Active Gains in brain Using Exercise During Aging (AGUEDA): protocol for a randomized controlled trial

Patricio Solis-Urra, Cristina Molina-Hidalgo, Yolanda García-Rivero, Claudia Costa-Rodriguez, Jose Mora-Gonzalez, Beatriz Fernandez-Gamez, Marcos Olvera-Rojas, Andrea Coca-Pulido, Angel Toval, Darío Bellón, Alessandro Sclafani, Isabel Martín-Fuentes, Eva María Triviño-Ibañez, Carlos de Teresa, Haiqing Huang, George Grove, Charles H Hillman, Arthur F Kramer, Andrés Catena, Francisco B Ortega, Manuel Gómez-Río, Kirk I Erickson, Irene Esteban-Cornejo, Patricio Solis-Urra, Cristina Molina-Hidalgo, Yolanda García-Rivero, Claudia Costa-Rodriguez, Jose Mora-Gonzalez, Beatriz Fernandez-Gamez, Marcos Olvera-Rojas, Andrea Coca-Pulido, Angel Toval, Darío Bellón, Alessandro Sclafani, Isabel Martín-Fuentes, Eva María Triviño-Ibañez, Carlos de Teresa, Haiqing Huang, George Grove, Charles H Hillman, Arthur F Kramer, Andrés Catena, Francisco B Ortega, Manuel Gómez-Río, Kirk I Erickson, Irene Esteban-Cornejo

Abstract

Alzheimer's disease is currently the leading cause of dementia and one of the most expensive, lethal and severe diseases worldwide. Age-related decline in executive function is widespread and plays a key role in subsequent dementia risk. Physical exercise has been proposed as one of the leading non-pharmaceutical approaches to improve executive function and ameliorate cognitive decline. This single-site, two-arm, single-blinded, randomized controlled trial (RCT) will include 90 cognitively normal older adults, aged 65-80 years old. Participants will be randomized to a 24-week resistance exercise program (3 sessions/week, 60 min/session, n = 45), or a wait-list control group (n = 45) which will be asked to maintain their usual lifestyle. All study outcomes will be assessed at baseline and at 24-weeks after the exercise program, with a subset of selected outcomes assessed at 12-weeks. The primary outcome will be indicated by the change in an executive function composite score assessed with a comprehensive neuropsychological battery and the National Institutes of Health Toolbox Cognition Battery. Secondary outcomes will include changes in brain structure and function and amyloid deposition, other cognitive outcomes, and changes in molecular biomarkers assessed in blood, saliva, and fecal samples, physical function, muscular strength, body composition, mental health, and psychosocial parameters. We expect that the resistance exercise program will have positive effects on executive function and related brain structure and function, and will help to understand the molecular, structural, functional, and psychosocial mechanisms involved.

Keywords: Alzheimer’s disease; amyloid beta; brain; executive function; exercise.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2023 Solis-Urra, Molina-Hidalgo, García-Rivero, Costa-Rodriguez, Mora-Gonzalez, Fernandez-Gamez, Olvera-Rojas, Coca-Pulido, Toval, Bellón, Sclafani, Martín-Fuentes, Triviño-Ibañez, de Teresa, Huang, Grove, Hillman, Kramer, Catena, Ortega, Gómez-Río, Erickson and Esteban-Cornejo.

Figures

FIGURE 1
FIGURE 1
Visual representation of the participant flow in the AGUEDA trial. PA, physical activity; STICS-m, Modified Spanish Telephone Interview of Cognitive Status; MoCA, Montreal Cognitive Assessment; GDS, Geriatric Depression Scale; DXA, dual energy X-ray absorptiometry; MMSE, Mini-Mental State Examination; MRI, Magnetic Resonance Imaging; PET, positron emission tomography. *Wait-list control group is asked to maintain its lifestyles during the 24-week and start the exercise program after post-intervention assessment. #Post-intervention assessment includes the same outcomes that baseline assessment.

References

    1. Addison O., Kundi R., Ryan A. S., Goldberg A. P., Patel R., Lal B. K., et al. (2018). Clinical relevance of the modified physical performance test versus the short physical performance battery for detecting mobility impairments in older men with peripheral arterial disease. Disabil. Rehabil. 40 3081–3085. 10.1080/09638288.2017.1367966
    1. Akbar N., Sandroff B. M., Wylie G. R., Strober L. B., Smith A., Goverover Y., et al. (2020). Progressive resistance exercise training and changes in resting-state functional connectivity of the caudate in persons with multiple sclerosis and severe fatigue: A proof-of-concept study. Neuropsychol. Rehabil. 30 54–66. 10.1080/09602011.2018.1449758
    1. Alonso J. (2003). Versión española de SF-36v2TM Health Survey© 1996, 2000 adaptada por J. Alonso y cols 2003. Health Surv. 20:18.
    1. Artero E. G., Espana-Romero V., Castro-Pinero J., Ruiz J., Jimenez-Pavon D., Aparicio V., et al. (2012). Criterion-related validity of field-based muscular fitness tests in youth. J. Sports Med. Phys. Fitness 52 263–272.
