Use of Virtual Reality-Based Games to Improve Balance and Gait of Children and Adolescents with Sensorineural Hearing Loss: A Systematic Review and Meta-Analysis

Renato S Melo, Andrea Lemos, Alexandre Delgado, Maria Cristina Falcão Raposo, Karla Mônica Ferraz, Rosalie Barreto Belian, Renato S Melo, Andrea Lemos, Alexandre Delgado, Maria Cristina Falcão Raposo, Karla Mônica Ferraz, Rosalie Barreto Belian

Abstract

Background: Children and adolescents with sensorineural hearing loss (SNHL) often experience motor skill disturbances, particularly in balance and gait, due to potential vestibular dysfunctions resulting from inner ear damage. Consequently, several studies have proposed the use of virtual reality-based games as a technological resource for therapeutic purposes, aiming to improve the balance and gait of this population.

Objective: The objective of this systematic review is to evaluate the quality of evidence derived from randomized or quasi-randomized controlled trials that employed virtual reality-based games to enhance the balance and/or gait of children and adolescents with SNHL.

Methods: A comprehensive search was conducted across nine databases, encompassing articles published in any language until 1 July 2023. The following inclusion criteria were applied: randomized or quasi-randomized controlled trials involving volunteers from both groups with a clinical diagnosis of bilateral SNHL, aged 6-19 years, devoid of physical, cognitive, or neurological deficits other than vestibular dysfunction, and utilizing virtual reality-based games as an intervention to improve balance and/or gait outcomes.

Results: Initially, a total of 5984 articles were identified through the searches. Following the removal of duplicates and screening of titles and abstracts, eight studies remained for full reading, out of which three trials met the eligibility criteria for this systematic review. The included trials exhibited a very low quality of evidence concerning the balance outcome, and none of the trials evaluated gait. The meta-analysis did not reveal significant differences in balance improvement between the use of traditional balance exercises and virtual reality-based games for adolescents with SNHL (effect size: -0.48; [CI: -1.54 to 0.57]; p = 0.37; I2 = 0%).

Conclusion: Virtual reality-based games show promise as a potential technology to be included among the therapeutic options for rehabilitating the balance of children and adolescents with SNHL. However, given the methodological limitations of the trials and the overall low quality of evidence currently available on this topic, caution should be exercised when interpreting the results of the trials analyzed in this systematic review.

Keywords: child; deaf; deafness; exercise therapy; exergaming; hearing impairment; motor skills disorders; rehabilitation; vestibular disease; walking.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flowchart of the studies analyzed in this systematic review, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).
Figure 2
Figure 2
Risk of bias summary of the included trials assessed using the Cochrane risk-of-bias tool.
Figure 3
Figure 3
Risk of bias of each included trial assessed using the Cochrane risk-of-bias tool [61,62,63].
Figure 4
Figure 4
Forest plot of the comparison between the use of virtual reality-based games versus traditional balance exercises to improve the balance of adolescents with SNHL, represented by the number of falls or exits from the Flamingo position, measured by the Flamingo Balance test [62,63].

References

    1. Smith A. Preventing deafness—An achievable challenge. The WHO perspective. Int. Congr. Ser. 2003;1240:183–191. doi: 10.1016/S0531-5131(03)00960-9.
    1. Olusanya B., Luxon L., Wirz S. Benefits and challenges of newborn hearing screening for developing countries. Int. J. Pediatr. Otorhinolaryngol. 2003;68:287–305. doi: 10.1016/j.ijporl.2003.10.015.
    1. Olusanya B., Swanepoel D.W., ChapChap M.J., Castillo S., Habib H., Mukari S.Z., Martinez N.V., Lin H.-C., McPherson B. Progress towards early detection services for infants with hearing loss in developing countries. BMC Health Serv. Res. 2007;7:14. doi: 10.1186/1472-6963-7-14.
    1. Mehra S., Eavey R.D., Keamy D.G. The epidemiology of hearing impairment in the United States: Newborns, children, and adolescents. Otolaryngol. Neck Surg. 2009;140:461–472. doi: 10.1016/j.otohns.2008.12.022.
    1. De Oliveira J.S., Rodrigues L.B., Aurélio F.S., Da Silva V.B. Risk factors and prevalence of newborn hearing loss in a private health care system of Porto Velho, Northern Brazil. Rev. Paul. Pediatr. 2013;31:299–305. doi: 10.1590/S0103-05822013000300005.
    1. Parving A., Hauch A.-M. The causes of profound hearing impairment in a school for the deaf—A longitudinal study. Br. J. Audiol. 1994;28:63–69. doi: 10.3109/03005369409077916.
    1. Morton N.E. Genetic Epidemiology of Hearing Impairment. Ann. N. Y. Acad. Sci. 1991;630:16–31. doi: 10.1111/j.1749-6632.1991.tb19572.x.
    1. Cianfrone G., Pentangelo D., Cianfrone F., Mazzei F., Turchetta R., Orlando M.P., Altissimi G. Pharmacological drugs inducing ototoxicity, vestibular symptoms and tinnitus: A reasoned and updated guide. Eur. Rev. Med. Pharmacol. Sci. 2011;15:601–636.
    1. Kaga K. Vestibular compensation in infants and children with congenital and acquired vestibular loss in both ears. Int. J. Pediatr. Otorhinolaryngol. 1999;49:215–224. doi: 10.1016/S0165-5876(99)00206-2.
