Reliability and accuracy of dynamic navigation for zygomatic implant placement

Yiqun Wu, Baoxin Tao, Kengliang Lan, Yihan Shen, Wei Huang, Feng Wang, Yiqun Wu, Baoxin Tao, Kengliang Lan, Yihan Shen, Wei Huang, Feng Wang

Abstract

Objectives: To assess the accuracy of a real-time dynamic navigation system applied in zygomatic implant (ZI) surgery and summarize device-related negative events and their management.

Material and methods: Patients who presented with severely maxillary atrophy or maxillary defects and received dynamic navigation-supported ZI surgery were included. The deviations of entry, exit, and angle were measured after image data fusion. A linear mixed-effects model was used. Statistical significance was defined as p < .05. Device-related negative events and their management were also recorded and analyzed.

Results: Two hundred and thirty-one zygomatic implants (ZIs) with navigation-guided placement were planned in 74 consecutive patients between Jan 2015 and Aug 2020. Among them, 71 patients with 221 ZIs received navigation-guided surgery finally. The deviations in entry, exit, and angle were 1.57 ± 0.71 mm, 2.1 ± 0.94 mm and 2.68 ± 1.25 degrees, respectively. Significant differences were found in entry and exit deviation according to the number of ZIs in the zygomata (p = .03 and .00, respectively). Patients with atrophic maxillary or maxillary defects showed a significant difference in exit deviation (p = .01). A total of 28 device-related negative events occurred, and one resulted in 2 ZI failures due to implant malposition. The overall survival rate of ZIs was 98.64%, and the mean follow-up time was 24.11 months (Standard Deviation [SD]: 12.62).

Conclusions: The navigation-supported ZI implantation is an accurate and reliable surgical approach. However, relevant technical negative events in the navigation process are worthy of attention.

Keywords: dental implants; dental prosthesis; jaw, edentulous; surgery, computer-assisted; zygoma.

Conflict of interest statement

No conflict of interest.

© 2022 The Authors. Clinical Oral Implants Research published by John Wiley & Sons Ltd.

Figures

FIGURE 1
FIGURE 1
Position of the fiducial screws in patients with severely atrophic maxilla or maxillary defect. (a and b: the position of fiducial screws that were placed on severely atrophic maxilla and corresponding panoramic radiographic image of the patient; c and d: mini‐screws attached to the superciliary arch and posterior zygomatic arch and panoramic radiographic image of the patient)
FIGURE 2
FIGURE 2
Previous plan as standard tessellation language (STL) file was merged with DICOM file in iPlan CMF and the new trajectories were duplicated. (a: The previous trajectories were designed in in‐house Dental‐Helper planning software and then exported with the same reference frame as the iPlan CMF, so only implant trajectories were exported and merged with the DICOM file at the right position automatically. c: The initial plan made by coDiagnostiX software, which contains implant information and bone information, was exported and merged with the DICOM file manually based on the outline of the maxilla and find the right position of implants. b and d: New plans were created accordingly)
FIGURE 3
FIGURE 3
Skull reference base which loads three reflective spheres was placed in the hairline firmly with a titanium screw
FIGURE 4
FIGURE 4
Navigation probe was used to identify the location of the window at infrazygomatic crest according to the planned path. (a and b: The probe was used to contact the point where the trajectory entered the zygoma bone and the corresponding computer interface)
FIGURE 5
FIGURE 5
Probe or calibrated instrument were used to detect the entrance of the trajectory. (a and b: The probe was used to contact the entry point of the trajectory and the corresponding computer interface; c and d: the calibrated instrument detected the entry point and the corresponding computer interface)
FIGURE 6
FIGURE 6
Zygomatic implant (ZI) was loaded on handpiece and inserted under guidance of the navigation system
FIGURE 7
FIGURE 7
Box plots representing median, quartile, and minimum–maximum deviation of three groups. *:p < .05, Triple ZIs*: Triple ZIs in a unilateral zygoma. ZI, zygomatic implant
FIGURE 8
FIGURE 8
Some devices related negative events (a: Fiducial titanium screws were loose after the flap elevation; b: one reflective sphere on handpiece reference frame was contaminated by blood)

