Evaluating the case for trivalent or quadrivalent influenza vaccines

David Baxter, David Baxter

Abstract

Influenza viruses circulate widely throughout the world and it is estimated that they affect between 5 and 15% of the population annually. Since 1977, four viruses co-circulate - two A Viruses (H1N1 and H3N2) and two B viruses (B Yamagata and B Victoria). Type A viruses generally cause up to two thirds of annual infections, although single country studies have shown that B infections may be the predominant virus in the one year in four. Influenza vaccines have traditionally included the hamagglutinins and neuraminidases from the two circulating A viruses and either B Yamagata or B Victoria - however, selecting the B strain for inclusion in these trivalent vaccines has variable success. The alternative approach is to include both B strains in a quadrivalent vaccine. Immunological studies of such vaccines show non-inferiority with a trivalent vaccine comparator, and significant superiority to the additional B strain. Quadrivalent vaccines are more expensive than trivalent preparations but theoretical evidence would suggest they are likely to be more effective and therefore play a much greater role in national immunisation programmes in the future.

Keywords: Trivalent Quadrivalent Influenza vaccine.

References

    1. Plotkin SA, Mortimer EA. Vaccines: W B Saunders Company; 1988
    1. Wilschut JM, McElhaney JE, Palachie JE, AM. Influenza. Second ed: Mosby, Elsevier; 2006
    1. Viral Infections of Humans - Epidemiology and Control. Third ed. New York and London: Plenum Medical; 1991
    1. Bouvier NM, Palese P. The biology of influenza viruses. Vaccine 2008. 9/12/; 26, Supplement 4(0): D49-53; PMID:19230160;
    1. Peltola V, Ziegler T, Ruuskanen O. Influenza A and B virus infections in children. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2003; 36(3):299-305; PMID:12539071
    1. Newland JG, Romero JR, Varman M, Drake C, Holst A, Safranek T, Subbarao K. Encephalitis associated with influenza B virus infection in 2 children and a review of the literature. Clin Infect Dis 2003; 36(7):e87-95; PMID:12652406;
    1. Oropesa S, Lago P, Goyenechea A, Hernández B, Bello M, Palomera RL Morier Z. Gonzalez L Perez. Rapid death in children by type B influenza virus associated with neurological complications. Int Congress Series 2004; 1263(0):350-4;
    1. Ambrose CS, Levin MJ. The rationale for quadrivalent influenza vaccines. Human Vaccines & Immunotherapeutics. 2012; 8(1):81-8; PMID:22252006
    1. Katagiri S, Ohizumi A, Homma M. An outbreak of type C influenza in a children's home. J Infect Dis 1983; 148(1):51-6; PMID:6309999;
    1. GAR Global Alert and Response - WHO Global Influenza Surveillance Network [cited 2015 05/05/2015]. Available from:
    1. FluNet Influenza: WHO; 2015 [cited 2015 05/05/2015]. Available from:
    1. GISN Global Influenza Surveillance Network - Influenza Update 2014 [cited 2014 01/05/2015]. Available from:
    1. WHO Influenza (Seasonal) 2014 [cited 2015 15/05/2015]. Available from:
    1. Dawood FS, Iuliano AD, Reed C, Meltzer MI, Shay DK, Cheng PY, Bandaranayake D, Breiman RF, Brooks WA, Buchy P, et al.. Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study. Lancet Infect Dis 2012; 12(9):687-95; PMID:22738893;
    1. Waffarn EE, Baumgarth N. Protective B Cell Responses to Flu—No Fluke! J Immunol 2011; 186(7):3823-9; PMID:21422252;
    1. Rota PA, Wallis TR, Harmon MW, Rota JS, Kendal AP, Nerome K. Cocirculation of two distinct evolutionary lineages of influenza type B virus since 1983. Virology 1990; 175(1):59-68; PMID:2309452;
    1. Dijkstra F, Donker GA, Wilbrink B, Van Gageldonk-Lafeber AB, Van Der Sande MA. Long time trends in influenza-like illness and associated determinants in The Netherlands. Epidemiol Infect 2009; 137(4):473-9; PMID:18789176;
    1. Yang ML, Chen YH, Wang SW, Huang YJ, Leu CH, Yeh NC, Chu CY, Lin CC, Shieh GS, Chen YL, et al.. Galectin-1 binds to influenza virus and ameliorates influenza virus pathogenesis. J Virol 2011; 85(19):10010-20; PMID:21795357;
    1. Stencel-Baerenwald JE, Reiss K, Reiter DM, Stehle T, Dermody TS. The sweet spot: defining virus-sialic acid interactions. Nat Rev Microbiol 2014; 12(11):739-49; PMID:25263223;
    1. Julkunen I, Sareneva T, Pirhonen J, Ronni T, Melén K, Matikainen S. Molecular pathogenesis of influenza A virus infection and virus-induced regulation of cytokine gene expression. Cytokine Growth Factor Rev 2001; 12(2-3):171-80; PMID:11325600;
    1. Mitchell DM, McMichael AJ, Lamb JR. The immunology of influenza. Br Med Bull 1985; 41(1):80-5; PMID:3882191
    1. Iwasaki A, Pillai PS. Innate immunity to influenza virus infection. Nat Rev Immunol 2014; 14(5):315-28; PMID:24762827;