    1. Suarez H., Angeli S., Suarez A., Rosales B., Carrera X., Alonso R. Balance sensory organization in children with profound hearing loss and cochlear implants. Int. J. Pediatr. Otorhinolaryngol. 2007;71:629–637. doi: 10.1016/j.ijporl.2006.12.014.
    1. Jacot E., Van Den Abbeele T., Debre H.R., Wiener-Vacher S.R. Vestibular impairments pre- and post-cochlear implant in children. Int. J. Pediatr. Otorhinolaryngol. 2009;73:209–217. doi: 10.1016/j.ijporl.2008.10.024.
    1. Schwab B., Kontorinis G. Influencing Factors on the Vestibular Function of Deaf Children and Adolescents—Evaluation by Means of Dynamic Posturography. Open Otorhinolaryngol. J. 2011;5:1–9. doi: 10.2174/1874428101105010001.
    1. Maes L., De Kegel A., Van Waelvelde H., Dhooge I. Rotatory and Collic Vestibular Evoked Myogenic Potential Testing in Normal-Hearing and Hearing-Impaired Children. Ear Hear. 2014;35:e21–e32. doi: 10.1097/AUD.0b013e3182a6ca91.
    1. Said E.A.-F. Vestibular assessment in children with sensorineural hearing loss using both electronystagmography and vestibular-evoked myogenic potential. Egypt. J. Otolaryngol. 2014;30:43–52. doi: 10.4103/1012-5574.127203.
    1. Kotait M.A., Moaty A.S., Gabr T.A. Vestibular testing in children with severe-to-profound hearing loss. Int. J. Pediatr. Otorhinolaryngol. 2019;125:201–205. doi: 10.1016/j.ijporl.2019.07.015.
    1. Melo R.D.S., Marinho S.E.D.S., Freire M.E.A., Souza R.A., Damasceno H.A.M., Raposo M.C.F. Static and dynamic balance of children and adolescents with sensorineural hearing loss. Einstein. 2017;15:262–268. doi: 10.1590/s1679-45082017ao3976.
    1. Jafari Z., Malayeri S.A. The effect of saccular function on static balance ability of profound hearing-impaired children. Int. J. Pediatr. Otorhinolaryngol. 2011;75:919–924. doi: 10.1016/j.ijporl.2011.04.006.
    1. Melo R.D.S., Lemos A., Raposo M.C.F., Ferraz K.M. Desempenho do equilíbrio dinâmico de escolares ouvintes e com perda auditiva sensorioneural. Rev. Bras. Med. Esporte. 2014;20:442–446. doi: 10.1590/1517-86922014200601713.
    1. Melo R.d.S., da Silva P.W.A., Tassitano R.M., Macky C.F.S.T., da Silva L.V.C. Avaliação do equilíbrio corporal e da marcha: Estudo comparativo entre surdos e ouvintes em idade escolar. Rev. Paul. Pediatr. 2012;30:385–391. doi: 10.1590/S0103-05822012000300012.
    1. Majlesi M., Azadian E., Farahpour N., Jafarnezhad A.A., Rashedi H. Lower limb muscle activity during gait in individuals with hearing loss. Australas. Phys. Eng. Sci. Med. 2017;40:659–665. doi: 10.1007/s13246-017-0574-y.
    1. Jafarnezhadgero A.A., Majlesi M., Azadian E. Gait ground reaction force characteristics in deaf and hearing children. Gait Posture. 2017;53:236–240. doi: 10.1016/j.gaitpost.2017.02.006.
    1. Melo R.D.S. Gait performance of children and adolescents with sensorineural hearing loss. Gait Posture. 2017;57:109–114. doi: 10.1016/j.gaitpost.2017.05.031.
    1. Azadian E., Majlesi M., Jafarnezhadgero A.A., Granacher U. The impact of hearing loss on three-dimensional lower limb joint torques during walking in prepubertal boys. J. Bodyw. Mov. Ther. 2020;24:123–129. doi: 10.1016/j.jbmt.2019.10.013.
    1. Chilosi A.M., Comparini A., Scusa M.F., Berrettini S., Forli F., Battini R., Cipriani P., Cioni G. Neurodevelopmental disorders in children with severe to profound sensorineural hearing loss: A clinical study. Dev. Med. Child Neurol. 2010;52:856–862. doi: 10.1111/j.1469-8749.2010.03621.x.
    1. Livingstone N., Mcphillips M. Motor skill deficits in children with partial hearing. Dev. Med. Child Neurol. 2011;53:836–842. doi: 10.1111/j.1469-8749.2011.04001.x.
    1. Martin W., Jelsma J., Rogers C. Motor proficiency and dynamic visual acuity in children with bilateral sensorineural hearing loss. Int. J. Pediatr. Otorhinolaryngol. 2012;76:1520–1525. doi: 10.1016/j.ijporl.2012.07.007.
    1. Fellinger M.J., Holzinger D., Aigner M., Beitel C., Fellinger J. Motor performance and correlates of mental health in children who are deaf or hard of hearing. Dev. Med. Child Neurol. 2015;57:942–947. doi: 10.1111/dmcn.12814.
    1. Melo R.S., Lemos A., Paiva G.S., Ithamar L., Lima M.C., Eickmann S.H., Ferraz K.M., Belian R.B. Vestibular rehabilitation exercises programs to improve the postural control, balance and gait of children with sensorineural hearing loss: A systematic review. Int. J. Pediatr. Otorhinolaryngol. 2019;127:109650. doi: 10.1016/j.ijporl.2019.109650.
