Scott BR, Loenneke JP, Slattery KM, Dascombe BJ. Blood flow restricted exercise for athletes: a review of available evidence. J Sci Med Sport. 2016;19(5):360–367. doi: 10.1016/j.jsams.2015.04.014.

Source: PubMed

3
Subskrybuj