Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome

Susie Y Huang, Thomas Witzel, Boris Keil, Alina Scholz, Mathias Davids, Peter Dietz, Elmar Rummert, Rebecca Ramb, John E Kirsch, Anastasia Yendiki, Qiuyun Fan, Qiyuan Tian, Gabriel Ramos-Llordén, Hong-Hsi Lee, Aapo Nummenmaa, Berkin Bilgic, Kawin Setsompop, Fuyixue Wang, Alexandru V Avram, Michal Komlosh, Dan Benjamini, Kulam Najmudeen Magdoom, Sudhir Pathak, Walter Schneider, Dmitry S Novikov, Els Fieremans, Slimane Tounekti, Choukri Mekkaoui, Jean Augustinack, Daniel Berger, Alexander Shapson-Coe, Jeff Lichtman, Peter J Basser, Lawrence L Wald, Bruce R Rosen, Susie Y Huang, Thomas Witzel, Boris Keil, Alina Scholz, Mathias Davids, Peter Dietz, Elmar Rummert, Rebecca Ramb, John E Kirsch, Anastasia Yendiki, Qiuyun Fan, Qiyuan Tian, Gabriel Ramos-Llordén, Hong-Hsi Lee, Aapo Nummenmaa, Berkin Bilgic, Kawin Setsompop, Fuyixue Wang, Alexandru V Avram, Michal Komlosh, Dan Benjamini, Kulam Najmudeen Magdoom, Sudhir Pathak, Walter Schneider, Dmitry S Novikov, Els Fieremans, Slimane Tounekti, Choukri Mekkaoui, Jean Augustinack, Daniel Berger, Alexander Shapson-Coe, Jeff Lichtman, Peter J Basser, Lawrence L Wald, Bruce R Rosen

Abstract

The first phase of the Human Connectome Project pioneered advances in MRI technology for mapping the macroscopic structural connections of the living human brain through the engineering of a whole-body human MRI scanner equipped with maximum gradient strength of 300 mT/m, the highest ever achieved for human imaging. While this instrument has made important contributions to the understanding of macroscale connectional topology, it has also demonstrated the potential of dedicated high-gradient performance scanners to provide unparalleled in vivo assessment of neural tissue microstructure. Building on the initial groundwork laid by the original Connectome scanner, we have now embarked on an international, multi-site effort to build the next-generation human 3T Connectome scanner (Connectome 2.0) optimized for the study of neural tissue microstructure and connectional anatomy across multiple length scales. In order to maximize the resolution of this in vivo microscope for studies of the living human brain, we will push the diffusion resolution limit to unprecedented levels by (1) nearly doubling the current maximum gradient strength from 300 mT/m to 500 mT/m and tripling the maximum slew rate from 200 T/m/s to 600 T/m/s through the design of a one-of-a-kind head gradient coil optimized to minimize peripheral nerve stimulation; (2) developing high-sensitivity multi-channel radiofrequency receive coils for in vivo and ex vivo human brain imaging; (3) incorporating dynamic field monitoring to minimize image distortions and artifacts; (4) developing new pulse sequences to integrate the strongest diffusion encoding and highest spatial resolution ever achieved in the living human brain; and (5) calibrating the measurements obtained from this next-generation instrument through systematic validation of diffusion microstructural metrics in high-fidelity phantoms and ex vivo brain tissue at progressively finer scales with accompanying diffusion simulations in histology-based micro-geometries. We envision creating the ultimate diffusion MRI instrument capable of capturing the complex multi-scale organization of the living human brain - from the microscopic scale needed to probe cellular geometry, heterogeneity and plasticity, to the mesoscopic scale for quantifying the distinctions in cortical structure and connectivity that define cyto- and myeloarchitectonic boundaries, to improvements in estimates of macroscopic connectivity.

Keywords: Axon diameter; Connectome; Diffusion MRI; Gray matter; Head gradient; Multi-scale modeling; Peripheral nerve stimulation; Tissue microstructure; Validation.

Copyright © 2021. Published by Elsevier Inc.

Figures

Fig. 1.
Fig. 1.
Peripheral nerve stimulation (PNS) characteristics of the Siemens Impulse head gradient obtained in experiments and simulations using realistic body models. Left column: Experimental PNS thresholds (blue) and simulated thresholds (red, for the female and male model and their average) in terms of the smallest stimulating gradient amplitude as a function of trapezoidal rise time for the Siemens Impulse head gradient (Gmax = 200 mT/m, maximum slew rate of 900 T/m/s), the geometry of which is being adopted for the Connectome 2.0 head gradient with modified windings to achieve the target Gmax = 500 mT/m and maximum slew rate of 600 T/m/s. The gray shaded area denotes the accessible performance region determined by Gmax and maximum slew rate. Center column: Sites of perceived sensation reported by the subjects during the stimulation experiments. Right column: Predicted sites of activation in the male body model. The color and size of each sphere correspond to the reciprocal PNS threshold (which we refer to as the PNS oracle). Figure adapted from Davids et al. (2021a).
Fig. 2.
Fig. 2.