    1. Baek S. H., Hong G. R., Min D. K., Kim E. H., Park S. K. (2021). Effects of functional fitness enhancement through taekwondo training on physical characteristics and risk factors of dementia in elderly women with depression. Int. J. Environ. Res. Public Health 18:7961. 10.3390/ijerph18157961
    1. Barha C. K., Davis J. C., Falck R. S., Nagamatsu L. S., Liu-Ambrose T. (2017). Sex differences in exercise efficacy to improve cognition: A systematic review and meta-analysis of randomized controlled trials in older humans. Front. Neuroendocrinol. 46:71–85. 10.1016/j.yfrne.2017.04.002
    1. Barthel H., Gertz H. J., Dresel S., Peters O., Bartenstein P., Buerger K., et al. (2011). Cerebral amyloid-beta PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol. 10 424–435. 10.1016/S1474-4422(11)70077-1
    1. Bateman R. J., Xiong C., Benzinger T. L., Fagan A. M., Goate A., Fox N. C., et al. (2012). Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med. 367 795–804. 10.1056/NEJMoa1202753
    1. Best J. R., Chiu B. K., Liang Hsu C., Nagamatsu L. S., Liu-Ambrose T. (2015). Long-Term effects of resistance exercise training on cognition and brain volume in older women: results from a randomized controlled trial. J. Int. Neuropsychol. Soc. 21 745–756. 10.1017/S1355617715000673
    1. Blesa R., Pujol M., Aguilar M., Santacruz P., Bertran-Serra I., Hernández G., et al. (2001). Clinical validity of the ‘mini-mental state’for Spanish speaking communities. Neuropsychologia 39 1150–1157.
    1. Bliss E. S., Wong R. H., Howe P. R., Mills D. E. (2021). Benefits of exercise training on cerebrovascular and cognitive function in ageing. J. Cereb. Blood Flow Metab. 41 447–470. 10.1177/0271678X20957807
    1. Bolandzadeh N., Tam R., Handy T. C., Nagamatsu L. S., Hsu C. L., Davis J. C., et al. (2015). Resistance training and white matter lesion progression in older women: Exploratory analysis of a 12-month randomized controlled trial. J. Am. Geriatr. Soc. 63 2052–2060. 10.1111/jgs.13644
    1. Boylan S., Welch A., Pikhart H., Malyutina S., Pajak A., Kubinova R., et al. (2009). Dietary habits in three Central and Eastern European countries: The HAPIEE study. BMC Public Health 9:439. 10.1186/1471-2458-9-439
    1. Broadhouse K. M., Singh M. F., Suo C., Gates N., Wen W., Brodaty H., et al. (2020). Hippocampal plasticity underpins long-term cognitive gains from resistance exercise in MCI. Neuroimage Clin. 25:102182. 10.1016/j.nicl.2020.102182
    1. Brown A. K., Liu-Ambrose T., Tate R., Lord S. R. (2009). The effect of group-based exercise on cognitive performance and mood in seniors residing in intermediate care and self-care retirement facilities: A randomised controlled trial. Br. J. Sports Med. 43 608–614. 10.1136/bjsm.2008.049882
    1. Bull F. C., Al-Ansari S. S., Biddle S., Borodulin K., Buman M. P., Cardon G., et al. (2020). World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 54 1451–1462. 10.1136/bjsports-2020-102955
    1. Buysse D. J., Reynolds Iii C. F., Monk T. H., Berman S. R., Kupfer D. J. (1989). The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 28 193–213.
    1. Caprara G. V., Barbaranelli C., Borgogni L., Perugini M. (1993). The “Big Five Questionnaire”: A new questionnaire to assess the five factor model. Pers. Individ. Differ. 15 281–288.
    1. Chan A. W., Tetzlaff J. M., Altman D. G., Laupacis A., Gotzsche P. C., Krleza-Jeric K., et al. (2013). SPIRIT 2013 statement: Defining standard protocol items for clinical trials. Ann. Intern. Med. 158 200–207. 10.7326/0003-4819-158-3-201302050-00583
    1. Chan W. C., Lee A. T. C., Lam L. C. W. (2021). Exercise for the prevention and treatment of neurocognitive disorders: New evidence and clinical recommendations. Curr. Opin. Psychiatry 34 136–141. 10.1097/YCO.0000000000000678
    1. Chang Y. K., Pan C. Y., Chen F. T., Tsai C. L., Huang C. C. (2012). Effect of resistance-exercise training on cognitive function in healthy older adults: a review. J. Aging Phys. Act. 20 497–517. 10.1123/japa.20.4.497
    1. Chen F. T., Etnier J. L., Chan K. H., Chiu P. K., Hung T. M., Chang Y. K. (2020). Effects of exercise training interventions on executive function in older adults: A systematic review and meta-analysis. Sports Med. 50 1451–1467. 10.1007/s40279-020-01292-x
    1. Coetsee C., Terblanche E. (2017). The effect of three different exercise training modalities on cognitive and physical function in a healthy older population. Eur. Rev. Aging Phys. Act. 14:13. 10.1186/s11556-017-0183-5
    1. Colado J. C., Garcia-Masso X., Triplett N. T., Calatayud J., Flandez J., Behm D., et al. (2014). Construct and concurrent validation of a new resistance intensity scale for exercise with thera-band® elastic bands. J. Sports Sci. Med. 13:758.