References

    1. Aparicio, C. , Manresa, C. , Francisco, K. , Claros, P. , Alández, J. , González‐Martín, O. , & Albrektsson, T. (2014). Zygomatic implants: Indications, techniques and outcomes, and the Zygomatic Success Code. Periodontology 2000, 66(1), 41–58. 10.1111/prd.12038
    1. Bedrossian, E. , & Bedrossian, E. A. (2018). Prevention and the management of complications using the Zygoma implant: A review and clinical experiences. International Journal of Oral and Maxillofacial Implants, 33(5), E135–E145. 10.11607/jomi.6539
    1. Block, M. S. , Haggerty, C. J. , & Fisher, G. R. (2009). Nongrafting implant options for restoration of the edentulous maxilla. Journal of Oral and Maxillofacial Surgery, 67(4), 872–881. 10.1016/j.joms.2008.10.008
    1. Bothur, S. , Jonsson, G. , & Sandahl, L. (2003). Modified technique using multiple zygomatic implants in reconstruction of the atrophic maxilla: A technical note. International Journal of Oral and Maxillofacial Implants, 18(6), 902–904.
    1. Brånemark, P. I. , Gröndahl, K. , Ohrnell, L. O. , Nilsson, P. , Petruson, B. , Svensson, B. , Engstrand, P. , & Nannmark, U. (2004). Zygoma fixture in the management of advanced atrophy of the maxilla: Technique and long‐term results. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 38(2), 70–85. 10.1080/02844310310023918
    1. Chen, X. , Lin, Y. , Wang, C. , Shen, G. , Zhang, S. , & Wang, X. (2011). A surgical navigation system for oral and maxillofacial surgery and its application in the treatment of old zygomatic fractures. The International Journal of Medical Robotics Computer Assisted Surgery: MRCAS, 7(1), 42–50. 10.1002/rcs.367
    1. Chow, J. (2016). A novel device for template‐guided surgery of the zygomatic implants. International Journal of Oral and Maxillofacial Surgery, 45(10), 1253–1255. 10.1016/j.ijom.2016.06.007
    1. Chrcanovic, B. R. , Albrektsson, T. , & Wennerberg, A. (2016). Survival and complications of zygomatic implants: An updated systematic review. Journal of Oral and Maxillofacial Surgery, 74(10), 1949–1964. 10.1016/j.joms.2016.06.166
    1. Chrcanovic, B. R. , Oliveira, D. R. , & Custodio, A. L. (2010). Accuracy evaluation of computed tomography‐derived stereolithographic surgical guides in zygomatic implant placement in human cadavers. The Journal of Oral Implantology, 36(5), 345–355. 10.1563/aaid-joi-d-09-00074
    1. Chrcanovic, B. R. , Pedrosa, A. R. , & Neto Custodio, A. L. (2013). Zygomatic implants: A critical review of the surgical techniques. Oral and Maxillofacial Surgery, 17(1), 1–9. 10.1007/s10006-012-0316-y
    1. Citardi, M. J. , & Batra, P. S. (2007). Intraoperative surgical navigation for endoscopic sinus surgery: Rationale and indications. Current Opinion in Otolaryngology & Head and Neck Surgery, 15(1), 23–27. 10.1097/MOO.0b013e3280123130
    1. Dai, J. , Wu, J. , Wang, X. , Yang, X. , Wu, Y. , Xu, B. , Shi, J. , Yu, H. , Cai, M. , Zhang, W. , Zhang, L. , Sun, H. , Shen, G. , & Zhang, S. (2016). An excellent navigation system and experience in craniomaxillofacial navigation surgery: A double‐center study. Scientific Reports, 6, 28242. 10.1038/srep28242
    1. Davo, R. , & David, L. (2019). Quad zygoma: Technique and realities. Oral and Maxillofacial Surgery Clinics of North America, 31(2), 285–297. 10.1016/j.coms.2018.12.006