64-channel and 72-channel in vivo head array coil configurations (top row) with simulated SNR maps (bottom row). Both head coil designs show similar SNR performance at the center of the phantom. In the periphery of the brain, the 72-channel head coil shows a 13% improvement in the simulated SNR. The latter will be advantageous for studies of cortical microstructure.
Fig. 3.
Fig. 3.
48-channel and 64-channel ex vivo whole brain array coil configurations (top row) with simulated SNR maps (bottom row). The dedicated 64-channel ex vivo brain array enables approximately 17% higher SNR in the corresponding cortical regions of the phantom, while achieving nearly identical SNR in the central region.
Fig. 4.
Fig. 4.
Minimum TE obtained for the pulsed gradient spin echo diffusion sequence as a function of b-value for different maximum gradient strengths.
Fig. 5.
Fig. 5.
In brain white matter of two human subjects, the directionally averaged diffusion signal S¯(b) scales as ~1/b at strong diffusion weighting b. At high b-value, the extra-axonal signal decays exponentially fast, and the “stick”-like intra-axonal signal dominates. The deviation of the signal power-law scaling (solid line), manifested by the negative intercept in b → ∞ limit (dotted line), offers an estimate for the effective axonal radius reff ≈ 3 μm.
Fig. 6.
Fig. 6.
Simulation results showing the resolution limit of PGSE (blue) and OGSE (other colors) for the next-generation ultra-high Gmax/slew rate of 500 mT/m / 600T/m/s (solid lines) versus the current Gmax/slew rate of 300mT/m / 200 T/m/s (dashed lines). Simulation results for (TOP) parallel cylinders and (BOTTOM) dispersed cylinders mimicking axons (inset: OCT images of axons in the human temporal lobe). The shorter effective TE achievable with the next-generation Connectome scanner will enable a nearly 2x increase in SNR, which sets the resolution limit (horizontal bars), resulting in a minimum axonal size of 1.4–1.6 μm vs. 2.5–3 μm (Connectome 2.0 vs 1.0) in the case of parallel axons, and 1.6 μm vs. 3 μm in the case of dispersed axons for relatively low-frequency OGSE. The different OGSE curves (denoted by cyan, green, yellow and orange) correspond to different OGSE frequencies. The dotted lines at the bottom of each figure correspond to a Gmax and slew rate of 80 mT/m and 200 T/m/s, respectively, representing the resolution limit attainable with the latest commercially available clinical gradient systems. Simulations were performed using the Microstructure Imaging Sequence Simulation ToolBox (MISST) (Drobnjak et al., 2010; Drobnjak et al., 2011; Ianus et al., 2013).
Fig. 7.
Fig. 7.
Double diffusion-encoding (DDE) sequence (top) and maps of mean diffusion-weighted imaging volumes using parallel and perpendicular diffusion encoding directions (bottom). The microscopy anisotropy (μFA) maps derived from the difference of the parallel and perpendicular signals is shown on the bottom panel. Figure adapted from Fan et al. (2020b).
Fig. 8.
Fig. 8.
A. The diffusion time (Δ) dependence of MAP-MRI scalar parameters (Avram et al., 2016; Özarslan et al., 2013) in a healthy volunteer (Avram et al., 2021): Propagator Anisotropy (PA); Non-Gaussianity (NG); Return-to-axis probability (RTAP); and Return-to-origin-probability (RTOP). B. The corresponding temporal scaling MRI parameters (Özarslan et al., 2012) by representing brain tissue as fractal-like media: dw – statistical fractal dimension; ds – spectral dimension; df – fractal dimension. Figure adapted from Avram et al. (2021).
Fig. 9.
Fig. 9.
Different microstructural “motifs” derived from the covariance of the subvoxel diffusion tensor distribution (Magdoom et al., 2021). ODF – Orientation distribution function, μODF – micro-ODF. Figure adapted from Magdoom et al. (2021).
Fig. 10.
Fig. 10.
High-quality dMRI reference dataset acquired at 760 μm isotropic resolution with 1260 q-space samplings across 9 two-hour sessions on a single healthy participant. The creation of this benchmark dataset was made possible through the use of the current Connectome scanner, a custom-built 64-channel phased-array head coil, and a recently developed SNR-efficient gSlider acquisition. The color-coded FA maps of the 0.76-mm dataset are presented in three orthogonal views. By using high spatial resolution, improved visualization of detailed structures is provided (top panel), and more sharping-turning fibers such as those connecting cortical regions between adjacent gyri can be observed (red arrows, bottom panel). Figure adapted from Wang et al. (2021).
Fig. 11.
Fig. 11.
Axial post-mortem whole human brain images obtained with multi-shell diffusion MRI at 0.73 mm isotropic resolution using b-values of 4,000 s/mm2 and 10,000 s/mm2. (a) Colorized FA maps obtained from DTI analysis of the b = 4,000 s/mm2 data depict the fine gray-matter bridges spanning the internal capsule. (b) Mean kurtosis maps obtained from diffusion kurtosis analysis of the b-values of 4,000 s/mm2 and 10,000 s/mm2 delineate the external capsule, putamen, and subcortical nuclei with exquisite detail. There is also high mean kurtosis corresponding to the corticospinal tracts coursing through the cerebral peduncles. (c) Mean diffusion-weighted image at b = 10,000 s/mm2 (left) and primary eigenvectors derived from DTI analysis of the b = 4,000 s/mm2 data show primarily radial fibers (orange arrow) in the hand knob of the precentral gyrus (primary motor cortex) and a thin layer of tangential fibers (white arrow) in the postcentral gyrus (primary somatosensory cortex) on the opposite side of the central sulcus. Figure panels (a) and (b) adapted from Scholz et al. (2021).