    1. Colcombe S., Kramer A. F. (2003). Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol. Sci. 14 125–130. 10.1111/1467-9280.t01-1-01430
    1. Cunha P. M., Werneck A. O., Nunes J. P., Stubbs B., Schuch F. B., Kunevaliki G., et al. (2021). Resistance training reduces depressive and anxiety symptoms in older women: A pilot study. Aging Ment. Health 26 1136–1142. 10.1080/13607863.2021.1922603
    1. De Sousa R. A. L., Rocha-Dias I., de Oliveira L. R. S., Improta-Caria A. C., Monteiro-Junior R. S., Cassilhas R. C. (2021). Molecular mechanisms of physical exercise on depression in the elderly: a systematic review. Mol. Biol. Rep. 48 3853–3862. 10.1007/s11033-021-06330-z
    1. Diamond A. (2013). Executive functions. Annu. Rev. Psychol. 64 135–168. 10.1146/annurev-psych-113011-143750
    1. Erickson K. I., Donofry S. D., Sewell K. R., Brown B. M., Stillman C. M. (2022). Cognitive aging and the promise of physical activity. Annu. Rev. Clin. Psychol. 18 417–442. 10.1146/annurev-clinpsy-072720-014213
    1. Erickson K. I., Grove G. A., Burns J. M., Hillman C. H., Kramer A. F., McAuley E., et al. (2019). Investigating Gains in Neurocognition in an Intervention Trial of Exercise (IGNITE): Protocol. Contemp. Clin. Trials 85:105832. 10.1016/j.cct.2019.105832
    1. Erickson K. I., Voss M. W., Prakash R. S., Basak C., Szabo A., Chaddock L., et al. (2011). Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. U. S. A. 108 3017–3022. 10.1073/pnas.1015950108
    1. Esteban O., Birman D., Schaer M., Koyejo O. O., Poldrack R. A., Gorgolewski K. J. (2017). MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites. PLoS One 12:e0184661. 10.1371/journal.pone.0184661
    1. Fernández-San Martín M. I., Andrade C., Molina J., Muñoz P. E., Carretero B., Rodríguez M., et al. (2002). Validation of the Spanish version of the geriatric depression scale (GDS) in primary care. Int. J. Geriatr. Psychiatry 17 279–287.
    1. Feter N., Mielke G. I., Leite J. S., Brown W. J., Coombes J. S., Rombaldi A. J. (2021). Physical activity in later life and risk of dementia: Findings from a population-based cohort study. Exp. Gerontol. 143:111145. 10.1016/j.exger.2020.111145
    1. Fiuza-Luces C., Garatachea N., Berger N. A., Lucia A. (2013). Exercise is the real polypill. Physiology 28 330–358. 10.1152/physiol.00019.2013
    1. Freites-Martinez A., Santana N., Arias-Santiago S., Viera A. (2021). Using the Common Terminology Criteria for Adverse Events (CTCAE - Version 5.0) to evaluate the severity of adverse events of anticancer therapies. Actas Dermosifiliogr. 112 90–92. 10.1016/j.ad.2019.05.009
    1. Gallardo-Gomez D., Del Pozo-Cruz J., Noetel M., Alvarez-Barbosa F., Alfonso-Rosa R. M., Del Pozo Cruz B. (2022). Optimal dose and type of exercise to improve cognitive function in older adults: A systematic review and bayesian model-based network meta-analysis of RCTs. Ageing Res. Rev. 76:101591. 10.1016/j.arr.2022.101591
    1. Gibbons L. E., Carle A. C., Mackin R. S., Harvey D., Mukherjee S., Insel P., et al. (2012). A composite score for executive functioning, validated in Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants with baseline mild cognitive impairment. Brain Imaging Behav. 6 517–527. 10.1007/s11682-012-9176-1
    1. Gleeson M., Bishop N. C., Stensel D. J., Lindley M. R., Mastana S. S., Nimmo M. A. (2011). The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol. 11 607–615. 10.1038/nri3041
    1. Gomes-Osman J., Cabral D. F., Morris T. P., McInerney K., Cahalin L. P., Rundek T., et al. (2018). Exercise for cognitive brain health in aging: A systematic review for an evaluation of dose. Neurol. Clin. Pract. 8 257–265. 10.1212/CPJ.0000000000000460
    1. Gomez Bernal A., Becerro-de-Bengoa-Vallejo R., Losa-Iglesias M. E. (2016). Reliability of the OptoGait portable photoelectric cell system for the quantification of spatial-temporal parameters of gait in young adults. Gait Posture 50 196–200. 10.1016/j.gaitpost.2016.08.035
    1. Guha M. (2014). Diagnostic and statistical manual of mental disorders: DSM-5. Ref. Rev. 28.
    1. Guiney H., Machado L. (2013). Benefits of regular aerobic exercise for executive functioning in healthy populations. Psychon. Bull. Rev. 20 73–86. 10.3758/s13423-012-0345-4
    1. Guralnik J. M., Simonsick E. M., Ferrucci L., Glynn R. J., Berkman L. F., Blazer D. G., et al. (1994). A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 49 M85–M94. 10.1093/geronj/49.2.m85
    1. Hansford H. J., Wewege M. A., Cashin A. G., Hagstrom A. D., Clifford B. K., McAuley J. H., et al. (2022). If exercise is medicine, why don’t we know the dose? An overview of systematic reviews assessing reporting quality of exercise interventions in health and disease. Br. J. Sports Med. 56 692–700. 10.1136/bjsports-2021-104977
    1. Hardy C. J., Rejeski W. J. (1989). Not what, but how one feels: the measurement of affect during exercise. J. Sport Exerc. Psychol. 11 304–317.
