Concurrent Hearing and Genetic Screening of 180,469 Neonates with Follow-up in Beijing, China

Pu Dai, Li-Hui Huang, Guo-Jian Wang, Xue Gao, Chun-Yan Qu, Xiao-Wei Chen, Fu-Rong Ma, Jie Zhang, Wan-Li Xing, Shu-Yan Xi, Bin-Rong Ma, Ying Pan, Xiao-Hua Cheng, Hong Duan, Yong-Yi Yuan, Li-Ping Zhao, Liang Chang, Ru-Zhen Gao, Hai-Hong Liu, Wei Zhang, Sha-Sha Huang, Dong-Yang Kang, Wei Liang, Ke Zhang, Hong Jiang, Yong-Li Guo, Yi Zhou, Wan-Xia Zhang, Fan Lyu, Ying-Nan Jin, Zhen Zhou, Hong-Li Lu, Xin Zhang, Ping Liu, Jia Ke, Jin-Sheng Hao, Hai-Meng Huang, Di Jiang, Xin Ni, Mo Long, Luo Zhang, Jie Qiao, Cynthia Casson Morton, Xue-Zhong Liu, Jing Cheng, De-Min Han, Pu Dai, Li-Hui Huang, Guo-Jian Wang, Xue Gao, Chun-Yan Qu, Xiao-Wei Chen, Fu-Rong Ma, Jie Zhang, Wan-Li Xing, Shu-Yan Xi, Bin-Rong Ma, Ying Pan, Xiao-Hua Cheng, Hong Duan, Yong-Yi Yuan, Li-Ping Zhao, Liang Chang, Ru-Zhen Gao, Hai-Hong Liu, Wei Zhang, Sha-Sha Huang, Dong-Yang Kang, Wei Liang, Ke Zhang, Hong Jiang, Yong-Li Guo, Yi Zhou, Wan-Xia Zhang, Fan Lyu, Ying-Nan Jin, Zhen Zhou, Hong-Li Lu, Xin Zhang, Ping Liu, Jia Ke, Jin-Sheng Hao, Hai-Meng Huang, Di Jiang, Xin Ni, Mo Long, Luo Zhang, Jie Qiao, Cynthia Casson Morton, Xue-Zhong Liu, Jing Cheng, De-Min Han

Abstract

Concurrent hearing and genetic screening of newborns is expected to play important roles not only in early detection and diagnosis of congenital deafness, which triggers intervention, but also in predicting late-onset and progressive hearing loss and identifying individuals who are at risk of drug-induced HL. Concurrent hearing and genetic screening in the whole newborn population in Beijing was launched in January 2012. This study included 180,469 infants born in Beijing between April 2013 and March 2014, with last follow-up on February 24, 2018. Hearing screening was performed using transiently evoked otoacoustic emission (TEOAE) and automated auditory brainstem response (AABR). For genetic testing, dried blood spots were collected and nine variants in four genes, GJB2, SLC26A4, mtDNA 12S rRNA, and GJB3, were screened using a DNA microarray platform. Of the 180,469 infants, 1,915 (1.061%) were referred bilaterally or unilaterally for hearing screening; 8,136 (4.508%) were positive for genetic screening (heterozygote, homozygote, or compound heterozygote and mtDNA homoplasmy or heteroplasmy), among whom 7,896 (4.375%) passed hearing screening. Forty (0.022%) infants carried two variants in GJB2 or SLC26A4 (homozygote or compound heterozygote) and 10 of those infants passed newborn hearing screening. In total, 409 (0.227%) infants carried the mtDNA 12S rRNA variant (m.1555A>G or m.1494C>T), and 405 of them passed newborn hearing screening. In this cohort study, 25% of infants with pathogenic combinations of GJB2 or SLC26A4 variants and 99% of infants with an m.1555A>G or m.1494C>T variant passed routine newborn hearing screening, indicating that concurrent screening provides a more comprehensive approach for management of congenital deafness and prevention of ototoxicity.

Keywords: aminoglycoside antibiotics; deafness genes; genetic deafness; habilitation; late-onset hearing loss; microarray; newborn genetic screening; newborn hearing screening; ototoxicity; pathogenic variant.

Conflict of interest statement

The authors declare no competing interests.

