Radioiodine Ablation following Thyroidectomy for Differentiated Thyroid Cancer: Literature Review of Utility, Dose, and Toxicity

Nicholas S Andresen, John M Buatti, Hamed H Tewfik, Nitin A Pagedar, Carryn M Anderson, John M Watkins, Nicholas S Andresen, John M Buatti, Hamed H Tewfik, Nitin A Pagedar, Carryn M Anderson, John M Watkins

Abstract

Management recommendations for differentiated thyroid cancer are evolving. Total thyroidectomy is the backbone of curative-intent therapy, with radioiodine ablation (RAI) of the thyroid remnant routinely performed, in order to facilitate serologic surveillance and reduce recurrence risk. Several single-institution series have identified patient subsets for whom recurrence risk is sufficiently low that RAI may not be indicated. Further, the appropriate dose of RAI specific to variable clinicopathologic presentations remains poorly defined. While recent randomized trials demonstrated equivalent thyroid remnant ablation rates between low- and high-dose RAI, long-term oncologic endpoints remain unreported. While RAI may be employed to facilitate surveillance following total thyroidectomy, cancer recurrence risk reduction is not demonstrated in favorable-risk patients with tumor size ≤1 cm without high-risk pathologic features. When RAI is indicated, in patients without macroscopic residual disease or metastasis, the evidence suggests that the rate of successful remnant ablation following total thyroidectomy is equivalent between doses of 30-50 mCi and doses ≥100 mCi, with fewer acute side effects; however, in the setting of subtotal thyroidectomy or when preablation diagnostic scan uptake is >2%, higher doses are associated with improved ablation rates. Historical series demonstrate conflicting findings of long-term cancer control rates between dose levels; long-term results from modern series have yet to be reported. For high-risk patients, including those with positive surgical margins, gross extrathyroidal extension, lymph node involvement, subtotal thyroidectomy, or >5% uptake, higher-dose RAI therapy appears to provide superior rates of ablation and cancer control.

Keywords: Radioiodine; Risk reduction; Secondary malignancies; Thyroid cancer; Thyroidectomy.

References

    1. Tuttle RM, Ball DW, Byrd D, Dilawari RA, Doherty GM, Duh QY, Ehya H, Farrar WB, Haddad RI, Kandeel F, Kloos RT, Kopp P, Lamonica DM, Loree TR, Lydiatt WM, McCaffrey JC, Olson JA, Parks L, Ridge JA, Shah JP, Sherman SI, Sturgeon C, Waguespack SG, Wang TN, Wirth LJ. Thyroid carcinoma. J Nat Comp Cancer Netw. 2010;8:228–1274.
    1. Sawka AM, Thephamongkhol K, Brouwers M, Thabane L, Browman G, Gerstein HC. A systematic review and meta-analysis of radioactive iodine remnant ablation for well-differentiated thyroid cancer. J Clin Endocrinol Metab. 2002;89:3668–3676.
    1. Hay ID, Thompson GB, Grant CS, Bergstralh EJ, Dvorak CE, Gorman CA, Maurer MS, McIver B, Mullan BP, Oberg AL, Powell CC, van Heerden JA, Goellner JR. Papillary thyroid carcinoma managed at the Mayo Clinic during six decades (1940–1999): temporal trends in initial therapy and long-term outcome in 2,444 consecutively treated patients. World J Surg. 2002;26:879–885.
    1. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, Steward DL, Tuttle RM, Wartofsky L. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26:1–136.
    1. Pacini F, Schlumberger M, Dralle H, Elisei R, Smit JW, Wiersinga W, European Thyroid Cancer Taskforce European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol. 2006;154:787–803.
    1. Pitoia F, Ward L, Wohlik N, Friguglietti C, Tomimori E, Gauna A, Camargo R, Vaisman M, Harach R, Munizaga F, Corigliano S, Pretell E, Niepomniszcze H. Recommendations of the Latin American Thyroid Society on the diagnosis and management of differentiated thyroid cancer. Arq Bras Endocrinol Metabol. 2009;53:884–897.