    1. Harrington M. G., Chiang J., Pogoda J. M., Gomez M., Thomas K., Marion S. D., et al. (2013). Executive function changes before memory in preclinical Alzheimer’s pathology: a prospective, cross-sectional, case control study. PLoS One 8:e79378. 10.1371/journal.pone.0079378
    1. Harris P. A., Taylor R., Minor B. L., Elliott V., Fernandez M., O’Neal L., et al. (2019). The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 95:103208. 10.1016/j.jbi.2019.103208
    1. Hart P. D., Buck D. J. (2019). The effect of resistance training on health-related quality of life in older adults: Systematic review and meta-analysis. Health Promot. Perspect. 9 1–12. 10.15171/hpp.2019.01
    1. Herold F., Torpel A., Schega L., Muller N. G. (2019). Functional and/or structural brain changes in response to resistance exercises and resistance training lead to cognitive improvements - a systematic review. Eur. Rev. Aging Phys. Act. 16:10. 10.1186/s11556-019-0217-2
    1. Hindin S. B., Zelinski E. M. (2012). Extended practice and aerobic exercise interventions benefit untrained cognitive outcomes in older adults: a meta-analysis. J. Am. Geriatr. Soc. 60 136–141. 10.1111/j.1532-5415.2011.03761.x
    1. Ho J. K., Nation D. A. Alzheimer’s Disease Neuroimaging Initiative (2018). Neuropsychological profiles and trajectories in preclinical Alzheimer’s Disease. J. Int. Neuropsychol. Soc. 24 693–702. 10.1017/S135561771800022X
    1. Hong S. G., Kim J. H., Jun T. W. (2018). Effects of 12-Week resistance exercise on electroencephalogram patterns and cognitive function in the elderly with mild cognitive impairment: A randomized controlled trial. Clin. J. Sport Med. 28 500–508. 10.1097/JSM.0000000000000476
    1. Horowitz A. M., Fan X., Bieri G., Smith L. K., Sanchez-Diaz C. I., Schroer A. B., et al. (2020). Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain. Science 369 167–173. 10.1126/science.aaw2622
    1. Huang X., Zhao X., Cai Y., Wan Q. (2022). The cerebral changes induced by exercise interventions in people with mild cognitive impairment and Alzheimer’s disease: A systematic review. Arch. Gerontol. Geriatr. 98:104547. 10.1016/j.archger.2021.104547
    1. Huang X., Zhao X., Li B., Cai Y., Zhang S., Wan Q., et al. (2021). Comparative efficacy of various exercise interventions on cognitive function in patients with mild cognitive impairment or dementia: A systematic review and network meta-analysis. J. Sport Health Sci. 11 212–223. 10.1016/j.jshs.2021.05.003
    1. Hyang-Beum L., Tae-Sang K. (2021). Effects of a band training intervention on dementia factors of Alzheimer’s disease, cognitive functions, and functional physical fitness among elderly women with suspected mild dementia. 한국웰니스학회지 16 357–363.
    1. Izal M., Montorio I. (1993). Adaptation of the geriatric depression scale in Spain: A preliminary study. Clin. Gerontol. 13 83–91.
    1. Jansen W. J., Janssen O., Tijms B. M., Vos S. J. B., Ossenkoppele R., Visser P. J., et al. (2022). Prevalence estimates of amyloid abnormality across the Alzheimer disease clinical spectrum. JAMA Neurol. 79 228–243. 10.1001/jamaneurol.2021.5216
    1. Jiang Q., Lou K., Hou L., Lu Y., Sun L., Tan S. C., et al. (2020). The effect of resistance training on serum insulin-like growth factor 1(IGF-1): A systematic review and meta-analysis. Complement. Ther. Med. 50:102360. 10.1016/j.ctim.2020.102360
    1. Jorm A. F., Christensen H., Korten A. E., Henderson A. S., Jacomb P. A., Mackinnon A. (1997). Do cognitive complaints either predict future cognitive decline or reflect past cognitive decline? A longitudinal study of an elderly community sample. Psychol. Med. 27 91–98.