    1. Fan, S. , Hung, K. , Bornstein, M. M. , Huang, W. , Wang, F. , & Wu, Y. (2019). The effect of the configurations of fiducial markers on accuracy of surgical navigation in zygomatic implant placement: An in vitro study. International Journal of Oral and Maxillofacial Implants, 34(1), 85–90. 10.11607/jomi.6821
    1. Fitzpatrick, J. M. , & West, J. B. (2001). The distribution of target registration error in rigid‐body point‐based registration. IEEE Transactions on Medical Imaging, 20(9), 917–927. 10.1109/42.952729
    1. Franco, P. (2017). Full mouth rehabilitation of the maxilla using precise implant guided surgery (from extracting teeth to zygoma implants and immediate loading). International Journal of Oral and Maxillofacial Surgery, 46, 18. 10.1016/j.ijom.2017.02.066
    1. Gao, Y. , Qin, C. , Tao, B. , Hu, J. , Wu, Y. , & Chen, X. (2021). An electromagnetic tracking implantation navigation system in dentistry with virtual calibration. The International Journal of Medical Robotics and Computer Assisted Surgery, 17(2), e2215. 10.1002/rcs.2215
    1. Gargallo‐Albiol, J. , Barootchi, S. , Salomó‐Coll, O. , & Wang, H. L. (2019). Advantages and disadvantages of implant navigation surgery. A systematic review. Annals of Anatomy, 225, 1–10. 10.1016/j.aanat.2019.04.005
    1. Gasparini, G. , Boniello, R. , Lafori, A. , De Angelis, P. , Del Deo, V. , Moro, A. , Saponaro, G. , & Pelo, S. (2017). Navigation system approach in zygomatic implant technique. Journal of Craniofacial Surgery, 28(1), 250–251. 10.1097/scs.0000000000003261
    1. Goker, F. , Grecchi, E. , Mancini, E. G. , Del Fabbro, M. , & Grecchi, F. (2020). Zygomatic implant survival in 9 ectodermal dysplasia patients with 3.5‐ to 7‐year follow‐up. Oral Diseases, 26(8), 1803–1809. 10.1111/odi.13505
    1. Hackett, S. , El‐Wazani, B. , & Butterworth, C. (2020). Zygomatic implant‐based rehabilitation for patients with maxillary and mid‐facial oncology defects: A review. Oral Diseases, 27(1), 27–41. 10.1111/odi.13305
    1. Hung, K. , Huang, W. , Wang, F. , & Wu, Y. (2016). Real‐time surgical navigation system for the placement of zygomatic implants with severe bone deficiency. International Journal of Oral and Maxillofacial Implants, 31(6), 1444–1449. 10.11607/jomi.5526
    1. Hung, K. F. , Wang, F. , Wang, H. W. , Zhou, W. J. , Huang, W. , & Wu, Y. Q. (2017). Accuracy of a real‐time surgical navigation system for the placement of quad zygomatic implants in the severe atrophic maxilla: A pilot clinical study. Clinical Implant Dentistry and Related Research, 19(3), 458–465. 10.1111/cid.12475
    1. Kaewsiri, D. , Panmekiate, S. , Subbalekha, K. , Mattheos, N. , & Pimkhaokham, A. (2019). The accuracy of static vs. dynamic computer‐assisted implant surgery in single tooth space: A randomized controlled trial. Clinical Oral Implants Research, 30(6), 505–514. 10.1111/clr.13435
    1. Khadem, R. , Yeh, C. C. , Sadeghi‐Tehrani, M. , Bax, M. R. , Johnson, J. A. , Welch, J. N. , Wilkinson, E. P. , & Shahidi, R. (2000). Comparative tracking error analysis of five different optical tracking systems. Computer Aided Surgery, 5(2), 98–107. 10.1002/1097-0150(2000)5:2<98:Aid-igs4>;2-h
    1. Krauthammer, M. , Shuster, A. , Mezad‐Koursh, D. , Shlomi, B. , Stolovitch, C. , & Leibovitch, I. (2017). Extraocular muscle damage from dental implant penetration to the orbit. American Journal of Ophthalmology Case Reports, 5, 94–96. 10.1016/j.ajoc.2016.11.008