    1. Jonklaas J, Sarlis NJ, Litofsky D, Ain KB, Bigos ST, Brierly JD, Cooper DS, Haugen BR, Ladenson BR, Ladenson PW, Magner J, Robbins J, Ross DS, Skarulis M, Maxon HR, Sherman SI. Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid. 2006;16:1229–1242.
    1. Jonklaas J, Cooper DS, Ain KB, Bigos T, Brierley JD, Haugen BR, Ladenson PW, Magner J, Ross DS, Skarulis MC, Steward DL, Maxon HR, Sherman SI. Radioiodine therapy in patients with stage I differentiated thyroid cancer. Thyroid. 2010;20:1423–1424.
    1. Schlumberger M, Catargi B, Borget I, Deandreis D, Zerdoud S, Bridgi B, Bardet S, Leenhardt L, Astie D, Schvartz C, Vera P, Morel O, Benisvy D, Bournaud C, Bonichon F, Dejax C, Toubert ME, Leboulleux S, Ricard M, Benhamou E. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N Engl J Med. 2012;366:1663–1673.
    1. Mallick U, Harmer C, Yap B, Wadsley J, Clarke S, Moss L, Nicol A, Clark PM, Farnell K, McCready R, Smellie J, Franklyn JA, John R, Nutting CM, Newbold K, Lemon C, Gerrard G, Abdel-Hamid A, Hardman J, Macias E, Rogues T, Whitaker S, Vijayan R, Alvaraz P, Beare S, Forsyth S, Kadalayil L, Hackshaw A. Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. N Engl J Med. 2012;366:1674–1685.
    1. Smallridge RC, Diehl N, Bernet V. Practice trends in patients with persistent detectable thyroglobulin and negative diagnostic radioiodine whole body scans: a survey of American Thyroid Association members. Thyroid. 2014;24:1501–1508.
    1. Cunningham MP, Duda RB, Recan W, Chmiel JS, Sylvester J, Fremgen A. Survival discriminants for differentiated thyroid cancer. Am J Surg. 1990;160:344–347.
    1. Loh KC, Greenspan FS, Gee L, Miller TR, Yeo PPB. Pathological tumor-node-metastasis (pTNM) staging for papillary and follicular thyroid carcinomas: a retrospective analysis of 700 patients. J Clin Endocrinol Metab. 1997;82:3553–3562.
    1. Mazzaferri EL. Thyroid remnant 131I ablation for papillary and follicular thyroid carcinoma. Thyroid. 1997;7:265–271.
    1. Morris DM, Boyle PJ, Stidley CA, Altobelli KK, Parnell T, Key C. Localized well-differentiated thyroid carcinoma: survival analysis of prognostic factors and 131I therapy. Ann Surg Oncol. 1998;5:329–337.
    1. Taylor T, Specker B, Robbins J, Sperling M, Ho M, Ain K, Bigos ST, Brierley J, Cooper D, Haugen B, Hay I, Hertzberg V, Klein I, Klein H, Ladenson P, Nishiyama R, Ross D, Sherman S, Maxon HR. Outcome after treatment of high-risk papillary and non-Hurthle-cell follicular thyroid carcinoma. Ann Intern Med. 1998;129:622–627.
    1. Hay ID, McConahey WM, Groellner JR. Managing patients with papillary thyroid carcinoma: insights gained from the Mayo Clinic's experience of treating 2,512 consecutive patients during 1940 through 2000. Trans Am Clin Climatol Assoc. 2002;113:241–260.
    1. Podnos YD, Smith D, Wagman LD, Ellenhorn JDI. The implication of lymph node metastasis on survival in patients with well-differentiated thyroid cancer. Am Surg. 2005;71:731–734.
    1. Pacini F, Schlumberger M, Harmer C, Berg GG, Cohen O, Duntas L, Jamar F, Jarzab B, Limbert E, Lind P, Reiners C, Sanchez Franco F, Smit J, Wiersinga W. Post-surgical use of radioiodine (131I) in patients with papillary and follicular thyroid cancer and the issue of remnant ablation: a consensus report. Eur J Endocrinol. 2005;153:651–659.
    1. DeGroot LJ. Long-term impact of initial and surgical therapy on papillary and follicular thyroid cancer. Am J Med. 1994;97:499–500.