    1. Kaplan E., Goodglass H., Weintraub S. (2005). Test de vocabulario de Boston. Madrid: Médica Panamericana.
    1. Kelty T. J., Mao X., Kerr N. R., Childs T. E., Ruegsegger G. N., Booth F. W. (2022). Resistance-exercise training attenuates LPS-induced astrocyte remodeling and neuroinflammatory cytokine expression in female Wistar rats. J. Appl. Physiol. 132 317–326. 10.1152/japplphysiol.00571.2021
    1. Kim H. G., Jung H. S., Koo B. H., Cheon E. J. (2020). Neuropsychological predictors of cognitive deterioration in non-demented individuals. Cogn. Neuropsychiatry 25 99–112. 10.1080/13546805.2019.1700105
    1. Kim Y. S., Shin S. K., Hong S. B., Kim H. J. (2017). The effects of strength exercise on hippocampus volume and functional fitness of older women. Exp. Gerontol. 97 22–28. 10.1016/j.exger.2017.07.007
    1. Kirova A. M., Bays R. B., Lagalwar S. (2015). Working memory and executive function decline across normal aging, mild cognitive impairment, and Alzheimer’s disease. Biomed. Res. Int. 2015:748212. 10.1155/2015/748212
    1. Kovacevic A., Mavros Y., Heisz J. J., Fiatarone Singh M. A. (2018). The effect of resistance exercise on sleep: A systematic review of randomized controlled trials. Sleep Med. Rev. 39 52–68. 10.1016/j.smrv.2017.07.002
    1. Lamb S. E., Sheehan B., Atherton N., Nichols V., Collins H., Mistry D., et al. (2018). Dementia And Physical Activity (DAPA) trial of moderate to high intensity exercise training for people with dementia: randomised controlled trial. BMJ 361:k1675. 10.1136/bmj.k1675
    1. Landrigan J. F., Bell T., Crowe M., Clay O. J., Mirman D. (2020). Lifting cognition: a meta-analysis of effects of resistance exercise on cognition. Psychol. Res. 84 1167–1183. 10.1007/s00426-019-01145-x
    1. Langhammer B., Stanghelle J. K. (2015). The senior fitness test. J. Physiother. 61:163. 10.1016/j.jphys.2015.04.001
    1. Lautenschlager N. T., Cox K. L., Flicker L., Foster J. K., van Bockxmeer F. M., Xiao J., et al. (2008). Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA 300 1027–1037. 10.1001/jama.300.9.1027
    1. Lawton M. P., Brody E. M. (1969). Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 9 179–186.
    1. Lee H., Cashin A. G., Lamb S. E., Hopewell S., Vansteelandt S., VanderWeele T. J., et al. (2021). A guideline for reporting mediation analyses of randomized trials and observational studies: The AGReMA Statement. JAMA 326 1045–1056. 10.1001/jama.2021.14075
    1. Li Z., Li J., Yu G., Yu F., Li K., Szanton S. (2021). The effect of resistance training on sleep in Chinese older adults: A randomized controlled trial. Geriatr. Nurs. 42 289–294. 10.1016/j.gerinurse.2020.09.002
    1. Li Z., Peng X., Xiang W., Han J., Li K. (2018). The effect of resistance training on cognitive function in the older adults: A systematic review of randomized clinical trials. Aging Clin. Exp. Res. 30 1259–1273. 10.1007/s40520-018-0998-6
    1. Liang J., Wang H., Zeng Y., Qu Y., Liu Q., Zhao F., et al. (2021). Physical exercise promotes brain remodeling by regulating epigenetics, neuroplasticity and neurotrophins. Rev. Neurosci. 32 615–629. 10.1515/revneuro-2020-0099
    1. Liang Y. Y., Zhang L. D., Luo X., Wu L. L., Chen Z. W., Wei G. H., et al. (2022). All roads lead to Rome – a review of the potential mechanisms by which exerkines exhibit neuroprotective effects in Alzheimer’s disease. Neural Regen. Res. 17 1210–1227. 10.4103/1673-5374.325012
    1. Liu-Ambrose T., Donaldson M. G. (2009). Exercise and cognition in older adults: is there a role for resistance training programmes? Br. J. Sports Med. 43 25–27. 10.1136/bjsm.2008.055616
    1. Liu-Ambrose T., Donaldson M. G., Ahamed Y., Graf P., Cook W. L., Close J., et al. (2008). Otago home-based strength and balance retraining improves executive functioning in older fallers: a randomized controlled trial. J. Am. Geriatr. Soc. 56 1821–1830. 10.1111/j.1532-5415.2008.01931.x
    1. Liu-Ambrose T., Nagamatsu L. S., Graf P., Beattie B. L., Ashe M. C., Handy T. C. (2010). Resistance training and executive functions: A 12-month randomized controlled trial. Arch. Intern. Med. 170 170–178. 10.1001/archinternmed.2009.494
    1. Livingston G., Huntley J., Sommerlad A., Ames D., Ballard C., Banerjee S., et al. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396 413–446.
    1. Lu J., Fu W., Liu Y. (2016). Physical activity and cognitive function among older adults in China: A systematic review. J. Sport Health Sci. 5 287–296. 10.1016/j.jshs.2016.07.003
    1. Malmstrom T. K., Morley J. E. (2013). Frailty and cognition: linking two common syndromes in older persons. J. Nutr. Health Aging 17 723–725.