Fig. 12.
Fig. 12.
Multi-scale taxon phantoms designed for imaging on preclinical and human MRI systems. (a) Micro-phantom manufactured to fit in a 5-mm NMR tube containing fibers of 5 μm and 2 μm inner diameter (ID). (b) Filaments packed into a 1 mm3 cube for fibers of three diameters (5 μm, 2 μm and 0.8 μm). Each filament contains 3476 taxon tubes. (c) 3T phantom with crossing fibers (green areas) and variable packing density cubes of different size (1, 2, 4, and 6 mm on a side) and density (0.125, 0.25, 0.50, and 1.0). The phantom was sized to fit in a standard 20-cm head coil. Figure adapted from Pathak et al. (2020).
Fig. 13.
Fig. 13.
Ground-truth diffusion phantom shared across labs demonstrate discrimination of fibers of 2 and 5 um in diameter. (a) NMR tube phantom containing 2 and 5 μm ID taxons. The 2 and 5 μm peaks are distinguishable based on a DDE acquisition with analysis using the non-parametric multiple correlation functions framework. (b) Scanning electron microscope image of the taxons. (c) Phantom was scanned on: the Connectome scanner at MGH, Bruker 7T at NIH, and Skyra 3T and 7T Bruker systems at UPMC. Figure adapted from Pathak et al. (2020).
Fig. 14.
Fig. 14.
The progression of diffusion simulations in realistic tissue microstructure. Starting from diffusion simulations in 2-dimensional rodent light microscopy (LM) and electron microscopy (EM) data, the advance of microscopy techniques and cell segmentation pipeline have pushed forward the research of diffusion simulations in 3-dimensional tissue micro-geometry, such as sequential slice EM and synchrotron X-ray nano-holotomography (XNH) in primate brain white matter. The figure is adapted from Andersson et al. (2020), Chin et al. (2002), Lee et al. (2020c), Lee et al. (2020e), Nguyen et al. (2018), Palombo et al. (2019) and Xu et al. (2018) with permission from Wiley, Elsevier, and Springer Nature.

References

    1. Abdollahzadeh A, Belevich I, Jokitalo E, Tohka J, Sierra A, 2019. Automated 3D axonal morphometry of white matter. Sci. Rep. 9, 6084.
    1. Ades-Aron B, Veraart J, Kochunov P, McGuire S, Sherman P, Kellner E, Novikov DS, Fieremans E, 2018. Evaluation of the accuracy and precision of the diffusion parameter EStImation with Gibbs and NoisE removal pipeline. Neuroimage 183, 532–543.
    1. Afzali M, Aja-Fernandez S, Jones DK, 2020. Direction-averaged diffusion-weighted MRI signal using different axisymmetric B-tensor encoding schemes. Magn. Reson. Med. 84, 1579–1591.
    1. Alexander DC, 2008. A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features. Magn. Reson. Med. 60, 439–448.
    1. Alexander DC, Dyrby TB, Nilsson M, Zhang H, 2017. Imaging brain microstructure with diffusion MRI: practicality and applications. NMR Biomed..
    1. Alexander DC, Hubbard PL, Hall MG, Moore EA, Ptito M, Parker GJ, Dyrby TB, 2010. Orientationally invariant indices of axon diameter and density from diffusion MRI. Neuroimage 52, 1374–1389.
    1. Andersson M, Kjer HM, Rafael-Patino J, Pacureanu A, Pakkenberg B, Thiran JP, Ptito M, Bech M, Bjorholm Dahl A, Andersen Dahl V, Dyrby TB, 2020. Axon morphology is modulated by the local environment and impacts the noninvasive investigation of its structure-function relationship. Proc. Natl. Acad. Sci. U. S. A. 117, 33649–33659.
    1. Assaf Y, Basser PJ, 2005. Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. Neuroimage 27, 48–58.
    1. Assaf Y, Blumenfeld-Katzir T, Yovel Y, Basser PJ, 2008. AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn. Reson. Med. 59, 1347–1354.
    1. Assaf Y, Freidlin RZ, Rohde GK, Basser PJ, 2004. New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn. Reson. Med. 52, 965–978.
    1. Avram AV, Sarlls JE, Barnett AS, Özarslan E, Thomas C, Irfanoglu MO, Hutchinson E, Pierpaoli C, Basser PJ, 2016. Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure. Neuroimage 127, 422–434.
    1. Avram AV, Tian Q, Fan Q, Huang SY, Basser PJ, 2021. The diffusion time dependence of MAP-MRI parameters in the human brain. Proc. Intl. Soc. Mag. Reson. Med. 29, 2465.