Copyright © 2019 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

References

    1. Kennedy C., McCann D. Universal neonatal hearing screening moving from evidence to practice. Arch. Dis. Child. Fetal Neonatal. 2004;89:F378–F383.
    1. Fortnum H.M., Summerfield A.Q., Marshall D.H., Davis A.C., Bamford J.M. Prevalence of permanent childhood hearing impairment in the United Kingdom and implications for universal neonatal hearing screening: questionnaire based ascertainment study. BMJ. 2001;323:536–540.
    1. Harrison M., Roush J., Wallace J. Trends in age of identification and intervention in infants with hearing loss. Ear Hear. 2003;24:89–95.
    1. Young N.M., Reilly B.K., Burke L. Limitations of universal newborn hearing screening in early identification of pediatric cochlear implant candidates. Arch. Otolaryngol. Head Neck Surg. 2011;137:230–234.
    1. Morton C.C., Nance W.E. Newborn hearing screening--a silent revolution. N. Engl. J. Med. 2006;354:2151–2164.
    1. Dai P., Yu F., Han B., Liu X., Wang G., Li Q., Yuan Y., Liu X., Huang D., Kang D. GJB2 mutation spectrum in 2,063 Chinese patients with nonsyndromic hearing impairment. J. Transl. Med. 2009;7:26.
    1. Dai P., Yuan Y., Huang D., Zhu X., Yu F., Kang D., Yuan H., Wu B., Han D., Wong L.J. Molecular etiology of hearing impairment in Inner Mongolia: mutations in SLC26A4 gene and relevant phenotype analysis. J. Transl. Med. 2008;6:74.
    1. Yuan Y., You Y., Huang D., Cui J., Wang Y., Wang Q., Yu F., Kang D., Yuan H., Han D., Dai P. Comprehensive molecular etiology analysis of nonsyndromic hearing impairment from typical areas in China. J. Transl. Med. 2009;7:79.
    1. Xia J.H., Liu C.Y., Tang B.S., Pan Q., Huang L., Dai H.P., Zhang B.R., Xie W., Hu D.X., Zheng D. Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nat. Genet. 1998;20:370–373.
    1. Li C.X., Pan Q., Guo Y.G., Li Y., Gao H.F., Zhang D., Hu H., Xing W.L., Mitchelson K., Xia K. Construction of a multiplex allele-specific PCR-based universal array (ASPUA) and its application to hearing loss screening. Hum. Mutat. 2008;29:306–314.
    1. Green G.E., Smith R.J., Bent J.P., Cohn E.S. Genetic testing to identify deaf newborns. JAMA. 2000;284:1245.
    1. Norris V.W., Arnos K.S., Hanks W.D., Xia X., Nance W.E., Pandya A. Does universal newborn hearing screening identify all children with GJB2 (Connexin 26) deafness? Penetrance of GJB2 deafness. Ear Hear. 2006;27:732–741.
    1. Minami S.B., Mutai H., Nakano A., Arimoto Y., Taiji H., Morimoto N., Sakata H., Adachi N., Masuda S., Sakamoto H. GJB2-associated hearing loss undetected by hearing screening of newborns. Gene. 2013;532:41–45.
    1. Pagarkar W., Bitner-Glindzicz M., Knight J., Sirimanna T. Late postnatal onset of hearing loss due to GJB2 mutations. Int. J. Pediatr. Otorhinolaryngol. 2006;70:1119–1124.
    1. Chan D.K., Schrijver I., Chang K.W. Connexin-26-associated deafness: phenotypic variability and progression of hearing loss. Genet. Med. 2010;12:174–181.
    1. Kim B.G., Shin J.W., Park H.J., Kim J.M., Kim U.K., Choi J.Y. Limitations of hearing screening in newborns with PDS mutations. Int. J. Pediatr. Otorhinolaryngol. 2013;77:833–837.
    1. Chu C.W., Chen Y.J., Lee Y.H., Jaung S.J., Lee F.P., Huang H.M. Government-funded universal newborn hearing screening and genetic analyses of deafness predisposing genes in Taiwan. Int. J. Pediatr. Otorhinolaryngol. 2015;79:584–590.
    1. Zhang J., Wang P., Han B., Ding Y., Pan L., Zou J., Liu H., Pang X., Liu E., Wang H. Newborn hearing concurrent genetic screening for hearing impairment-a clinical practice in 58,397 neonates in Tianjin, China. Int. J. Pediatr. Otorhinolaryngol. 2013;77:1929–1935.