    1. Marinus N., Hansen D., Feys P., Meesen R., Timmermans A., Spildooren J. (2019). The Impact of different types of exercise training on peripheral blood brain-derived neurotrophic factor concentrations in older adults: A meta-analysis. Sports Med. 49 1529–1546. 10.1007/s40279-019-01148-z
    1. Mavros Y., Gates N., Wilson G. C., Jain N., Meiklejohn J., Brodaty H., et al. (2017). Mediation of cognitive function improvements by strength gains after resistance training in older adults with mild cognitive impairment: Outcomes of the study of mental and resistance training. J. Am. Geriatr. Soc. 65 550–559. 10.1111/jgs.14542
    1. Melzack R. (1987). The short-form McGill pain questionnaire. Pain 30 191–197.
    1. Mendez Colmenares A., Voss M. W., Fanning J., Salerno E. A., Gothe N. P., Thomas M. L., et al. (2021). White matter plasticity in healthy older adults: The effects of aerobic exercise. Neuroimage 239:118305. 10.1016/j.neuroimage.2021.118305
    1. Merellano-Navarro E., Collado-Mateo D., Garcia-Rubio J., Gusi N., Olivares P. R. (2017). Validity of the international fitness scale “IFIS” in older adults. Exp. Gerontol. 95 77–81. 10.1016/j.exger.2017.05.001
    1. Mez J., Cosentino S., Brickman A. M., Huey E. D., Manly J. J., Mayeux R. (2013). Faster cognitive and functional decline in Dysexecutive versus amnestic Alzheimer’s subgroups: a longitudinal analysis of the National Alzheimer’s Coordinating Center (NACC) database. PLoS One 8:e65246. 10.1371/journal.pone.0065246
    1. Migueles J. H., Rowlands A. V., Huber F., Sabia S., van Hees V. T. (2019). GGIR: a research community–driven open source R package for generating physical activity and sleep outcomes from multi-day raw accelerometer data. J. Measure. Phys. Behav. 2 188–196.
    1. Miller S. M., Taylor-Piliae R. E. (2014). Effects of Tai Chi on cognitive function in community-dwelling older adults: A review. Geriatr. Nurs. 35 9–19. 10.1016/j.gerinurse.2013.10.013
    1. Minoshima S., Drzezga A. E., Barthel H., Bohnen N., Djekidel M., Lewis D. H., et al. (2016). SNMMI Procedure Standard/EANM practice guideline for amyloid PET Imaging of the Brain 1.0. J. Nucl. Med. 57 1316–1322. 10.2967/jnumed.116.174615
    1. Miranda J. P., Jr., Valencia R. R. (1997). English and Spanish versions of a memory test: Word-length effects versus spoken-duration effects. Hisp. J. Behav. Sci. 19 171–181.
    1. Moraes H. S., Silveira H. S., Oliveira N. A., Matta Mello Portugal E., Araujo N. B., Vasques P. E., et al. (2020). Is strength training as effective as aerobic training for depression in older adults? A randomized controlled trial. Neuropsychobiology 79 141–149. 10.1159/000503750
    1. Munoz-Garcia M., Cervantes S., Razquin C., Guillen-Grima F., Toledo J. B., Martinez-Gonzalez M. A., et al. (2019). Validation study of a Spanish version of the modified Telephone Interview for Cognitive Status (STICS-m). Gac. Sanit. 33 415–420. 10.1016/j.gaceta.2018.05.004
    1. Northey J. M., Cherbuin N., Pumpa K. L., Smee D. J., Rattray B. (2018). Exercise interventions for cognitive function in adults older than 50: A systematic review with meta-analysis. Br. J. Sports Med. 52 154–160. 10.1136/bjsports-2016-096587
    1. Ohman H., Savikko N., Strandberg T. E., Pitkala K. H. (2014). Effect of physical exercise on cognitive performance in older adults with mild cognitive impairment or dementia: a systematic review. Dement. Geriatr. Cogn. Disord. 38 347–365. 10.1159/000365388
    1. Ojeda N., del Pino R., Ibarretxe-Bilbao N., Schretlen D., Peña J. (2016). Test de evaluación cognitiva de Montreal: normalización y estandarización de la prueba en población española. Rev. Neurol. 63 488–496.
    1. Oldfield R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9 97–113.
    1. Pedersen B. K. (2019). Physical activity and muscle-brain crosstalk. Nat. Rev. Endocrinol. 15 383–392. 10.1038/s41574-019-0174-x
    1. Petermann-Rocha F., Lyall D. M., Gray S. R., Esteban-Cornejo I., Quinn T. J., Ho F. K., et al. (2020). Associations between physical frailty and dementia incidence: a prospective study from UK Biobank. Lancet Healthy Longevity 1 e58–e68.
    1. Reitan R. M. (1958). Validity of the trail making test as an indicator of organic brain damage. Percept. Motor Skills 8 271–276.
    1. Remor E. (2006). Psychometric properties of a European Spanish version of the Perceived Stress Scale (PSS). Span. J. Psychol. 9 86–93. 10.1017/s1138741600006004
    1. Rey A. (2009). REY. Test de copia de una figura compleja. Madrid: TEA ediciones.
    1. Ribeiro A. S., Nunes J. P., Schoenfeld B. J. (2020). Selection of resistance exercises for older individuals: The Forgotten Variable. Sports Med. 50 1051–1057. 10.1007/s40279-020-01260-5
    1. Robins R. W., Hendin H. M., Trzesniewski K. H. (2001). Measuring global self-esteem: Construct validation of a single-item measure and the Rosenberg Self-Esteem Scale. Pers. Soc. Psychol. Bull. 27 151–161.