    1. Baena V, Schalek RL, Lichtman JW, Terasaki M, 2019. Serial-section electron microscopy using automated tape-collecting ultramicrotome (ATUM). Methods Cell Biol. 152, 41–67.
    1. Barazany D, Basser PJ, Assaf Y, 2009. In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain 132, 1210–1220.
    1. Bastiani M, Oros-Peusquens AM, Seehaus A, Brenner D, Mollenhoff K, Celik A, Felder J, Bratzke H, Shah NJ, Galuske R, Goebel R, Roebroeck A, 2016. Automatic segmentation of human cortical layer-complexes and architectural areas using ex vivo diffusion MRI and its validation. Front. Neurosci. 10, 487.
    1. Benjamini D, Basser PJ, 2014. Joint radius-length distribution as a measure of anisotropic pore eccentricity: an experimental and analytical framework. J. Chem. Phys. 141, 214202.
    1. Benjamini D, Hutchinson EB, Komlosh ME, Comrie CJ, Schwerin SC, Zhang G, Pierpaoli C, Basser PJ, 2020. Direct and specific assessment of axonal injury and spinal cord microenvironments using diffusion correlation imaging. Neuroimage 221, 117195.
    1. Benjamini D, Komlosh ME, Basser PJ, Nevo U, 2014. Nonparametric pore size distribution using d-PFG: comparison to s-PFG and migration to MRI. J. Magn. Reson. 246, 36–45.
    1. Benjamini D, Komlosh ME, Holtzclaw LA, Nevo U, Basser PJ, 2016. White matter microstructure from nonparametric axon diameter distribution mapping. Neuroimage 135, 333–344.
    1. Bernstein MA, Zhou XJ, Polzin JA, King KF, Ganin A, Pelc NJ, Glover GH, 1998. Concomitant gradient terms in phase contrast MR: analysis and correction. Magn. Reson. Med. 39, 300–308.
    1. Blasche M, 2017. Gradient performance and gradient amplifier power. MAGNETOM Flash, Siemens Healhcare 69.
    1. Boesch C, Gruetter R, Martin E, 1991. Temporal and spatial analysis of fields generated by eddy currents in superconducting magnets: optimization of corrections and quantitative characterization of magnet/gradient systems. Magn. Reson. Med. 20, 268–284.
    1. Burcaw LM, Fieremans E, Novikov DS, 2015. Mesoscopic structure of neuronal tracts from time-dependent diffusion. Neuroimage 114, 18–37.
    1. Busch J, Vannesjo SJ, Barmet C, Pruessmann KP, Kozerke S, 2014. Analysis of temperature dependence of background phase errors in phase-contrast cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 16, 97.
    1. Callaghan PT, 1991. Principles of Nuclear Magnetic Resonance Microscopy. Oxford University Press, Oxford.
    1. Chin CL, Wehrli FW, Hwang SN, Takahashi M, Hackney DB, 2002. Biexponential diffusion attenuation in the rat spinal cord: computer simulations based on anatomic images of axonal architecture. Magn. Reson. Med. 47, 455–460.
    1. Cory DG, Garroway AN, 1990. Measurement of translational displacement probabilities by NMR: an indicator of compartmentation. Magn. Reson. Med. 14, 435–444.
    1. Davids M, Dietz P, Ruyters G, Roesler M, Klein V, Guerin B, Feinberg D, Wald LL, 2021a. PNS optimization of a high-performance asymmetric gradient coil for head imaging. In: Proceedings of the 29th Annual Meeting of the ISMRM., Virtual Meeting.
    1. Davids M, Guerin B, Klein V, Schmelz M, Schad LR, Wald LL, 2020a. Optimizing selective stimulation of peripheral nerves with arrays of coils or surface electrodes using a linear peripheral nerve stimulation metric. J. Neural Eng. 17, 016029.
    1. Davids M, Guerin B, Klein V, Wald LL, 2020b. Optimization of MRI gradient coils with explicit peripheral nerve stimulation constraints. IEEE Trans Med Imaging PP.
    1. Davids M, Guérin B, Malzacher M, Schad LR, Wald LL, 2017. Predicting magnetostimulation thresholds in the peripheral nervous system using realistic body models. Sci. Rep. 7, 5316.
    1. Davids M, Guerin B, Vom Endt A, Schad LR, Wald LL, 2019. Prediction of peripheral nerve stimulation thresholds of MRI gradient coils using coupled electromagnetic and neurodynamic simulations. Magn. Reson. Med. 81, 686–701.
    1. Davids M, Guerin B, Wald LL, 2021b. A Huygens’ surface approach to rapid characterization of Peripheral Nerve Stimulation (PNS). Magn. Reson. Med..
    1. Dietrich BE, Brunner DO, Wilm BJ, Barmet C, Gross S, Kasper L, Haeberlin M, Schmid T, Vannesjo SJ, Pruessmann KP, 2016. A field camera for MR sequence monitoring and system analysis. Magn. Reson. Med. 75, 1831–1840.
    1. Does MD, Parsons EC, Gore JC, 2003. Oscillating gradient measurements of water diffusion in normal and globally ischemic rat brain. Magn. Reson. Med. 49, 206–215.