    1. Theunissen S.C., Rieffe C., Kouwenberg M., Soede W., Briaire J.J., Frijns J.H. Depression in hearing-impaired children. Int. J. Pediatr. Otorhinolaryngol. 2011;75:1313–1317. doi: 10.1016/j.ijporl.2011.07.023.
    1. Yigider A.P., Yilmaz S., Ulusoy H., Kara T., Kufeciler L., Kaya K.H. Emotional and behavioral problems in children and adolescents with hearing loss and their effects on quality of life. Int. J. Pediatr. Otorhinolaryngol. 2020;137:110245. doi: 10.1016/j.ijporl.2020.110245.
    1. Hartman E., Houwen S., Visscher C. Motor Skill Performance and Sports Participation in Deaf Elementary School Children. Adapt. Phys. Act. Q. 2011;28:132–145. doi: 10.1123/apaq.28.2.132.
    1. Engel-Yeger B., Hamed-Daher S. Comparing participation in out of school activities between children with visual impairments, children with hearing impairments and typical peers. Res. Dev. Disabil. 2013;34:3124–3132. doi: 10.1016/j.ridd.2013.05.049.
    1. Wiegersma P.H., Van der Velde A. Motor development of deaf children. J. Child Psychol. Psychiatry. 1983;24:103–111. doi: 10.1111/j.1469-7610.1983.tb00107.x.
    1. Gheysen F., Loots G., Van Waelvelde H. Motor Development of Deaf Children with and without Cochlear Implants. J. Deaf. Stud. Deaf. Educ. 2008;13:215–224. doi: 10.1093/deafed/enm053.
    1. Effgen S.K. Effect of an Exercise Program on the Static Balance of Deaf Children. Phys. Ther. 1981;61:873–877. doi: 10.1093/ptj/61.6.873.
    1. Rine R.M., Braswell J., Fisher D., Joyce K., Kalar K., Shaffer M. Improvement of motor development and postural control following intervention in children with sensorineural hearing loss and vestibular impairment. Int. J. Pediatr. Otorhinolaryngol. 2004;68:1141–1148. doi: 10.1016/j.ijporl.2004.04.007.
    1. Fotiadou E.G., Tsimaras V.K., Giagazoglou P.F., Sidiropoulou M.P., Karamouzi A.M., Angelopoulou N.A. Effect of Rhythmic Gymnastics on the Rhythm Perception of Children with Deafness. J. Strength Cond. Res. 2006;20:298–303. doi: 10.1519/r-16824.1.
    1. Melo R.S., Tavares-Netto A.R., Delgado A., Wiesiolek C.C., Ferraz K.M., Belian R.B. Does the practice of sports or recreational activities improve the balance and gait of children and adolescents with sensorineural hearing loss? A systematic review. Gait Posture. 2020;77:144–155. doi: 10.1016/j.gaitpost.2020.02.001.
    1. Wolter N.E., Gordon K.A., Campos J.L., Madrigal L.D.V., Pothier D.D., Hughes C.O., Papsin B.C., Cushing S.L. BalanCI: Head-Referenced Cochlear Implant Stimulation Improves Balance in Children with Bilateral Cochleovestibular Loss. Audiol. Neurotol. 2019;25:60–71. doi: 10.1159/000503135.
    1. Peñeñory V.M., Manresa-Yee C., Riquelme I., Collazos C.A., Fardoun H.M., Alghazzawi D.M. Interactive systems proposal for psychomotor rehabilitation in hearing impaired children. Commun. Comput Inform Sci. 2019;1002:58–67.
    1. Lansink I.O., van Kouwenhove L., Dijkstra P., Postema K., Hijmans J. Effects of interventions on normalizing step width during self-paced dual-belt treadmill walking with virtual reality, a randomised controlled trial. Gait Posture. 2017;58:121–125. doi: 10.1016/j.gaitpost.2017.07.040.
    1. de Vries A.W., Faber G., Jonkers I., Van Dieen J.H., Verschueren S.M. Virtual reality balance training for elderly: Similar skiing games elicit different challenges in balance training. Gait Posture. 2018;59:111–116. doi: 10.1016/j.gaitpost.2017.10.006.
    1. Weber H., Barr C., Gough C., van den Berg M. How Commercially Available Virtual Reality–Based Interventions Are Delivered and Reported in Gait, Posture, and Balance Rehabilitation: A Systematic Review. Phys. Ther. 2020;100:1805–1815. doi: 10.1093/ptj/pzaa123.
    1. Raffegeau T.E., Fawver B., Clark M., Engel B.T., Young W.R., Williams A.M., Lohse K.R., Fino P.C. The feasibility of using virtual reality to induce mobility-related anxiety during turning. Gait Posture. 2020;77:6–13. doi: 10.1016/j.gaitpost.2020.01.006.
    1. Chen Y., Gao Q., He C.-Q., Bian R. Effect of Virtual Reality on Balance in Individuals with Parkinson Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Phys. Ther. 2020;100:933–945. doi: 10.1093/ptj/pzaa042.
    1. de Oliveira J.M., Munoz R., Ribeiro S., Wu W., de Albuquerque V.H.C. REHAB FUN: An assistive technology in neurological motor disorders rehabilitation of children with cerebral palsy. Neural Comput. Appl. 2020;32:10957–10970. doi: 10.1007/s00521-019-04059-2.