    1. Wang Q.J., Zhao Y.L., Rao S.Q., Guo Y.F., He Y., Lan L., Yang W.Y., Zheng Q.Y., Ruben R.J., Han D.Y., Shen Y. Newborn hearing concurrent gene screening can improve care for hearing loss: a study on 14,913 Chinese newborns. Int. J. Pediatr. Otorhinolaryngol. 2011;75:535–542.
    1. Wang Q., Xiang J., Sun J., Yang Y., Guan J., Wang D., Song C., Guo L., Wang H., Chen Y. Nationwide population genetic screening improves outcomes of newborn screening for hearing loss in China. Genet. Med. 2019
    1. Wu C.C., Tsai C.H., Hung C.C., Lin Y.H., Lin Y.H., Huang F.L., Tsao P.N., Su Y.N., Lee Y.L., Hsieh W.S., Hsu C.J. Newborn genetic screening for hearing impairment: a population-based longitudinal study. Genet. Med. 2017;19:6–12.
    1. Peng Q., Huang S., Liang Y., Ma K., Li S., Yang L., Li W., Ma Q., Liu Q., Zhong B., Lu X. Concurrent genetic and standard screening for hearing impairment in 9317 southern Chinese newborns. Genet. Test. Mol. Biomarkers. 2016;20:603–608.
    1. Nivoloni Kde.A., da Silva-Costa S.M., Pomílio M.C., Pereira T., Lopes Kde.C., de Moraes V.C., Alexandrino F., de Oliveira C.A., Sartorato E.L. Newborn hearing screening and genetic testing in 8974 Brazilian neonates. Int. J. Pediatr. Otorhinolaryngol. 2010;74:926–929.
    1. Zaputovic S., Stimac T., Prpic I., Mahulja-Stamenkovic V., Medica I., Peterlin B. Molecular analysis in diagnostic procedure of hearing impairment in newborns. Croat. Med. J. 2005;46:797–800.
    1. Wu C.M., Ko H.C., Tsou Y.T., Lin Y.H., Lin J.L., Chen C.K., Chen P.L., Wu C.C. Long-Term Cochlear Implant Outcomes in Children with GJB2 and SLC26A4 Mutations. PLoS ONE. 2015;10:e0138575.
    1. Yan Y.J., Li Y., Yang T., Huang Q., Wu H. The effect of GJB2 and SLC26A4 gene mutations on rehabilitative outcomes in pediatric cochlear implant patients. Eur. Arch. Otorhinolaryngol. 2013;270:2865–2870.
    1. Yoshida H., Takahashi H., Kanda Y., Usami S. Long term speech perception after cochlear implant in pediatric patients with GJB2 mutations. Auris Nasus Larynx. 2013;40:435–439.
    1. Tsukada K., Nishio S.Y., Hattori M., Usami S. Ethnic-specific spectrum of GJB2 and SLC26A4 mutations: their origin and a literature review. Ann. Otol. Rhinol. Laryngol. 2015;124(Suppl 1):61S–76S.
    1. Wang S., Wei Q., Fan Y., Lu Y., Xing G., Cao X. A preliminary study on the pathogenicity of deafness-associated gene GJB3 c.538C>T. J Med. Mol. Biol. 2012;10:10–15.
    1. Huang S., Huang B., Wang G., Kang D.Y., Zhang X., Meng X., Dai P. The relationship between the GJB3 c.538C>T variant and hearing phenotype in the Chinese population. Int. J. Pediatr. Otorhinolaryngol. 2017;102:67–70.
    1. Liu X., Dai P., Huang D.L., Yuan H.J., Li W.M., Cao J.Y., Yu F., Zhang R.N., Lin H.Y., Zhu X.H. [Large-scale screening of mtDNA A1555G mutation in China and its significance in prevention of aminoglycoside antibiotic induced deafness] Zhonghua Yi Xue Za Zhi. 2006;86:1318–1322.
    1. Barbi M., Binda S., Caroppo S., Ambrosetti U., Corbetta C., Sergi P. A wider role for congenital cytomegalovirus infection in sensorineural hearing loss. Pediatr. Infect. Dis. J. 2003;22:39–42.
    1. Dai P., Li Q., Huang D., Yuan Y., Kang D., Miller D.T., Shao H., Zhu Q., He J., Yu F. SLC26A4 c.919-2A>G varies among Chinese ethnic groups as a cause of hearing loss. Genet. Med. 2008;10:586–592.
    1. Dai P., Yu F., Han B., Yuan Y., Li Q., Wang G., Liu X., He J., Huang D., Kang D. The prevalence of the 235delC GJB2 mutation in a Chinese deaf population. Genet. Med. 2007;9:283–289.
    1. Wang G., Dai P., Han D., Han B., Kang D., Zhang X. Application of DNA microarray in rapid genetic diagnosis of non-syndromic hearing loss. Chinese Journal of Otology. 2008;6:61–66.
    1. Dai P., Yuan Y. Tertiary prevention of hearing deficit based on genetic screening and diagnosis. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2013;48:973–977.

Source: PubMed

3
Subskrybuj