    1. Kreissl, M. E. , Heydecke, G. , Metzger, M. C. , & Schoen, R. (2007). Zygoma implant‐supported prosthetic rehabilitation after partial maxillectomy using surgical navigation: A clinical report. The Journal of Prosthetic Dentistry, 97(3), 121–128. 10.1016/j.prosdent.2007.01.009
    1. Lopes, A. , de Araújo Nobre, M. , & Santos, D. (2020). The workflow of a new dynamic navigation system for the insertion of dental implants in the rehabilitation of edentulous jaws: Report of two cases. Journal of clinical medicine, 9(2), 421. 10.3390/jcm9020421
    1. Mediavilla Guzmán, A. , Riad Deglow, E. , Zubizarreta‐Macho, Á. , Agustín‐Panadero, R. , & Hernández Montero, S. (2019). Accuracy of computer‐aided dynamic navigation compared to computer‐aided static navigation for dental implant placement: An in vitro study. Journal of Clinical Medicine, 8(12), 2123. 10.3390/jcm8122123
    1. Metzger, M. C. , Rafii, A. , Holhweg‐Majert, B. , Pham, A. M. , & Strong, B. (2007). Comparison of 4 registration strategies for computer‐aided maxillofacial surgery. Otolaryngology and Head and Neck Surgery, 137(1), 93–99. 10.1016/j.otohns.2007.02.015
    1. Mohagheghi, S. , Ahmadian, A. , & Yaghoobee, S. (2014). Accuracy assessment of a marker‐free method for registration of CT and stereo images applied in image‐guided implantology: A phantom study. Journal of cranio‐maxillo‐facial Surgery, 42(8), 1977–1984. 10.1016/j.jcms.2014.09.002
    1. Panchal, N. , Mahmood, L. , Retana, A. , & Emery, R. 3rd (2019). Dynamic navigation for dental implant surgery. Oral and Maxillofacial Surgery Clinics of North America, 31(4), 539–547. 10.1016/j.coms.2019.08.001
    1. Pellegrino, G. , Tarsitano, A. , Basile, F. , Pizzigallo, A. , & Marchetti, C. (2015). Computer‐aided rehabilitation of maxillary oncological defects using zygomatic implants: A defect‐based classification. Journal of Oral and Maxillofacial Surgery, 73(12), 2446.e1–2446.e11. 10.1016/j.joms.2015.08.020
    1. Ramezanzade, S. , Keyhan, S. O. , Tuminelli, F. J. , Fallahi, H. R. , Yousefi, P. , & Lopez‐Lopez, J. (2021). Dynamic‐assisted navigational system in zygomatic implant surgery: A qualitative and quantitative systematic review of current clinical and Cadaver studies. Journal of Oral and Maxillofacial Surgery, 79(4), 799–812. 10.1016/j.joms.2020.10.009
    1. Reychler, H. , Reychler, H. , Olszewski, R. , & Olszewski, R. (2010). Intracerebral penetration of a zygomatic dental implant and consequent therapeutic dilemmas: Case report. International Journal of Oral and Maxillofacial Implants, 25(2), 416–418.
    1. Ruppin, J. , Popovic, A. , Strauss, M. , Spüntrup, E. , Steiner, A. , & Stoll, C. (2008). Evaluation of the accuracy of three different computer‐aided surgery systems in dental implantology: Optical tracking vs. stereolithographic splint systems. Clinical Oral Implants Research, 19(7), 709–716. 10.1111/j.1600-0501.2007.01430.x
    1. Schielzeth, H. , Dingemanse, N. J. , Nakagawa, S. , Westneat, D. F. , Allegue, H. , Teplitsky, C. , Réale, D. , Dochtermann, N. A. , Garamszegi, L. Z. , & Araya‐Ajoy, Y. G. (2020). Robustness of linear mixed‐effects models to violations of distributional assumptions. Methods in Ecology and Evolution, 11(9), 1141–1152. 10.1111/2041-210X.13434