    1. Jurdi S., Montaner J., Garcia-Sanjuan F., Jaen J., Nacher V. A systematic review of game technologies for pediatric patients. Comput. Biol. Med. 2018;97:89–112. doi: 10.1016/j.compbiomed.2018.04.019.
    1. Lee H.-Y., Cherng R.-J., Lin C.-H. Development of a virtual reality environment for somatosensory and perceptual stimulation in the balance assessment of children. Comput. Biol. Med. 2004;34:719–733. doi: 10.1016/j.compbiomed.2003.10.004.
    1. Liao Y., Vakanski A., Xian M., Paul D., Baker R. A review of computational approaches for evaluation of rehabilitation exercises. Comput. Biol. Med. 2020;119:103687. doi: 10.1016/j.compbiomed.2020.103687.
    1. Arnoni J.L., Pavao S.L., dos Santos Silva F.P., Rocha N.A. Effects of virtual reality in body oscillation and motor performance of children with cerebral palsy: A preliminary randomized controlled clinical trial. Complement. Ther. Clin. Pract. 2019;35:189–194. doi: 10.1016/j.ctcp.2019.02.014.
    1. Jung S., Song S., Lee D., Lee K., Lee G. Effects of Kinect Video Game Training on Lower Extremity Motor Function, Balance, and Gait in Adolescents with Spastic Diplegia Cerebral Palsy: A Pilot Randomized Controlled Trial. Dev. Neurorehabilit. 2021;24:159–165. doi: 10.1080/17518423.2020.1819458.
    1. Ravi D., Kumar N., Singhi P. Effectiveness of virtual reality rehabilitation for children and adolescents with cerebral palsy: An updated evidence-based systematic review. Physiotherapy. 2017;103:245–258. doi: 10.1016/j.physio.2016.08.004.
    1. Chen Y., Fanchiang H.D., Howard A. Effectiveness of Virtual Reality in Children with Cerebral Palsy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Phys. Ther. 2018;98:63–77. doi: 10.1093/ptj/pzx107.
    1. Pin T.W. Effectiveness of interactive computer play on balance and postural control for children with cerebral palsy: A systematic review. Gait Posture. 2019;73:126–139. doi: 10.1016/j.gaitpost.2019.07.122.
    1. Ghai S., Ghai I. Virtual Reality Enhances Gait in Cerebral Palsy: A Training Dose-Response Meta-Analysis. Front. Neurol. 2019;10:236. doi: 10.3389/fneur.2019.00236.
    1. Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Akl E.A., Brennan S.E., et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021;372:71. doi: 10.1136/bmj.n71.
    1. Melo R.S., Ferraz K.M., Belian R.B. Do Sports and Recreational Practices Improve Balance Performance, Gait and Running of Children with Sensorineural Hearing Loss? A Systematic Review. [(accessed on 7 September 2022)]. Available online: .
    1. Balshem H., Helfand M., Schünemann H.J., Oxman A.D., Kunz R., Brozek J., Vist G.E., Falck-Ytter Y., Meerpohl J., Norris S., et al. GRADE guidelines: 3. Rating the quality of evidence. J. Clin. Epidemiol. 2011;64:401–406. doi: 10.1016/j.jclinepi.2010.07.015.
    1. Higgins J.P.T., Altman D.G., Gøtzsche P.C., Jüni P., Moher D., Oxman A.D., Savović J., Schulz K.F., Weeks L., Sterne J.A.C., et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. doi: 10.1136/bmj.d5928.
    1. Hozo S.P., Djulbegovic B., Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med. Res. Methodol. 2005;5:13. doi: 10.1186/1471-2288-5-13.
    1. Kaya M., Sarıtaş N. A Comparison of the Effects of Balance Training and Technological Games on Balance in Hearing-Impaired Individuals. J. Educ. Train. Stud. 2019;7:48–53. doi: 10.11114/jets.v7i3S.4055.
    1. Tzanetakos N., Papastergiou M., Vernadakis N., Antoniou P. Utilizing physically interactive videogames for the balance training of adolescents with deafness within a physical education course. J. Phys. Educ. Sport. 2017;17:614–623. doi: 10.7752/jpes.2017.02093.
    1. Vernadakis N., Papastergiou M., Giannousi M., Panagiotis A. The effect of an exergame-based intervention on balance ability on deaf adolescents. Sport Sci. 2018;11:36–41.
    1. Korkmaz C., Akin M. Effect of Nintendo-wii balance board training on dynamic balance in between 9-14 age hearing impaired sedentaries. Spor Eğitim Dergisi. 2019;3:119–127.
    1. Irawan B., Sumaryanti S., Ichsan M. Effect of water game model on gross motor improvement of deaf children in SLB N Mesuji Lampung. Int. J. Phys. Educ. Sports Health. 2023;10:211–214.
    1. Korkmaz C., Akin M. The effect of bosu, kangoo jump, Nintendo-wii balance board trainings on agility in hearing impaired sedentary. J. Sport Perform. Res. 2021;12:91–104. doi: 10.17155/omuspd.882085.
    1. Nadertabar M., Daramadi P.S., Pezeshk S., Farrokhi N. The influence of computer games on visual-motor skills in deaf students. Middle East. J. Disabil. Studies. 2017;7:101.