    1. Rosselli M., Ardila A., Araujo K., Weekes V. A., Caracciolo V., Padilla M., et al. (2000). Verbal fluency and repetition skills in healthy older Spanish-English bilinguals. Appl. Neuropsychol. 7 17–24.
    1. Russell D., Peplau L. A., Cutrona C. E. (1980). The revised UCLA Loneliness Scale: concurrent and discriminant validity evidence. J. Pers. Soc. Psychol. 39:472.
    1. Sabri O., Sabbagh M. N., Seibyl J., Barthel H., Akatsu H., Ouchi Y., et al. (2015a). Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: Phase 3 study. Alzheimers Dement. 11 964–974. 10.1016/j.jalz.2015.02.004
    1. Sabri O., Seibyl J., Rowe C., Barthel H. (2015b). Beta-amyloid imaging with florbetaben. Clin. Transl. Imaging 3 13–26. 10.1007/s40336-015-0102-6
    1. Scheltens P., De Strooper B., Kivipelto M., Holstege H., Chételat G., Teunissen C. E., et al. (2021). Alzheimer’s disease. Lancet 397 1577–1590. 10.1016/s0140-6736(20)32205-4
    1. Schroder H., Fito M., Estruch R., Martinez-Gonzalez M. A., Corella D., Salas-Salvado J., et al. (2011). A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J. Nutr. 141 1140–1145. 10.3945/jn.110.135566
    1. Serra F. T., Cardoso F. D. S., Petraconi N., Dos Santos J. C. C., Araujo B. H. S., Arida R. M., et al. (2021). Resistance exercise improves learning and memory and modulates hippocampal metabolomic profile in aged rats. Neurosci. Lett. 766:136322. 10.1016/j.neulet.2021.136322
    1. Shepherd A., Lim J. K. H., Wong V. H. Y., Zeleznikow-Johnston A. M., Churilov L., Nguyen C. T. O., et al. (2021). Progressive impairments in executive function in the APP/PS1 model of Alzheimer’s disease as measured by translatable touchscreen testing. Neurobiol. Aging 108 58–71. 10.1016/j.neurobiolaging.2021.08.004
    1. Skantz H., Rantanen T., Palmberg L., Rantalainen T., Aartolahti E., Portegijs E., et al. (2020). Outdoor mobility and use of adaptive or maladaptive walking modifications among older people. J. Gerontol. A Biol. Sci. Med. Sci. 75 806–812. 10.1093/gerona/glz172
    1. Smith E. C., Pizzey F. K., Askew C. D., Mielke G. I., Ainslie P. N., Coombes J. S., et al. (2021). Effects of cardiorespiratory fitness and exercise training on cerebrovascular blood flow and reactivity: a systematic review with meta-analyses. Am. J. Physiol. Heart Circ. Physiol. 321 H59–H76. 10.1152/ajpheart.00880.2020
    1. Snowden M., Steinman L., Mochan K., Grodstein F., Prohaska T. R., Thurman D. J., et al. (2011). Effect of exercise on cognitive performance in community-dwelling older adults: Review of intervention trials and recommendations for public health practice and research. J. Am. Geriatr. Soc. 59 704–716. 10.1111/j.1532-5415.2011.03323.x
    1. Stillman C. M., Esteban-Cornejo I., Brown B., Bender C. M., Erickson K. I. (2020). Effects of exercise on brain and cognition across age groups and health states. Trends Neurosci. 43 533–543. 10.1016/j.tins.2020.04.010
    1. Suo C., Singh M. F., Gates N., Wen W., Sachdev P., Brodaty H., et al. (2016). Therapeutically relevant structural and functional mechanisms triggered by physical and cognitive exercise. Mol. Psychiatry 21 1633–1642. 10.1038/mp.2016.19
    1. Thomas H. J., Marsh C. E., Naylor L. H., Ainslie P. N., Smith K. J., Carter H. H., et al. (2021). Resistance, but not endurance exercise training, induces changes in cerebrovascular function in healthy young subjects. Am. J. Physiol. Heart Circ. Physiol. 321 H881–H892. 10.1152/ajpheart.00230.2021
    1. Tideman P., Stomrud E., Leuzy A., Mattsson-Carlgren N., Palmqvist S., Hansson O., et al. (2022). Association of beta-Amyloid accumulation with executive function in adults with unimpaired cognition. Neurology 98 e1525–e1533. 10.1212/WNL.0000000000013299
    1. Tsai C. L., Wang C. H., Pan C. Y., Chen F. C. (2015). The effects of long-term resistance exercise on the relationship between neurocognitive performance and GH, IGF-1, and homocysteine levels in the elderly. Front. Behav. Neurosci. 9:23. 10.3389/fnbeh.2015.00023
    1. Tsuchiya Y., Ando D., Takamatsu K., Goto K. (2015). Resistance exercise induces a greater irisin response than endurance exercise. Metabolism 64 1042–1050. 10.1016/j.metabol.2015.05.010
    1. Uchida M. C., Nishida M. M., Sampaio R. A., Moritani T., Arai H. (2016). Thera-band((R)) elastic band tension: reference values for physical activity. J. Phys. Ther. Sci. 28 1266–1271. 10.1589/jpts.28.1266
    1. Urdinguio R. G., Tejedor J. R., Fernandez-Sanjurjo M., Perez R. F., Penarroya A., Ferrero C., et al. (2021). Physical exercise shapes the mouse brain epigenome. Mol. Metab. 54:101398. 10.1016/j.molmet.2021.101398
    1. van Uffelen J. G., Chin A. P. M. J., Hopman-Rock M., van Mechelen W. (2008). The effects of exercise on cognition in older adults with and without cognitive decline: a systematic review. Clin. J. Sport Med. 18 486–500. 10.1097/JSM.0b013e3181845f0b
    1. Vaughan L., Giovanello K. (2010). Executive function in daily life: Age-related influences of executive processes on instrumental activities of daily living. Psychol. Aging 25 343–355. 10.1037/a0017729
    1. Vazquez C., Duque A., Hervas G. (2013). Satisfaction with life scale in a representative sample of Spanish adults: validation and normative data. Span. J. Psychol. 16:E82.