    1. Schiroli, G. , Angiero, F. , Zangerl, A. , Benedicenti, S. , Ferrante, F. , & Widmann, G. (2016). Accuracy of a flapless protocol for computer‐guided zygomatic implant placement in human cadavers: Expectations and reality. The International Journal of Medical Robotics and Computer Assisted Surgery, 12(1), 102–108. 10.1002/rcs.1646
    1. Schramm, A. , Gellrich, N. C. , Schimming, R. , & Schmelzeisen, R. (2000). Computer‐assisted insertion of zygomatic implants (Branemark system) after extensive tumor surgery. Mund‐, Kiefer‐ und Gesichtschirurgie: MKG, 4(5), 292–295. 10.1007/s100060000211
    1. Shrestha, L. , Alsadoon, A. , Prasad, P. W. C. , AlSallami, N. , & Haddad, S. (2021). Augmented reality for dental implant surgery: enhanced ICP. Journal of Supercomputing, 77(2), 1152–1176. 10.1007/s11227-020-03322-x
    1. Sun, T. M. , Lan, T. H. , Pan, C. Y. , & Lee, H. E. (2018). Dental implant navigation system guide the surgery future. The Kaohsiung Journal of Medical Sciences, 34(1), 56–64. 10.1016/j.kjms.2017.08.011
    1. Takamaru, N. , Nagai, H. , Ohe, G. , Tamatani, T. , Sumida, K. , Kitamura, S. , & Miyamoto, Y. (2016). Measurement of the zygomatic bone and pilot hole technique for safer insertion of zygomaticus implants. International Journal of Oral and Maxillofacial Surgery, 45(1), 104–109. 10.1016/j.ijom.2015.07.015
    1. Tao, B. , Shen, Y. , Sun, Y. , Huang, W. , Wang, F. , & Wu, Y. (2020). Comparative accuracy of cone‐beam CT and conventional multislice computed tomography for real‐time navigation in zygomatic implant surgery. Clinical Implant Dentistry and Related Research, 22(6), 747–755. 10.1111/cid.12958
    1. Tao, B. X. , Wang, F. , Shen, Y. H. , Fan, S. Q. , Huang, W. , Wang, Y. P. , & Wu, Y. Q. (2020). Accuracy and clinical outcome of a real‐time surgical navigation system for the placement of quad zygomatic implants. Zhonghua Kou Qiang Yi Xue Za Zhi, 55(11), 845–850. 10.3760/cma.j.cn112144-20200614-00343
    1. Topilow, N. , Chen, Y. , Capo, H. , & Tse, D. T. (2020). Extraocular muscle injury in zygomatic implant placement: A case report, review of the literature, and simple maneuver for avoidance. Journal of Oral and Maxillofacial Surgery, 78(8), 1328–1333. 10.1016/j.joms.2020.04.027
    1. Tran, A. Q. , Reyes‐Capó, D. P. , Patel, N. A. , Pasol, J. , Capó, H. , & Wester, S. T. (2019). Zygomatic dental implant induced orbital fracture and inferior oblique trauma. Orbit, 38(3), 236–239. 10.1080/01676830.2018.1444063
    1. Vosselman, N. , Glas, H. H. , de Visscher, S. , Kraeima, J. , Merema, B. J. , Reintsema, H. , Raghoebar, G. M. , & Witjes, M. (2021). Immediate implant‐retained prosthetic obturation after maxillectomy based on zygomatic implant placement by 3D‐guided surgery: A cadaver study. International Journal of Implant Dentistry, 7(1), 54. 10.1186/s40729-021-00335-w
    1. Vrielinck, L. , Politis, C. , Schepers, S. , Pauwels, M. , & Naert, I. (2003). Image‐based planning and clinical validation of zygoma and pterygoid implant placement in patients with severe bone atrophy using customized drill guides. Preliminary results from a prospective clinical follow‐up study. International Journal of Oral and Maxillofacial Surgery, 32(1), 7–14. 10.1054/ijom.2002.0337
    1. Wang, F. , Tao, B. , Shen, Y. , Li, C. , Huang, W. , Sun, Y. , & Wu, Y. (2021). A single‐arm clinical trial investigating the feasibility of the zygomatic implant quad approach for Cawood and Howell Class 4 edentulous maxilla: An option for immediate loading. Clinical Implant Dentistry and Related Research, 23(5), 800–808. 10.1111/cid.13046