    1. Pacini F, Castagna MG, Brilli L, Pentheroudakis G, ESMO Guidelines Working Group Thyroid cancer: ESMO clinical practice guidelines for diagnosis, treatment, and follow-up. Ann Oncol. 2010;21((suppl 5)):v214–v219.
    1. Samaan N, Maheshwari YK, Nader S, Hill CS, Schultz PN, Haynie TP, Hickey RC, Clark RL, Goepfert H, Ibanez ML, Litton CE. Impact of therapy for differentiated carcinoma of the thyroid: an analysis of 706 cases. J Clin Endocrinol Metab. 1983;56:1131–1138.
    1. Sacks W, Fung CH, Chang JR, Waxman A, Braunstein GD. The effectiveness of radioactive iodine for treatment of low-risk thyroid cancer: a systematic analysis of the peer-reviewed literature from 1966 to April 2008. Thyroid. 2010;20:1235–1245.
    1. Holst JP, Burman KD, Atkins F, Umans JG, Jonklaas J. Radioiodine therapy for thyroid cancer and hyperthyroidism in patients with end-stage renal disease on hemodialysis. Thyroid. 2005;15:1321–1331.
    1. Samuel AM, Rajashekharrao B, Shah DH. Pulmonary metastases and adolescents with well-differentiated thyroid cancer. J Nucl Med. 1998;39:1531–1536.
    1. Tuttle RM, Leboeuf R, Robbins RJ, Qualey R, Pentlow K, Larson SM, Chan CY. Empiric radioactive iodine dosing regimens frequently exceed maximum tolerated activity levels in elderly patients with thyroid cancer. J Nucl Med. 2006;47:1587–1591.
    1. Maxon HR, Thomas SR, Hertzberg VS, Kerelakes JG, Chen JW, Sperling MI, Saenger EL. Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. N Engl J Med. 1983;309:937–941.
    1. Klubo-Gwiezdzinska J, Van Nostrand D, Atkins F, Burman K, Jonklaas J, Mete M, Wartofsky L. Efficacy of dosimetric versus empiric prescribed activity of 131I for therapy of differentiated thyroid cancer. J Clin Endocrinol Metab. 2011;96:3217–3225.
    1. Schlumberger MJ, Borget I, Catargi B, Deandreis D, Zerdoud S, Bardet S, Rosu D, Godbert Y, Leenhardt L, Schvartz C, Vera P, Morel O, Benisvy D, Bournaud C, Toubert M, Kelly A, Leboulleux S. ESTIMABL1: Long term outcome validates the use of 1.1 GBq/rhTSH for ablation in low risk thyroid cancer patients (short call oral abstract 6). Denver: 86th Annual Meeting of the American Thyroid Association (ATA); 2016. September 21–25.
    1. Maenpaa HO, Keikkonen J, Vallavirta L, Tenhunen M, Joensuu H. Low vs high radioiodine activity to ablate the thyroid after thyroidectomy for cancer: a randomized study. PLoS One. 2008;3:e1885.
    1. Kukulska A, Krajewska J, Gawkowska-Suwiriska M, Puch Z, Paliczka-Cieslik E, Roskosz J, Handkiewicz-Junak D, Jarzab M, Gubala E, Jarzab B. Radioiodine thyroid remnant ablation in patients with differentiated thyroid carcinoma (DTC): prospective comparison of long-term outcomes of treatment with 30, 60, and 100 mCi. Thyroid Res. 2010;3:9.
    1. Kukulska A, Krajewska J, Roskosz J, Handkiewicz-Junak D, Jarzab M, Paliczka E, Puch Z, Wygoda Z, Gubala E, Jarzab B. Optimization of 131I ablation in patients with differentiated thyroid carcinoma: comparison of early outcomes of treatment with 100 mCi versus 60 mCi. Pol J Endocrinol. 2006;57:374–379.
    1. Sirisalipoch S, Buachum V, Pasawang P, Tepmongkol S, Boonvisut S. Prospective randomized trial for evaluation of efficacy of low versus high dose I-131 for postoperative remnant ablation in differentiated thyroid cancer. Chula Med J. 2006;50:695–706.
    1. Fallahi B, Beiki D, Takavar A, Fard-Esfahani A, Gilani KA, Saghari M, Eftekhari M. Low versus high radioiodine dose in postoperative ablation of residual thyroid tissue in patients with differentiated thyroid carcinoma: a large randomized clinical trial. Nucl Med Commun. 2012;33:275–282.