    1. Drobnjak I, Alexander DC, 2011. Optimising time-varying gradient orientation for microstructure sensitivity in diffusion-weighted MR. J. Magn. Reson. 212, 344–354.
    1. Drobnjak I, Siow B, Alexander DC, 2010. Optimizing gradient waveforms for microstructure sensitivity in diffusion-weighted MR. J. Magn. Reson. 206, 41–51.
    1. Drobnjak I, Zhang H, Hall MG, Alexander DC, 2011. The matrix formalism for generalised gradients with time-varying orientation in diffusion NMR. J. Magn. Reson. 210, 151–157.
    1. Drobnjak I, Zhang H, Ianus A, Kaden E, Alexander DC, 2016. PGSE, OGSE, and sensitivity to axon diameter in diffusion MRI: Insight from a simulation study. Magn. Reson. Med. 75, 688–700.
    1. Dyrby TB, Sogaard LV, Hall MG, Ptito M, Alexander DC, 2012. Contrast and stability of the axon diameter index from microstructure imaging with diffusion MRI. Magn. Reson. Med..
    1. Eberle AL, Zeidler D, 2018. Multi-beam scanning electron microscopy for high-throughput imaging in connectomics research. Front Neuroanat 12, 112.
    1. Eichner C, Cauley SF, Cohen-Adad J, Moller HE, Turner R, Setsompop K, Wald LL, 2015. Real diffusion-weighted MRI enabling true signal averaging and increased diffusion contrast. Neuroimage 122, 373–384.
    1. Eriksson S, Lasic S, Topgaard D, 2013. Isotropic diffusion weighting in PGSE NMR by magic-angle spinning of the q-vector. J. Magn. Reson. 226, 13–18.
    1. Fan Q, Eichner C, Afzali M, Mueller L, Tax CMW, Davids M, Mahmutovic M, Keil B, Bilgic B, Setsompop K, Lee HH, Tian Q, Maffei C, Yendiki A, Song YQ, Huang CC, Lin CP, Weiskopf N, Anwander A, Jones DK, Rosen BR, Wald LL, Huang SY, 2021. Mapping the Human Connectome Using Diffusion MRI at 300 mT/m Gradient Strength: Methodological Advances and Scientific Impact. Neuroimage Submitted for publication.
    1. Fan Q, Nummenmaa A, Wichtmann B, Witzel T, Mekkaoui C, Schneider W, Wald LL, Huang SY, 2018. Validation of diffusion MRI estimates of compartment size and volume fraction in a biomimetic brain phantom using a human MRI scanner with 300mT/m maximum gradient strength. Neuroimage 182, 469–478.
    1. Fan Q, Nummenmaa A, Witzel T, Ohringer N, Tian Q, Setsompop K, Klawiter EC, Rosen BR, Wald LL, Huang SY, 2020a. Axon diameter index estimation independent of fiber orientation distribution using high-gradient diffusion MRI. Neuroimage 222, 117197.
    1. Fan Q, Nummenmaa A, Witzel T, Zanzonico R, Keil B, Cauley S, Polimeni JR, Tisdall D, Van Dijk KR, Buckner RL, Wedeen VJ, Rosen BR, Wald LL, 2014. Investigating the capability to resolve complex white matter structures with high b–value diffusion magnetic resonance imaging on the MGH-USC Connectom scanner. Brain Connect. 4, 718–726.
    1. Fan Q, Witzel T, Nummenmaa A, Van Dijk KR, Van Horn JD, Drews MK, Somerville LH, Sheridan MA, Santillana RM, Snyder J, Hedden T, Shaw EE, Hollinshead MO, Renvall V, Zanzonico R, Keil B, Cauley S, Polimeni JR, Tisdall D, Buckner RL, Wedeen VJ, Wald LL, Toga AW, Rosen BR, 2016. MGH-USC Human Connectome Project datasets with ultra-high b-value diffusion MRI. Neuroimage 124, 1108–1114.
    1. Fan Q, Witzel T, Tounekti S, Tian Q, Ngamsombat C, Polackal M, Nummenmaa A, Huang SY, 2020b. Investigating restricted diffusion within different cortical regions using double-diffusion encoding. Int. Soc. Magn. Reson. Med..
    1. Feinberg D, Dietz P, Liu C, Setsompop K, Mukherjee P, Wald LL, Vu AT, Beckett A, Gonzalez Insua I, Schroeder M, Stocker S, Bell PH, Rummert E, Davids M, 2021. Design and development of a next-generation 7T human brain scanner with high-performance gradient coil and dense RF arrays. In: Proceedings of the 29th Annual Meeting of the ISMRM, Virtual Meeting.
    1. Ferizi U, Schneider T, Tariq M, Wheeler-Kingshott CA, Zhang H, Alexander DC, 2013. The importance of being dispersed: a ranking of diffusion MRI models for fibre dispersion using in vivo human brain data. Med. Image Comput. Comput. Assist. Interv. 16, 74–81.
    1. Fieremans E, Burcaw LM, Lee HH, Lemberskiy G, Veraart J, Novikov DS, 2016. In vivo observation and biophysical interpretation of time-dependent diffusion in human white matter. Neuroimage 129, 414–427.