    1. Watzinger, F. , Birkfellner, W. , Wanschitz, F. , Ziya, F. , Wagner, A. , Kremser, J. , Kainberger, F. , Huber, K. , Bergmann, H. , & Ewers, R. (2001). Placement of endosteal implants in the zygoma after maxillectomy: A Cadaver study using surgical navigation. Plastic and Reconstructive Surgery, 107(3), 659–667. 10.1097/00006534-200103000-00003
    1. Weyh, A. M. , Nocella, R. , & Salman, S. O. (2020). Commentary – step‐by‐step: Zygomatic implants. Journal of Oral and Maxillofacial Surgery, 78(4), e6–e9. 10.1016/j.joms.2020.01.024
    1. Widmann, G. M. D. , Stoffner, R. D. , & Bale, R. M. D. (2009). Errors and error management in image‐guided craniomaxillofacial surgery. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, 107(5), 701–715. 10.1016/j.tripleo.2009.02.011
    1. Wu, Y. , Wang, F. , Huang, W. , & Fan, S. (2019). Real‐time navigation in zygomatic implant placement: Workflow. Oral and Maxillofacial Surgery Clinics of North America, 31(3), 357–367. 10.1016/j.coms.2019.03.001
    1. Wu, Y. Q. , Wang, F. , Shen, Y. H. , & Lin, M. (2015). Eye‐Lid approach for four zigomatic implant placement in the severely reabsorbed maxillae: Technical note. International Journal of Clinical and Experimental Medicine, 8(3), 4670–4675.
    1. Xiaojun, C. , Ming, Y. , Yanping, L. , Yiqun, W. , & Chengtao, W. (2009). Image guided oral implantology and its application in the placement of zygoma implants. Computer Methods and Programs in Biomedicine, 93(2), 162–173. 10.1016/j.cmpb.2008.09.002
    1. Xing Gao, B. , Iglesias‐Velázquez, O. , G.F. Tresguerres, F. , Rodríguez González Cortes, A. , F. Tresguerres, I. , Ortega Aranegui, R. , López‐Pintor, R. M. , López‐Quiles, J. , & Torres, J. (2021). Accuracy of digital planning in zygomatic implants. International Journal of Implant Dentistry, 7(1), 65. 10.1186/s40729-021-00350-x
    1. Yimarj, P. , Subbalekha, K. , Dhanesuan, K. , Siriwatana, K. , Mattheos, N. , & Pimkhaokham, A. (2020). Comparison of the accuracy of implant position for two‐implants supported fixed dental prosthesis using static and dynamic computer‐assisted implant surgery: A randomized controlled clinical trial. Clinical Implant Dentistry and Related Research, 22(6), 672–678. 10.1111/cid.12949
    1. Zhao, K. , Lian, M. , Fan, S. , Huang, W. , Wang, F. , & Wu, Y. (2018). Long‐term Schneiderian membrane thickness changes following zygomatic implant placement: A retrospective radiographic analysis using cone beam computed tomography. Clinical Oral Implants Research, 29(7), 679–687. 10.1111/clr.13259
    1. Zhou, W. , Fan, S. , Wang, F. , Huang, W. , Jamjoom, F. Z. , & Wu, Y. (2020). A novel extraoral registration method for a dynamic navigation system guiding zygomatic implant placement in patients with maxillectomy defects. International Journal of Oral and Maxillofacial Surgery, 50(1), 116–120. 10.1016/j.ijom.2020.03.018
    1. Zubizarreta‐Macho, Á. , Muñoz, A. P. , Deglow, E. R. , Agustín‐Panadero, R. , & Álvarez, J. M. (2020). Accuracy of computer‐aided dynamic navigation compared to computer‐aided static procedure for endodontic access cavities: An in vitro study. Journal of Clinical Medicine, 9(1), 129. 10.3390/jcm9010129

Source: PubMed

3
Subskrybuj