    1. Bal C, Padhy AK, Jana S, Pant GS, Basu AK. Prospective randomized clinical trial to evaluate the optimal dose of 131I for remnant ablation in patients with differentiated thyroid carcinoma. Cancer. 1996;77:2574–2580.
    1. Bal CS, Kumar A, Pant GS. Radioiodine dose for remnant ablation in differentiated thyroid carcinoma: a randomized clinical trial in 509 patients. J Clin Endocrinol Metab. 2004;89:1666–1673.
    1. Rosario PW, Reis JS, Barroso AL, Rezende LL, Padrao EL, Fagundes TA. Efficacy of low and high 131I doses for thyroid remnant ablation in patients with differentiated thyroid carcinoma based on post-operative cervical uptake. Nucl Med Commun. 2004;25:1077–1081.
    1. Beierwaltes WH, Rabbani R, Dmuchowski C, Lloyd RV, Eyre P, Mallette S. An analysis of “ablation of thyroid remnants” with I-131 in 511 patients from 1947–1984: experience at University of Michigan. J Nucl Med. 1984;25:1287–1293.
    1. Kruijff S, Aniss AM, Chen P, Sidhu SB, Delbridge LW, Robinson B, Clifton-Bligh RJ, Roach P, Gill AJ, Learoyd D, Sywak MS. Decreasing the dose of radioiodine for remnant ablation does not increase structural recurrence rates in papillary thyroid carcinoma. Surgery. 2013;154:1337–1345.
    1. Castagna MG, Cevenini G, Theodoropoulou A, Maino F, Memmo S, Claudia C, Belardini V, Brianzoni E, Pacini F. Post-surgical thyroid ablation with low or high radioiodine activities results in similar outcomes in intermediate risk differentiated thyroid cancer patients. Eur J Endocrinol. 2013;169:23–29.
    1. Sabra MM, Grewal RK, Ghossein RA, Tuttle RM. Higher administered activities of radioactive iodine are associated with less structural persistent response in older, but not younger, papillary thyroid cancer patients with lateral neck lymph node metastases. Thyroid. 2014;24:1088–1095.
    1. Han JM, Kim WG, Kim TY, Jeon MJ, Ryu JS, Song DE, Hong SJ, Shong YK, Kim WB. Effects of low-dose and high-dose postoperative radioiodine therapy on the clinical outcome in patients with small differentiated thyroid cancer having microscopic extrathyroidal extension. Thyroid. 2014;24:820–825.
    1. Verburg FA, Mader U, Reiners C, Hanscheid H. Long-term survival in differentiated thyroid cancer is worse after low-activity initial post-surgical 131I therapy in both high- and low-risk patients. J Clin Endocrinol Metab. 2014;99:4487–4496.
    1. Duren M, Siperstein AE, Shen W, Duh QY, Morita E, Clark OH. Value of stimulated serum thyroglobulin levels for detecting persistent or recurrent differentiated thyroid cancer in high- and low-risk patients. Surgery. 1999;126:13–19.
    1. Pacini F, Lippi F, Formica N, Elisei R, Anelli S, Ceccarelli C, Pinchera A. Therapeutic doses of iodine-131 reveal undiagnosed metastases in thyroid cancer patients with detectable serum thyroglobulin levels. J Nucl Med. 1987;28:1888–1891.
    1. Pineda JD, Lee T, Ain K, Reynolds JC, Robbins J. Iodine-131 therapy for thyroid cancer patients with elevated thyroglobulin and negative diagnostic scan. J Clin Endocrinol Metab. 1995;80:1488–1492.
    1. Roelants V, De Nayer P, Bouckaert A, Beckers C. The predictive value of serum thyroglobulin in the follow-up of differentiated thyroid cancer. Eur J Nucl Med. 1997;24:722–727.
    1. Pacini F, Molinaro E, Castagna MG, Agate L, Elisei R, Ceccarelli C, Lippi F, Taddei D, Grasso L, Pinchera A. Recombinant human thyrotropin-stimulated serum thyroglobulin combined with neck ultrasonography has the highest sensitivity in monitoring differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2003;88:3668–3673.