    1. Fieremans E, Lee HH, 2018. Physical and numerical phantoms for the validation of brain microstructural MRI: a cookbook. Neuroimage 182, 39–61.
    1. Fischl B, Sereno MI, 2018. Microstructural parcellation of the human brain. Neuroimage 182, 219–231.
    1. Foo TKF, Laskaris E, Vermilyea M, Xu M, Thompson P, Conte G, Van Epps C, Immer C, Lee SK, Tan ET, Graziani D, Mathieu JB, Hardy CJ, Schenck JF, Fiveland E, Stautner W, Ricci J, Piel J, Park K, Hua Y, Bai Y, Kagan A, Stanley D, Weavers PT, Gray E, Shu Y, Frick MA, Campeau NG, Trzasko J, Huston J 3rd, Bernstein MA, 2018. Lightweight, compact, and high-performance 3T MR system for imaging the brain and extremities. Magn Reson Med 80, 2232–2245.
    1. Foo TKF, Tan ET, Vermilyea ME, Hua Y, Fiveland EW, Piel JE, Park K, Ricci J, Thompson PS, Graziani D, Conte G, Kagan A, Bai Y, Vasil C, Tarasek M, Yeo DTB, Snell F, Lee D, Dean A, DeMarco JK, Shih RY, Hood MN, Chae H, Ho VB, 2020. Highly efficient head-only magnetic field insert gradient coil for achieving simultaneous high gradient amplitude and slew rate at 3.0T (MAGNUS) for brain microstructure imaging. Magn Reson Med 83, 2356–2369.
    1. Gore JC, Xu J, Colvin DC, Yankeelov TE, Parsons EC, Does MD, 2010. Characterization of tissue structure at varying length scales using temporal diffusion spectroscopy. NMR Biomed. 23, 745–756.
    1. Gruber B, Keil B, Witzel T, Nummenmaa A, Wald LL, 2014. A 60-channel ex-vivo brain-slice coil array for 3T imaging. In: Proceedings of the 22nd Annual Meeting of the ISMRM., Milan, Italy, p. 4885.
    1. Guise C, Fernandes MM, Nobrega JM, Pathak S, Schneider W, Fangueiro R, 2016. Hollow polypropylene yarns as a biomimetic brain phantom for the validation of high-definition fiber tractography imaging. ACS Appl. Mater. Interfaces 8, 29960–29967.
    1. Heilbronner SR, Haber SN, 2014. Frontal cortical and subcortical projections provide a basis for segmenting the cingulum bundle: implications for neuroimaging and psychiatric disorders. J. Neurosci. 34, 10041–10054.
    1. Henriques RN, Jespersen SN, Shemesh N, 2019. Microscopic anisotropy misestimation in spherical-mean single diffusion encoding MRI. Magn. Reson. Med. 81, 3245–3261.
    1. Henriques RN, Jespersen SN, Shemesh N, 2020. Correlation tensor magnetic resonance imaging. Neuroimage 211, 116605.
    1. Henriques RN, Palombo M, Jespersen SN, Shemesh N, Lundell H, Ianus A, 2021. Double diffusion encoding and applications for biomedical imaging. J. Neurosci. Methods 348, 108989.
    1. Herms J, Dorostkar MM, 2016. Dendritic spine pathology in neurodegenerative diseases. Annu. Rev. Pathol. 11, 221–250.
    1. Huang SY, Nummenmaa A, Witzel T, Duval T, Cohen-Adad J, Wald LL, McNab JA, 2015. The impact of gradient strength on in vivo diffusion MRI estimates of axon diameter. Neuroimage 106, 464–472.
    1. Huang SY, Tian Q, Fan Q, Witzel T, Wichtmann B, McNab JA, Daniel Bireley J, Machado N, Klawiter EC, Mekkaoui C, Wald LL, Nummenmaa A, 2020. High-gradient diffusion MRI reveals distinct estimates of axon diameter index within different white matter tracts in the in vivo human brain. Brain Struct. Funct. 225, 1277–1291.
    1. Ianus A, Drobnjak I, Alexander DC, 2016. Model-based estimation of microscopic anisotropy using diffusion MRI: a simulation study. NMR Biomed. 29, 672–685.
    1. Ianus A, Jespersen SN, Serradas Duarte T, Alexander DC, Drobnjak I, Shemesh N, 2018. Accurate estimation of microscopic diffusion anisotropy and its time dependence in the mouse brain. Neuroimage 183, 934–949.
    1. Ianus A, Shemesh N, Alexander DC, Drobnjak I, 2017. Double oscillating diffusion encoding and sensitivity to microscopic anisotropy. Magn. Reson. Med. 78, 550–564.
    1. Ianus A, Siow B, Drobnjak I, Zhang H, Alexander DC, 2013. Gaussian phase distribution approximations for oscillating gradient spin echo diffusion MRI. J. Magn. Reson. 227, 25–34.
    1. Innocenti GM, Vercelli A, Caminiti R, 2014. The diameter of cortical axons depends both on the area of origin and target. Cereb. Cortex 24, 2178–2188.