    1. Asogwa U.D., Ofoegbu T.O., Ogbonna C.S., Eskay M., Obiyo N.O., Nji G.C., Ngwoke O.R., Eseadi C., Agboti C.I., Uwakwe C., et al. Effect of video-guided educational intervention on school engagement of adolescent students with hearing impairment. Medicine. 2020;99:e20643. doi: 10.1097/MD.0000000000020643.
    1. Schulz K.F., Chalmers I., Hayes R.J., Altman D.G. Empirical evidence of bias. Dimensions of methodological quality associated with estimates of treatment effects in controlled trials. JAMA. 1995;273:408–412. doi: 10.1001/jama.1995.03520290060030.
    1. Karbunarova J., Lvov University of Physical Culture. Kapбунарoва Influence author methodic teaching swimming on coordination quality of children 6–10 years old with hearing disabilities. Slobozhanskyi Her. Sci. Sport. 2016;53:35–38. doi: 10.15391/snsv.2016-3.012.
    1. Ilkım M., Akyol B. The Comparison of Some Motoric Characteristics of Hearing Impaired Individuals Sports Athletic and Gymnastic. Univers. J. Educ. Res. 2018;6:2148–2152. doi: 10.13189/ujer.2018.061012.
    1. Aref N., Boroujeni S.T., Ameri E.A. The effect of swim training intervention on balance and systems involved in balance in adolescents with hearing impairment and vestibular disorder. J. Res. Sport Rehab. 2018;6:53–61. doi: 10.22084/RSR.2018.17315.1403.
    1. De Kegel A., Maes L., Baetens T., Dhooge I., Van Waelvelde H. The influence of a vestibular dysfunction on the motor development of hearing-impaired children. Laryngoscope. 2012;122:2837–2843. doi: 10.1002/lary.23529.
    1. Maes L., De Kegel A., Van Waelvelde H., Dhooge I. Association Between Vestibular Function and Motor Performance in Hearing-impaired Children. Otol. Neurotol. 2014;35:e343–e347. doi: 10.1097/MAO.0000000000000597.
    1. Melo R.S., Lemos A., Raposo M.C.F., Monteiro M.G., Lambertz D., Ferraz K.M. Repercussions of the Degrees of Hearing Loss and Vestibular Dysfunction on the Static Balance of Children with Sensorineural Hearing Loss. Phys. Ther. 2021;101:pzab177. doi: 10.1093/ptj/pzab177.
    1. Sokolov M., Gordon K.A., Polonenko M., Blaser S.I., Papsin B.C., Cushing S.L. Vestibular and balance function is often impaired in children with profound unilateral sensorineural hearing loss. Hear. Res. 2019;372:52–61. doi: 10.1016/j.heares.2018.03.032.
    1. Ionescu E., Reynard P., Goulème N., Becaud C., Spruyt K., Ortega-Solis J., Thai-Van H. How sacculo-collic function assessed by cervical vestibular evoked myogenic Potentials correlates with the quality of postural control in hearing impaired children? Int. J. Pediatr. Otorhinolaryngol. 2020;130:109840. doi: 10.1016/j.ijporl.2019.109840.
    1. Potter C.N., Silverman L.N. Characteristics of Vestibular Function and Static Balance Skills in Deaf Children. Phys. Ther. 1984;64:1071–1075. doi: 10.1093/ptj/64.7.1071.
    1. Zhou G., Kenna M.A., Stevens K., Licameli G. Assessment of Saccular Function in Children with Sensorineural Hearing Loss. Arch. Otolaryngol. Neck Surg. 2009;135:40–44. doi: 10.1001/archoto.2008.508.
    1. Singh S., Gupta R.K., Kumar P. Vestibular evoked myogenic potentials in children with sensorineural hearing loss. Int. J. Pediatr. Otorhinolaryngol. 2012;76:1308–1311. doi: 10.1016/j.ijporl.2012.05.025.
    1. Xu X.-D., Zhang Q., Hu J., Zhang Y., Chen Y.-F., Zhang X.-T., Xu M. The hidden loss of otolithic function in children with profound sensorineural hearing loss. Int. J. Pediatr. Otorhinolaryngol. 2015;79:852–857. doi: 10.1016/j.ijporl.2015.03.017.
    1. Martens S., Dhooge I., Dhondt C., Vanaudenaerde S., Sucaet M., Rombaut L., Boudewyns A., Desloovere C., de Varebeke S.J., Vinck A.-S., et al. Vestibular Infant Screening (VIS)–Flanders: Results after 1.5 years of vestibular screening in hearing-impaired children. Sci. Rep. 2020;10:21011. doi: 10.1038/s41598-020-78049-z.
    1. Gadsbøll E., Erbs A.W., Hougaard D.D. Prevalence of abnormal vestibular responses in children with sensorineural hearing loss. Eur. Arch. Oto-Rhino-Laryngol. 2022;279:4695–4707. doi: 10.1007/s00405-021-07241-2.
    1. Tarakci D., Huseyinsinoglu B.E., Tarakci E., Ozdincler A.R. Effects of Nintendo Wii-Fit® video games on balance in children with mild cerebral palsy. Pediatr. Int. 2016;58:1042–1050. doi: 10.1111/ped.12942.
    1. Cooper T., Williams J.M. Does an exercise programme integrating the Nintendo Wii-Fit Balance Board improve balance in ambulatory children with cerebral palsy? Phys. Ther. Rev. 2017;22:229–237. doi: 10.1080/10833196.2017.1389810.
