Colonic bacterial diversity and dysbiosis in active microscopic colitis as compared to chronic diarrhoea and healthy controls: effect of polyethylene glycol after bowel lavage for colonoscopy

Lissette Batista, Virginia Robles, Chaysavanh Manichanh, Laura Ruiz, Danila Guagnozzi, Ferran Pinsach, Francisco Guarner, Fernando Fernández-Bañares, Lissette Batista, Virginia Robles, Chaysavanh Manichanh, Laura Ruiz, Danila Guagnozzi, Ferran Pinsach, Francisco Guarner, Fernando Fernández-Bañares

Abstract

Background: Most microbiota studies in microscopic colitis patients are performed after diagnostic colonoscopy without considering the potential effect of colonic lavage. Patients may achieve clinical remission after colonoscopy and it is unknown whether lavage-induced changes play a role.

Aim: To assess the effect of polyethylene glycol (PEG) colonic lavage on clinical remission rate, microbial diversity, microbial dysbiosis index and specific microbial changes in patients with active microscopic colitis as compared to other diarrhoeal diseases and healthy controls.

Methods: Fifty-five consecutive patients presenting chronic watery diarrhoea and 12 healthy controls were included. Faecal samples were collected three days before and 30 days after PEG in patients and controls for microbiome analysis.

Results: Clinical remission was observed in 53% of microscopic colitis patients, and in 32% of non-microscopic colitis patients (p = 0.16). Considering patients with persisting diarrhoea after colonoscopy, 71% of non-microscopic colitis patients had bile acid diarrhoea. Baseline Shannon Index was lower in diarrhoea groups than in healthy controls (p = 0.0025); there were no differences between microscopic colitis, bile-acid diarrhoea and functional diarrhoea. The microbial dysbiosis index was significantly higher in microscopic colitis than in bile acid diarrhoea plus functional diarrhoea (p = 0.0095), but no bacterial species showed a significantly different relative abundance among the diarrheal groups.

Conclusions: Dysbiosis is a feature in active microscopic colitis, but loss of microbial diversity was similar in all diarrheal groups, suggesting that faecal microbial changes are not due to microscopic colitis itself but associated with stool form. A considerable number of microscopic colitis patients achieved clinical remission after colonoscopy, but we were unable to demonstrate related PEG-induced changes in faecal microbiome.

Keywords: Dysbiosis; Faecal microbiome; Microscopic colitis; Polyethylene glycol.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Boxplot describing the comparison of baseline alpha diversity (Shannon index) between patients with microscopic colitis (MC), functional diarrhoea plus bile acid diarrhoea (FD + BAD) and healthy controls
Fig. 2
Fig. 2
Boxplot describing the comparison of baseline microbial dysbiosis Index (MD-index) between patients with microscopic colitis (MC), and functional diarrhoea plus bile acid diarrhoea (FD + BAD)
Fig. 3
Fig. 3
Boxplots describing the evolution of Shannon index 30-days after colonoscopy in both diarrhoeal groups and healthy controls (Repeated measures ANOVA: p = 0.015; *p = 0.0025 vs. HC; **p = 0.049 vs. HC;p = 0.03 vs. 30-days) (MC microscopic colitis, FD functional diarrhoea, BAD bile acid diarrhoea, HC healthy controls)
Fig. 4
Fig. 4
Boxplots describing the evolution of microbial dysbiosis index 30-days after colonoscopy in diarrhoeal groups (MC microscopic colitis, FD functional diarrhoea, BAD bile acid diarrhoea). *p = 0.014 vs. FD and BAD