    1. Jelescu IO, Budde MD, 2017. Design and validation of diffusion MRI models of white matter. Front. Phys 28.
    1. Jespersen SN, Lundell H, Sonderby CK, Dyrby TB, 2013. Orientationally invariant metrics of apparent compartment eccentricity from double pulsed field gradient diffusion experiments. NMR Biomed. 26, 1647–1662.
    1. Jespersen SN, Olesen JL, Hansen B, Shemesh N, 2018. Diffusion time dependence of microstructural parameters in fixed spinal cord. Neuroimage 182, 329–342.
    1. Jespersen SN, Olesen JL, Ianus A, Shemesh N, 2019. Effects of nongaussian diffusion on “isotropic diffusion” measurements: an ex-vivo microimaging and simulation study. J. Magn. Reson. 300, 84–94.
    1. Jones DK, Alexander DC, Bowtell R, Cercignani M, Dell’Acqua F, McHugh DJ, Miller KL, Palombo M, Parker GJM, Rudrapatna US, Tax CMW, 2018. Microstructural imaging of the human brain with a ‘super-scanner’: 10 key advantages of ultra-strong gradients for diffusion MRI. Neuroimage 182, 8–38.
    1. Jones R, Grisot G, Augustinack J, Magnain C, Boas DA, Fischl B, Wang H, Yendiki A, 2020. Insight into the fundamental trade-offs of diffusion MRI from polarization-sensitive optical coherence tomography in ex vivo human brain. Neuroimage 214, 116704.
    1. Kaden E, Kruggel F, Alexander DC, 2016. Quantitative mapping of the per-axon diffusion coefficients in brain white matter. Magn. Reson. Med. 75, 1752–1763.
    1. Kakkar LS, Bennett OF, Siow B, Richardson S, Ianus A, Quick T, Atkinson D, Phillips JB, Drobnjak I, 2018. Low frequency oscillating gradient spin-echo sequences improve sensitivity to axon diameter: an experimental study in viable nerve tissue. Neuroimage 182, 314–328.
    1. Keil B, Blau JN, Biber S, Hoecht P, Tountcheva V, Setsompop K, Triantafyllou C, Wald LL, 2013. A 64-channel 3T array coil for accelerated brain MRI. Magn Reson Med 70, 248–258.
    1. Kiselev VG, 2017. Fundamentals of diffusion MRI physics. NMR Biomed. 30.
    1. Komlosh ME, Benjamini D, Hutchinson EB, King S, Haber M, Avram AV, Holtzclaw LA, Desai A, Pierpaoli C, Basser PJ, 2018. Using double pulsed-field gradient MRI to study tissue microstructure in traumatic brain injury (TBI). Microporous Mesoporous Mater. 269, 156–159.
    1. Komlosh ME, Horkay F, Freidlin RZ, Nevo U, Assaf Y, Basser PJ, 2007. Detection of microscopic anisotropy in gray matter and in a novel tissue phantom using double Pulsed Gradient Spin Echo MR. J. Magn. Reson. 189, 38–45.
    1. Lampinen B, Szczepankiewicz F, Martensson J, van Westen D, Sundgren PC, Nilsson M, 2017. Neurite density imaging versus imaging of microscopic anisotropy in diffusion MRI: a model comparison using spherical tensor encoding. Neuroimage 147, 517–531.
    1. Lampinen B, Szczepankiewicz F, Noven M, van Westen D, Hansson O, Englund E, Martensson J, Westin CF, Nilsson M, 2019. Searching for the neurite density with diffusion MRI: challenges for biophysical modeling. Hum. Brain Mapp. 40, 2529–2545.
    1. Lawrenz M, Finsterbusch J, 2011. Detection of microscopic diffusion anisotropy on a whole-body MR system with double wave vector imaging. Magn. Reson. Med. 66, 1405–1415.
    1. Lawrenz M, Finsterbusch J, 2019. Detection of microscopic diffusion anisotropy in human cortical gray matter in vivo with double diffusion encoding. Magn. Reson. Med. 81, 1296–1306.
    1. Lee H-H, Yaros K, Veraart J, Pathan JL, Liang F-X, Kim SG, Novikov DS, Fieremans E, 2019. Along-axon diameter variation and axonal orientation dispersion revealed with 3D electron microscopy: implications for quantifying brain white matter microstructure with histology and diffusion MRI. Brain Struct. Funct. 224, 1469–1488.
    1. Lee HH, Fieremans E, Novikov DS, 2018. What dominates the time dependence of diffusion transverse to axons: Intra- or extra-axonal water? Neuroimage 182, 500–510.
    1. Lee HH, Fieremans E, Novikov DS, 2020a. Realistic Microstructure Simulator (RMS): Monte Carlo simulations of diffusion in three-dimensional cell segmentations of microscopy images. J. Neurosci. Methods 350, 109018.
    1. Lee HH, Jespersen SN, Fieremans E, Novikov DS, 2020b. The impact of realistic axonal shape on axon diameter estimation using diffusion MRI. Neuroimage 223, 117228.
    1. Lee HH, Papaioannou A, Kim SL, Novikov DS, Fieremans E, 2020c. A time-dependent diffusion MRI signature of axon caliber variations and beading. Commun. Biol..