    1. Chesser B.T., Blythe S.A., Ridge L.D., Tomaszewski R.E.R., Kinne B.L. Effectiveness of the Wii for pediatric rehabilitation in individuals with cerebral palsy: A systematic review. Phys. Ther. Rev. 2020;25:106–117. doi: 10.1080/10833196.2020.1740402.
    1. Taracki D., Ozdincler A.R., Taracki E., Tutuncuoglu F., Ozmed M. Wii-based balance therapy to improve balance function of children with cerebral palsy: A pilot study. J. Phys. Ther. Sci. 2013;25:1123–1127. doi: 10.1589/jpts.25.1123.
    1. Chiu H.-C., Ada L., Lee S.-D. Balance and mobility training at home using Wii Fitin children with cerebral palsy: A feasibility study. BMJ Open. 2018;8:e019624. doi: 10.1136/bmjopen-2017-019624.
    1. Pavão S.L., Arnoni J.L.B., Oliveira A.K.C., Rocha N.A.C.F. Impact of a virtual reality-based intervention on motor performance and balance of a child with cerebral palsy: A case study. Rev. Paul Pediatr. 2014;32:389–394. doi: 10.1590/S0103-05822014000400016.
    1. Arnoni J.L.B., Verdério B.N., Pinto A.M.A., Rocha N.A.C.F. Effects of active videogame-based intervention on self-concept, balance, motor performance and adaptive success of children with cerebral palsy: Preliminary study. Fisioter. Pesqui. 2018;25:294–302. doi: 10.1590/1809-2950/17021825032018.
    1. Lotfi Y., Rezazadeh N., Moossavi A., Haghgoo H.A., Moghadam S.F., Pishyareh E., Bakhshi E., Rostami R., Sadeghi-Firoozabadi V., Khodabandelou Y. Review Paper: Introduction of Pediatric Balance Therapy in Children with Vestibular Dysfunction: Review of Indications, Mechanisms, and Key Exercises. Iran. Rehabil. J. 2016;14:5–14. doi: 10.15412/J.IRJ.08140102.
    1. Melo R.D.S. Ampleness of head movements of children and adolescents with sensorineural hearing loss. Int. J. Pediatr. Otorhinolaryngol. 2017;93:133–140. doi: 10.1016/j.ijporl.2016.12.015.
    1. da Silva P.W.A., Souza R.A., Raposo M.C.F., Ferraz K.M., Melo R.d.S. Head Position Comparison between Students with Normal Hearing and Students with Sensorineural Hearing Loss. Int. Arch. Otorhinolaryngol. 2013;17:363–369. doi: 10.1055/s-0033-1351685.
    1. Daneshmandi H., Majalan A.S., Babakhani M., Karanian F. The comparison of head and neck alignment in children with visual and hearing impairments and its relation with anthropometrical dimensions. Phys. Treat. J. 2014;4:69–76.
    1. Negahban H., Ali M.B.C., Nassadj G. Effect of hearing aids on static balance function in elderly with hearing loss. Gait Posture. 2017;58:126–129. doi: 10.1016/j.gaitpost.2017.07.112.
    1. Weaver T.S., Shayman C.S., Hullar T.E. The Effect of Hearing Aids and Cochlear Implants on Balance During Gait. Otol. Neurotol. 2017;38:1327–1332. doi: 10.1097/MAO.0000000000001551.
    1. Stevens M.N., Barbour D.L., Gronski M.P., Hullar T.E. Auditory contributions to maintaining balance. J. Vestib. Res. 2016;26:433–438. doi: 10.3233/VES-160599.
    1. Oikawa K., Kobayashi Y., Hiraumi H., Yonemoto K., Sato H. Body balance function of cochlear implant patients with and without sound conditions. Clin. Neurophysiol. 2018;129:2112–2117. doi: 10.1016/j.clinph.2018.07.018.
    1. Seiwerth I., Jonen J., Rahne T., Schwesig R., Lauenroth A., Hullar T.E., Plontke S.K. Influence of hearing on vestibulospinal control in healthy subjects. HNO. 2018;66:49–55. doi: 10.1007/s00106-018-0520-7.
    1. Berge J.E., Nordahl S.H.G., Aarstad H.J., Goplen F.K. Hearing as an Independent Predictor of Postural Balance in 1075 Patients Evaluated for Dizziness. Otolaryngol. Neck Surg. 2019;161:478–484. doi: 10.1177/0194599819844961.
    1. Seiwerth I., Jonen J., Rahne T., Lauenroth A., Hullar T.E., Plontke S.K., Schwesig R. Postural regulation and stability with acoustic input in normal-hearing subjects. HNO. 2020;68:100–105. doi: 10.1007/s00106-020-00846-9.
    1. Cushing S.L., Chia R., James A.L., Papsin B.C., Gordon K.A. A Test of Static and Dynamic Balance Function in Children with Cochlear Implants: The vestibular olympics. Arch. Otolaryngol. Neck Surg. 2008;134:34–38. doi: 10.1001/archoto.2007.16.
    1. Cushing S.L., Pothier D., Hughes C., Hubbard B.J., Gordon K.A., Papsin B.C. Providing auditory cues to improve stability in children who are deaf. Laryngoscope. 2012;122:S101–S102. doi: 10.1002/lary.23807.
    1. Mazaheryazdi M., Moossavi A., Sarrafzadah J., Talebian S., Jalaie S. Study of the effects of hearing on static and dynamic postural function in children using cochlear implants. Int. J. Pediatr. Otorhinolaryngol. 2017;100:18–22. doi: 10.1016/j.ijporl.2017.06.002.