    1. Toubeau M, Touzery C, Arveux P, Chaplain G, Vaillant G, Berriolo A, Riedinger JM, Boichot C, Cochet A, Brunotte F. Predictive value for disease progression of serum thyroglobulin levels measured in the postoperative period and after 131I ablation therapy in patients with differentiated thyroid cancer. J Nucl Med. 2004;45:988–994.
    1. Ware JE, Serbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30:473–483.
    1. Brown AP, Chen J, Hitchcock YJ, Szabo A, Shrieve DC, Tward JD. The risk of second primary malignancies up to three decades after the treatment of differentiated thyroid cancer. J Clin Endocrinol Metab. 2008;93:504–515.
    1. Rubino C, de Vathaire F, Dottorini ME, Hall P, Schvartz C, Couette JE, Dondon MG, Abbas MT, Langlois C, Schlumberger M. Second primary malignancies in thyroid cancer patients. 2003;89:1638–1644.
    1. Teng CJ, Hu YW, Chen SC, Yeh CM, Chiang HL, Chen TJ, Liu CJ. Use of radioactive iodine for thyroid cancer and risk of second primary malignancy: a nationwide population-based study. J Natl Cancer Inst. 2016;108:djv314.
    1. Berthe E, Henry-Amar M, Michels JJ, Rame JP, Berthet P, Babin E, Icard P, Samama G, Galateau-Salle F, Mahoudeau J, Bardet S. Risk of second primary cancer following differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2004;31:685–691.
    1. Chen AY, Levy L, Goepfert H, Brown BW, Spitz MR, Vassilopoulou-Sellin R. The development of breast carcinoma in women with thyroid cancer. Cancer. 2001;92:225–231.
    1. Sandeep TC, Strachan MWJ, Reynolds RM, Brewster DH, Scelo G, Pukkala E, Hemminki K, Anderson A, Tracey E, Friis S, McBride ML, Kee-Seng C, Pompe-Kim V, Kliewer EV, Tonita JM, Jonasson JG, Martos C, Beffetta P, Brennan P. Second primary cancers in thyroid cancer patients: a multinational record linkage study. J Clin Endocrinol Metab. 2006;91:1819–1825.
    1. Subramanian S, Goldstein DP, Parlea L, Thabane L, Ezzat S, Ibrahim-Zada I, Straus S, Brierly JD, Tsang RW, Gafni A, Rotstein L, Sawka AM. Second primary malignancy risk in thyroid cancer survivors: a systematic review and meta-analysis. Thyroid. 2008;17:1277–1288.
    1. Van Nostrand D. Sialoadenitis secondary to 131I therapy for well-differentiated thyroid cancer. Clin Endocrinol. 2011;74:111–117.
    1. Burns JA, Morgenstern KE, Cahill KV, Foster JA, Jhiang SM, Kloos RT. Nasolacrimal duct obstruction secondary to I(131) therapy. Ophthal Plast Reconstr Surg. 2004;20:126–129.
    1. Wu JX, Young S, Ro K, Li N, Leung AM, Chiu HK, Harari A, Yeh MW. Reproductive outcomes and nononcologic complications after radioactive iodine ablation for well-differentiated thyroid cancer. Thyroid. 2015;25:133–138.
    1. Pacini F, Gasperi M, Fugazzola L, Ceccarelli C, Lippi F, Centoni R, Martino E, Pinchera A. Testicular function in patients with differentiated thyroid carcinoma treated with radioiodine. J Nucl Med. 1994;35:1418–1422.
    1. Wichers M, Benz E, Palmedo H, Biersack HJ, Grunwald F, Klinmuller D. Testicular function after radioiodine therapy for thyroid cancer. Eur J Nucl Med. 2000;27:503–507.
    1. Handelsman DJ, Conway AJ, Donnelly PE, Turtle JR. Azoospermia after iodine-131 treatment for thyroid carcinoma. Br Med J. 1980;281:1527.
    1. Hyer S, Vini L, O'Connell M, Pratt B, Harmer C. Testicular dose and fertility in men following I(131) therapy for thyroid cancer. Clin Endocrinol. 2002;56:755–758.

Source: PubMed

3
Subskrybuj