    1. Cate TR, Rayford Y, Niño D, Winokur P, Brady R, Belshe R, Chen W, Atmar RL, Couch RB. A high dosage influenza vaccine induced significantly more neuraminidase antibody than standard vaccine among elderly subjects. Vaccine 2010; 28(9):2076-9; PMID:20044052;
    1. Couch RB, Kasel JA, Gerin JL, Schulman JL, Kilbourne ED. Induction of partial immunity to influenza by a neuraminidase-specific vaccine. J Infect Dis 1974; 129(4):411-20; PMID:4593871;
    1. Glaxo SmithKline. Fluarix tetra - summary of product characteristics Electronic Medicines Compendium2015 [updated 24/03/2015]. Available from:
    1. Davies JR, Grilli EA. Natural or vaccine-induced antibody as a predictor of immunity in the face of natural challenge with influenza viruses. Epidemiol Infect 1989; 102(2):325-33; PMID:2703026;
    1. Künzel W, Glathe H, Engelmann H, Van Hoecke C. Kinetics of humoral antibody response to trivalent inactivated split influenza vaccine in subjects previously vaccinated or vaccinated for the first time. Vaccine 1996; 14(12):1108-10; PMID:8911005;
    1. Breteler JK, Tam JS, Jit M, Ket JC, De Boer MR. Efficacy and effectiveness of seasonal and pandemic A (H1N1) 2009 influenza vaccines in low and middle income countries: a systematic review and meta-analysis. Vaccine 2013; 31(45):5168-77; PMID:24012574;
    1. Osterholm MT, Kelley NS, Sommer A, Belongia EA. Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis. Lancet Infect Dis 2012; 12(1):36-44; PMID:22032844;
    1. Jefferson T, Rivetti D, Rivetti A, Rudin M, Di Pietrantonj C, Demicheli V. Efficacy and effectiveness of influenza vaccines in elderly people: a systematic review. Lancet 2005; 366(9492):1165-74; PMID:16198765;
    1. Barker WH, Mullooly JP. Influenza vaccination of elderly persons. Reduction in pneumonia and influenza hospitalizations and deaths. JAMA 1980; 244(22):2547-9; PMID:7431593;
    1. Vu T, Farish S, Jenkins M, Kelly H. A meta-analysis of effectiveness of influenza vaccine in persons aged 65 years and over living in the community. Vaccine 2002; 20(13-14):1831-6; PMID:11906772;
    1. Parish HJ. A History of Immunization. Edinburgh and London: E and S Livingstone Ltd; 1965
    1. Sigel MM, Shaffer FW, Kirber MW, Light AB, Henle W. Influenza A in a vaccinated population. JAMA 1948; 136(7):437-41; PMID:22997639;
    1. Salk JE. An interpretation of the significance of influenza virus variation for the development of an effective vaccine. Bull N Y Acad Med 1952; 28(11):748-65; PMID:12987937
    1. Domachowske JB, Pankow-Culot H, Bautista M, Feng Y, Claeys C, Peeters M, Innis BL, Jain V. A randomized trial of candidate inactivated quadrivalent influenza vaccine versus trivalent influenza vaccines in children aged 3-17 years. J Infect Dis 2013; 207(12):1878-87; PMID:23470848;
    1. Greenberg DP, Robertson CA, Noss MJ, Blatter MM, Biedenbender R, Decker MD. Safety and immunogenicity of a quadrivalent inactivated influenza vaccine compared to licensed trivalent inactivated influenza vaccines in adults. Vaccine 2013; 31(5):770-6; PMID:23228813;
    1. Tinoco JC, Pavia-Ruz N, Cruz-Valdez A, Aranza Doniz C, Chandrasekaran V, Dewé W, Liu A, Innis BL, Jain VK. Immunogenicity, reactogenicity, and safety of inactivated quadrivalent influenza vaccine candidate versus inactivated trivalent influenza vaccine in healthy adults aged ≥18 years: a phase III, randomized trial. Vaccine 2014; 32(13):1480-7; PMID:24486352;
    1. Beran J, Peeters M, Dewé W, Raupachová J, Hobzová L, Devaster JM. Immunogenicity and safety of quadrivalent versus trivalent inactivated influenza vaccine: a randomized, controlled trial in adults. BMC Infect Dis 2013; 13:224; PMID:23688546;
    1. Kieninger D, Sheldon E, Lin WY, Yu CJ, Bayas JM, Gabor JJ, Esen M, Fernandez Roure JL, Narejos Perez S, Alvarez Sanchez C, et al.. Immunogenicity, reactogenicity and safety of an inactivated quadrivalent influenza vaccine candidate versus inactivated trivalent influenza vaccine: a phase III, randomized trial in adults aged ≥18 years. BMC Infect Dis 2013; 13:343; PMID:23883186;
    1. Block SL, Yi T, Sheldon E, Dubovsky F, Falloon J. A randomized, double-blind noninferiority study of quadrivalent live attenuated influenza vaccine in adults. Vaccine 2011; 29(50):9391-7; PMID:21983154;
    1. Lee BY, Bartsch SM, Willig AM. The economic value of a quadrivalent versus trivalent influenza vaccine. Vaccine 2012; 30(52):7443-6; PMID:23084849;
    1. Lee BY, Bartsch SM, Willig AM. Corrigendum to “The economic value of a quadrivalent versus trivalent influenza vaccine” [Vaccine 2012;30:7443-6]. Vaccine 2013; 31(20):2477-9;
    1. Van Bellinghen LA, Meier G, Van Vlaenderen I. The potential cost-effectiveness of quadrivalent versus trivalent influenza vaccine in elderly people and clinical risk groups in the UK: a lifetime multi-cohort model. PLoS One 2014; 9(6):e98437; PMID:24905235;

Source: PubMed

3
Subskrybuj