    1. Suarez H., Ferreira E., Arocena S., Pintos B.G., Quinteros M., Suarez S., Gonzalez M.P. Motor and cognitive performances in pre-lingual cochlear implant adolescents, related with vestibular function and auditory input. Acta Oto-Laryngol. 2019;139:367–372. doi: 10.1080/00016489.2018.1549750.
    1. Bayat A., Farhadi M., Emamdjomeh H., Nadimi Z., Mirmomeni G., Saki N. Influence of Cochlear Implantation on Balance Function in Pediatrics. Int. Tinnitus J. 2020;24:31–35.
    1. Wolter N.E., Gordon K.A., Campos J., Madrigal L.D.V., Papsin B.C., Cushing S.L. Impact of the sensory environment on balance in children with bilateral cochleovestibular loss. Hear. Res. 2020;400:108134. doi: 10.1016/j.heares.2020.108134.
    1. Suarez H., Alonso R., Arocena S., Ferreira E., Roman C.S., Suarez A., Lapilover V. Sensorimotor interaction in deaf children. Relationship between gait performance and hearing input during childhood assessed in pre-lingual cochlear implant users. Acta Oto-Laryngol. 2017;137:346–351. doi: 10.1080/00016489.2016.1247496.
    1. Sioud R., Khalifa R., Houel N. Auditory cues behind congenitally blind subjects improve their balance control in bipedal upright posture. Gait Posture. 2019;70:175–178. doi: 10.1016/j.gaitpost.2019.03.004.
    1. Maheu M., Behtani L., Nooristani M., Houde M.S., Delcenserie A., Leroux T., Champoux F. Vestibular Function Modulates the Benefit of Hearing Aids in People with Hearing Loss During Static Postural Control. Ear Hear. 2019;40:1418–1424. doi: 10.1097/AUD.0000000000000720.
    1. Szeto B., Zanotto D., Lopez E.M., Stafford J.A., Nemer J.S., Chambers A.R., Agrawal S.K., Lalwani A.K. Hearing Loss Is Associated with Increased Variability in Double Support Period in the Elderly. Sensors. 2021;21:278. doi: 10.3390/s21010278.
    1. Morris B., Cosetti M., Kelly J., Yang J., Harel D., Medlin A., Lubetzky A.V. Differing postural control patterns in individuals with bilateral and unilateral hearing loss. Am. J. Otolaryngol. 2023;44:103866. doi: 10.1016/j.amjoto.2023.103866.
    1. Easton R.D., Greene A.J., DiZio P., Lackner J.R. Auditory cues for orientation and postural control in sighted and congenitally blind people. Exp. Brain Res. 1998;118:541–550. doi: 10.1007/s002210050310.
    1. Zhong X., Yost W.A. Relationship between Postural Stability and Spatial Hearing. J. Am. Acad. Audiol. 2013;24:782–788. doi: 10.3766/jaaa.24.9.3.
    1. Gandemer L., Parseihian G., Kronland-Martinet R., Bourdin C. Spatial Cues Provided by Sound Improve Postural Stabilization: Evidence of a Spatial Auditory Map? Front. Neurosci. 2017;11:357. doi: 10.3389/fnins.2017.00357.
    1. Karim A.M., Rumalla K., King L.A., Hullar T.E. The effect of spatial auditory landmarks on ambulation. Gait Posture. 2018;60:171–174. doi: 10.1016/j.gaitpost.2017.12.003.
    1. Forli F., Giuntini G., Ciabotti A., Bruschini L., Löfkvist U., Berrettini S. How does a bilingual environment affect the results in children with cochlear implants compared to monolingual-matched children? An Italian follow-up study. Int. J. Pediatr. Otorhinolaryngol. 2018;105:56–62. doi: 10.1016/j.ijporl.2017.12.006.
    1. Ehrmann-Müller D., Kühn H., Matthies C., Hagen R., Shehata-Dieler W. Outcomes after cochlear implant provision in children with cochlear nerve hypoplasia or aplasia. Int. J. Pediatr. Otorhinolaryngol. 2018;112:132–140. doi: 10.1016/j.ijporl.2018.06.038.
    1. Zeitler D.M., Sladen D.P., DeJong M.D., Torres J.H., Dorman M.F., Carlson M.L. Cochlear implantation for single-sided deafness in children and adolescents. Int. J. Pediatr. Otorhinolaryngol. 2019;118:128–133. doi: 10.1016/j.ijporl.2018.12.037.
    1. Lee Y., Sim H. Bilateral cochlear implantation versus unilateral cochlear implantation in deaf children: Effects of sentence context and listening conditions on recognition of spoken words in sentences. Int. J. Pediatr. Otorhinolaryngol. 2020;137:110237. doi: 10.1016/j.ijporl.2020.110237.
    1. Sharma S.D., Cushing S.L., Papsin B.C., Gordon K.A. Hearing and speech benefits of cochlear implantation in children: A review of the literature. Int. J. Pediatr. Otorhinolaryngol. 2020;133:109984. doi: 10.1016/j.ijporl.2020.109984.
    1. Thierry B., Blanchard M., Leboulanger N., Parodi M., Wiener-Vacher S.R., Garabedian E.-N., Loundon N. Cochlear implantation and vestibular function in children. Int. J. Pediatr. Otorhinolaryngol. 2015;79:101–104. doi: 10.1016/j.ijporl.2014.11.002.