References

    1. Münch A, Langner C. Microscopic colitis: clinical and pathologic perspectives. Clin Gastroenterol Hepatol. 2015;13:228–236. doi: 10.1016/j.cgh.2013.12.026.
    1. Miehlke S, Guagnozzi D, Zabana Y, Tontini GE, Kanstrup Fiehn AM, Wildt S, et al. European guidelines on microscopic colitis: United European Gastroenterology (UEG) and European Microscopic Colitis Group (EMCG) statements and recommendations. United Eur Gastroenterol J. 2021 doi: 10.1177/2050640620951905.
    1. Zabana Y, Tontini G, Hultgren-Hörnquist E, Skonieczna-Żydecka K, Latella G, Østvik AE, et al. Pathogenesis of microscopic colitis: a systematic review. J Crohn’s Colitis. 2021;16:143–161. doi: 10.1093/ecco-jcc/jjab123.
    1. Järnerot G, Tysk C, Bohr J, Eriksson S. Collagenous colitis and fecal stream diversion. Gastroenterology. 1995;109:449–455. doi: 10.1016/0016-5085(95)90332-1.
    1. Rindom Krogsgaard L, Munck L, Bytzer P, Wildt S. An altered composition of the microbiome in microscopic colitis is driven towards the composition in healthy controls by treatment with budesonide. Scand J Gastroenterol. 2019;54:446–452. doi: 10.1080/00365521.2019.1599064.
    1. Morgan DM, Cao Y, Miller K, McGoldrick J, Bellavance D, Chin SM, et al. Microscopic colitis is characterized by intestinal dysbiosis. Clin Gastroenterol Hepatol. 2020;18:984–986. doi: 10.1016/j.cgh.2019.06.035.
    1. Gustafsson RJ, Ohlsson B, Benoni C, Jeppsson B, Olsson C. Mucosa-associated bacteria in two middle-aged women diagnosed with collagenous colitis. World J Gastroenterol. 2012;18:1628–1634. doi: 10.3748/wjg.v18.i14.1628.
    1. Fischer H, Holst E, Karlsson F, Benoni C, Toth E, Olesen M, et al. Altered microbiota in microscopic colitis. Gut. 2015;64:1185–1186. doi: 10.1136/gutjnl-2014-308956.
    1. Carstens A, Dicksved J, Nelson R, Lindqvist M, Andreasson A, Bohr J, et al. The gut microbiota in collagenous colitis shares characteristics with inflammatory bowel disease-associated dysbiosis. Clin Transl Gastroenterol. 2019;10:e00065. doi: 10.14309/ctg.0000000000000065.
    1. Millien V, Rosen D, Hou J, Shah R. Proinflammatory sulfur-reducing bacteria are more abundant in colonic biopsies of patients with microscopic colitis compared to healthy controls. Dig Dis Sci. 2019;64:432–438. doi: 10.1007/s10620-018-5313-z.
    1. Burke KE, D'Amato M, Ng SC, Pardi DS, Ludvigsson JF, Khalili H. Microscopic colitis. Nat Rev Dis Primers. 2021;7:39. doi: 10.1038/s41572-021-00273-2.
    1. Shobar RM, Velineni S, Keshavarzian A, Swanson G, DeMeo MT, Melson JE, et al. The effects of bowel preparation on microbiota-related metrics differ in health and in inflammatory bowel disease and for the mucosal and luminal microbiota compartments. Clin Transl Gastroenterol. 2016;7:e143. doi: 10.1038/ctg.2015.54.
    1. Drago L, Casini V, Pace F. Gut microbiota, dysbiosis and colon lavage. Dig Liver Dis. 2019;51:1209–1213. doi: 10.1016/j.dld.2019.06.012.
    1. Fernández-Bañares F, Esteve M, Salas A, Alsina M, Farré C, González C, et al. Systematic evaluation of the causes of chronic watery diarrhea with functional characteristics. Am J Gastroenterol. 2007;102:2520–2528. doi: 10.1111/j.1572-0241.2007.01438.x.
    1. Santiago A, Panda S, Mengels G, et al. Processing faecal samples: a step forward for standards in microbial community analysis. BMC Microbiol. 2014;14:112. doi: 10.1186/1471-2180-14-112.
    1. Pascal V, Pozuelo M, Borruel N, Casellas F, Campos D, Santiago A, et al. A microbial signature for Crohn's disease. Gut. 2017;66:813–822. doi: 10.1136/gutjnl-2016-313235.
    1. Chao A, Chazdon RL, Colwell RK, et al. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics. 2006;62:361–371. doi: 10.1111/j.1541-0420.2005.00489.x.
    1. Hughes JB, Hellmann JJ, Ricketts TH, et al. Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol. 2001;67:4399–4406. doi: 10.1128/AEM.67.10.4399-4406.2001.
    1. Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W, Ren B, et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe. 2014;15:382–392. doi: 10.1016/j.chom.2014.02.005.
    1. Vandeputte D, Falony G, Vieira-Silva S, Tito RY, Joossens M, Raes J. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut. 2016;65:57–62. doi: 10.1136/gutjnl-2015-309618.
    1. Robles Alonso V. MD Thesis: Microbiota intestinal y colitis ulcerosa, abordaje metagenómico. Universitat Autònoma de Barcelona. 2017. .
    1. Zubarik R, Fleischer DE, Mastropietro C, Lopez J, Carroll J, Benjamin S, et al. Prospective analysis of complications 30 days after outpatient colonoscopy. Gastrointest Endosc. 1999;50:322–328. doi: 10.1053/ge.1999.v50.97111.
    1. Bini EJ, Firoozi B, Choung RJ, Ali EM, Osman M, Weinshel EH. Systematic evaluation of complications related to endoscopy in a training setting: a prospective 30-day outcomes study. Gastrointest Endosc. 2003;57:8–16. doi: 10.1067/mge.2003.15.
    1. Ko CW, Riffle S, Shapiro JA, Saunders MD, Lee SD, Tung BY, et al. Incidence of minor complications and time lost from normal activities after screening or surveillance colonoscopy. Gastrointest Endosc. 2007;65:648–656. doi: 10.1016/j.gie.2006.06.020.
    1. D’Souza B, Slack T, Wong SW, et al. Randomized controlled trial of probiotics after colonoscopy. ANZ J Surg. 2017;87:E65–E69. doi: 10.1111/ans.13225.
    1. Khodadoostan M, Shavakhi A, Sherafat Z, Shavakhi A. Effect of probiotic administration immediately and 1 month after colonoscopy in diarrhea-predominant irritable bowel syndrome patients. Adv Biomed Res. 2018;7:94. doi: 10.4103/abr.abr_216_17.
    1. Menees S, Higgins P, Korsnes S, Elta G. Does colonoscopy cause increased ulcerative colitis symptoms? Inflamm Bowel Dis. 2007;13:12–18. doi: 10.1002/ibd.20049.
    1. Appleby RN, Walters JR. The role of bile acids in functional GI disorders. Neurogastroenterol Motil. 2014;26:1057–1069. doi: 10.1111/nmo.12370.
    1. Zhao L, Yang W, Chen Y, Huang F, Lu L, Lin C, et al. A Clostridia-rich microbiota enhances bile acid excretion in diarrhea-predominant irritable bowel syndrome. J Clin Invest. 2020;130:438–450. doi: 10.1172/JCI130976.
    1. Sagar NM, Duboc H, Kay GL, Alam MT, Wicaksono AN, Covington JA, et al. The pathophysiology of bile acid diarrhoea: differences in the colonic microbiome, metabolome and bile acids. Sci Rep. 2020;10:20436. doi: 10.1038/s41598-020-77374-7.

Source: PubMed

3
Subskrybuj