    1. Verissimo J., Verhaeghen P., Goldman N., Weinstein M., Ullman M. T. (2022). Evidence that ageing yields improvements as well as declines across attention and executive functions. Nat. Hum. Behav. 6 97–110. 10.1038/s41562-021-01169-7
    1. Vidoni E. D., Morris J. K., Watts A., Perry M., Clutton J., Van Sciver A., et al. (2021). Effect of aerobic exercise on amyloid accumulation in preclinical Alzheimer’s: A 1-year randomized controlled trial. PLoS One 16:e0244893. 10.1371/journal.pone.0244893
    1. Vilela T. C., Muller A. P., Damiani A. P., Macan T. P., da Silva S., Canteiro P. B., et al. (2017). Strength and aerobic exercises improve spatial memory in aging rats through stimulating distinct neuroplasticity mechanisms. Mol. Neurobiol. 54 7928–7937. 10.1007/s12035-016-0272-x
    1. Villemagne V. L., Ong K., Mulligan R. S., Holl G., Pejoska S., Jones G., et al. (2011). Amyloid imaging with (18)F-florbetaben in Alzheimer disease and other dementias. J. Nucl. Med. 52 1210–1217. 10.2967/jnumed.111.089730
    1. Vints W. A. J., Levin O., Fujiyama H., Verbunt J., Masiulis N. (2022). Exerkines and long-term synaptic potentiation: Mechanisms of exercise-induced neuroplasticity. Front. Neuroendocrinol. 66:100993. 10.1016/j.yfrne.2022.100993
    1. Wayne P. M., Walsh J. N., Taylor-Piliae R. E., Wells R. E., Papp K. V., Donovan N. J., et al. (2014). Effect of tai chi on cognitive performance in older adults: systematic review and meta-analysis. J Am Geriatr Soc 62 25–39. 10.1111/jgs.12611
    1. Wechsler D. (2008). Wechsler Adult Intelligence Scale IV. San Antonio, TX: Harcourt Assessment Inc.
    1. Williams B., Mancia G., Spiering W., Agabiti Rosei E., Azizi M., Burnier M., et al. (2018). 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 39 3021–3104. 10.1093/eurheartj/ehy339
    1. World Health Organization [WHO] (2015). World report on ageing and health. Geneva: World Health Organization.
    1. Wu W., Ding D., Zhao Q., Xiao Z., Luo J., Ganguli M., et al. (2022). Dose-response relationship between late-life physical activity and incident dementia: A pooled analysis of 10 cohort studies of memory in an international consortium. Alzheimers Dement. 19 107–122. 10.1002/alz.12628
    1. Xu X., Jerskey B. A., Cote D. M., Walsh E. G., Hassenstab J. J., Ladino M. E., et al. (2014). Cerebrovascular perfusion among older adults is moderated by strength training and gender. Neurosci. Lett. 560 26–30. 10.1016/j.neulet.2013.12.011
    1. Yoon D. H., Lee J. Y., Song W. (2018). Effects of resistance exercise training on cognitive function and physical performance in cognitive frailty: A randomized controlled trial. J. Nutr. Health Aging 22 944–951. 10.1007/s12603-018-1090-9
    1. Zelazo P. D., Anderson J. E., Richler J., Wallner-Allen K., Beaumont J. L., Weintraub S. (2013). II. NIH Toolbox Cognition Battery (CB): measuring executive function and attention. Monogr. Soc. Res. Child Dev. 78 16–33. 10.1111/mono.12032
    1. Zheng G., Xia R., Zhou W., Tao J., Chen L. (2016). Aerobic exercise ameliorates cognitive function in older adults with mild cognitive impairment: A systematic review and meta-analysis of randomised controlled trials. Br. J. Sports Med. 50 1443–1450. 10.1136/bjsports-2015-095699
    1. Zigmond A. S., Snaith R. P. (1983). The hospital anxiety and depression scale. Acta Psychiatr. Scand. 67 361–370.

Source: PubMed

3
Subskrybuj