    1. Huang M.-W., Hsu C.-J., Kuan C.-C., Chang W.-H. Static balance function in children with cochlear implants. Int. J. Pediatr. Otorhinolaryngol. 2011;75:700–703. doi: 10.1016/j.ijporl.2011.02.019.
    1. Janky K.L., Givens D. Vestibular, Visual Acuity, and Balance Outcomes in Children with Cochlear Implants: A preliminar report. Ear Hear. 2015;36:e364–e372. doi: 10.1097/AUD.0000000000000194.
    1. Kelly A., Liu Z., Leonard S., Toner F., Adams M., Toner J. Balance in children following cochlear implantation. Cochlea- Implant. Int. 2018;19:22–25. doi: 10.1080/14670100.2017.1379180.
    1. Ganc M., Kobosko J., Jedrzejczak W.W., Kochański B., Skarzynski H. Psychomotor development of 4-year-old deaf children with cochlear implants: Three case studies. Int. J. Pediatr. Otorhinolaryngol. 2021;141:110570. doi: 10.1016/j.ijporl.2020.110570.
    1. Reynard P., Ionescu E., Joly C., Ltaief-Boudrigua A., Coudert A., Thai-Van H. Vestibular impairment in cochlear implanted children presenting enlarged vestibular aqueduct and enlarged endolymphatic sac. Int. J. Pediatr. Otorhinolaryngol. 2021;141:110557. doi: 10.1016/j.ijporl.2020.110557.
    1. Singh A., Raynor E.M., Lee J.W., Smith S.L., Heet H., Garrison D., Wrigley J., Kaylie D.M., Riska K.M. Vestibular Dysfunction and Gross Motor Milestone Acquisition in Children with Hearing Loss: A Systematic Review. Otolaryngol. Neck Surg. 2021;165:493–506. doi: 10.1177/0194599820983726.
    1. Tsuzuku T., Kaga K. Delayed motor function and results of vestibular function tests in children with inner ear anomalies. Int. J. Pediatr. Otorhinolaryngol. 1992;23:261–268. doi: 10.1016/0165-5876(92)90108-2.
    1. Inoue A., Iwasaki S., Ushio M., Chihara Y., Fujimoto C., Egami N., Yamasoba T. Effect of Vestibular Dysfunction on the Development of Gross Motor Function in Children with Profound Hearing Loss. Audiol. Neurotol. 2013;18:143–151. doi: 10.1159/000346344.
    1. Masuda T., Kaga K. Relationship between acquisition of motor function and vestibular function in children with bilateral severe hearing loss. Acta Oto-Laryngol. 2014;134:672–678. doi: 10.3109/00016489.2014.890290.
    1. Kimura Y., Masuda T., Kaga K. Vestibular Function and Gross Motor Development in 195 Children with Congenital Hearing Loss—Assessment of Inner Ear Malformations. Otol. Neurotol. 2018;39:196–205. doi: 10.1097/MAO.0000000000001685.
    1. Janky K.L., Thomas M.L.A., High R.R., Schmid K.K., Ogun O.A. Predictive Factors for Vestibular Loss in Children with Hearing Loss. Am. J. Audiol. 2018;27:137–146. doi: 10.1044/2017_AJA-17-0058.
    1. Melo R.D.S., Lemos A., Macky C.F.D.S.T., Raposo M.C.F., Ferraz K.M. Postural control assessment in students with normal hearing and sensorineural hearing loss. Braz. J. Otorhinolaryngol. 2015;81:431–438. doi: 10.1016/j.bjorl.2014.08.014.
    1. An M.-H., Yi C.-H., Jeon H.-S., Park S.-Y. Age-related changes of single-limb standing balance in children with and without deafness. Int. J. Pediatr. Otorhinolaryngol. 2009;73:1539–1544. doi: 10.1016/j.ijporl.2009.07.020.
    1. Melo R.D.S., Lemos A., Raposo M.C.F., Belian R.B., Ferraz K.M. Balance performance of children and adolescents with sensorineural hearing loss: Repercussions of hearing loss degrees and etiological factors. Int. J. Pediatr. Otorhinolaryngol. 2018;110:16–21. doi: 10.1016/j.ijporl.2018.04.016.
    1. Soylemez E., Ertugrul S., Dogan E. Assessment of balance skills and falling risk in children with congenital bilateral profound sensorineural hearing loss. Int. J. Pediatr. Otorhinolaryngol. 2019;116:75–78. doi: 10.1016/j.ijporl.2018.10.034.
    1. Karakoc K., Mujdeci B. Evaluation of balance in children with sensorineural hearing loss according to age. Am. J. Otolaryngol. 2021;42:102830. doi: 10.1016/j.amjoto.2020.102830.
    1. Peñeñory V.M., Manresa-Yee C., Riquelme I., Collazos C.A., Fardoun H.M. Scoping Review of Systems to Train Psychomotor Skills in Hearing Impaired Children. Sensors. 2018;18:2546. doi: 10.3390/s18082546.
    1. Martens S., Dhooge I., Dhondt C., Leyssens L., Sucaet M., Vanaudenaerde S., Rombaut L., Maes L. Vestibular Infant Screening—Flanders: The implementation of a standard vestibular screening protocol for hearing-impaired children in Flanders. Int. J. Pediatr. Otorhinolaryngol. 2019;120:196–201. doi: 10.1016/j.ijporl.2019.02.033.

Source: PubMed

3
Subskrybuj