    1. Lee HH, Papaioannou A, Novikov DS, Fieremans E, 2020d. In vivo observation and biophysical interpretation of time-dependent diffusion in human cortical gray matter. Neuroimage 222, 117054.
    1. Lee HH, Tian Q, Ngamsombat C, Berger DR, Lichtman JW, Huang SY, Novikov DS, Fieremans E, 2020e. Random walk simulations of diffusion in human brain white matter from 3d EM validate diffusion time-dependence transverse and parallel to axons. Proc. Intl. Soc. Mag. Reson. Med. 28.
    1. Lee SK, Mathieu JB, Graziani D, Piel J, Budesheim E, Fiveland E, Hardy CJ, Tan ET, Amm B, Foo TK, Bernstein MA, Huston J 3rd, Shu Y, Schenck JF, 2016a. Peripheral nerve stimulation characteristics of an asymmetric head-only gradient coil compatible with a high-channel-count receiver array. Magn. Reson. Med. 76, 1939–1950.
    1. Lee SK, Mathieu JB, Graziani D, Piel J, Budesheim E, Fiveland E, Hardy CJ, Tan ET, Amm B, Foo TKF, 2016b. Peripheral nerve stimulation characteristics of an asymmetric head-only gradient coil compatible with a high-channel-count receiver array. Magn. Reson. Med. 76, 1939–1950.
    1. Lehman JF, Greenberg BD, McIntyre CC, Rasmussen SA, Haber SN, 2011. Rules ventral prefrontal cortical axons use to reach their targets: implications for diffusion tensor imaging tractography and deep brain stimulation for psychiatric illness. J. Neurosci. 31, 10392–10402.
    1. Liao C, Bilgic B, Tian Q, Stockmann JP, Cao X, Fan Q, Iyer SS, Wang F, Ngamsombat C, Lo WC, Manhard MK, Huang SY, Wald LL, Setsompop K, 2021. Distortion-free, high-isotropic-resolution diffusion MRI with gSlider BUDA-EPI and multicoil dynamic B0 shimming. Magn. Reson. Med..
    1. Lichtman JW, Denk W, 2011. The big and the small: challenges of imaging the brain’s circuits. Science 334, 618–623.
    1. Magdoom KN, Pajevic S, Dario G, Basser PJ, 2021. A new framework for MR diffusion tensor distribution. Sci. Rep. 11, 2766.
    1. McKinnon ET, Jensen JH, Glenn GR, Helpern JA, 2017. Dependence on b-value of the direction-averaged diffusion-weighted imaging signal in brain. Magn. Reson. Imaging 36, 121–127.
    1. McNab JA, Edlow BL, Witzel T, Huang SY, Bhat H, Heberlein K, Feiweier T, Liu K, Keil B, Cohen-Adad J, Tisdall MD, Folkerth RD, Kinney HC, Wald LL, 2013a. The Human Connectome Project and beyond: initial applications of 300 mT/m gradients. Neuroimage 80, 234–245.
    1. McNab JA, Polimeni JR, Wang R, Augustinack JC, Fujimoto K, Stevens A, Triantafyllou C, Janssens T, Farivar R, Folkerth RD, Vanduffel W, Wald LL, 2013b. Surface based analysis of diffusion orientation for identifying architectonic domains in the in vivo human cortex. Neuroimage 69, 87–100.
    1. Miller KL, Stagg CJ, Douaud G, Jbabdi S, Smith SM, Behrens TEJ, Jenkinson M, Chance SA, Esiri MM, Voets NL, Jenkinson N, Aziz TZ, Turner MR, Johansen-Berg H, McNab JA, 2011. Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner. Neuroimage 57, 167–181.
    1. Mitra PP, 1995. Multiple wave-vector extensions of the NMR pulsed-field-gradient spin-echo diffusion measurement. Phys. Rev. B 51, 15074–15078.
    1. Mollink J, Kleinnijenhuis M, Cappellen van Walsum AV, Sotiropoulos SN, Cottaar M, Mirfin C, Heinrich MP, Jenkinson M, Pallebage-Gamarallage M, Ansorge O, Jbabdi S, Miller KL, 2017. Evaluating fibre orientation dispersion in white matter: Comparison of diffusion MRI, histology and polarized light imaging. Neuroimage 157, 561–574.
    1. Morozov D, Bar L, Sochen N, Cohen Y, 2013. Modeling of the diffusion MR signal in calibrated model systems and nerves. NMR Biomed. 26, 1787–1795.
    1. Nguyen KV, Hernandez-Garzon E, Valette J, 2018. Efficient GPU-based Monte-Carlo simulation of diffusion in real astrocytes reconstructed from confocal microscopy. J. Magn. Reson. 296, 188–199.
    1. Nilsson M, Lasic S, Drobnjak I, Topgaard D, Westin CF, 2017. Resolution limit of cylinder diameter estimation by diffusion MRI: The impact of gradient waveform and orientation dispersion. NMR Biomed. 30.
    1. Nilsson M, Latt J, Stahlberg F, van Westen D, Hagslatt H, 2012. The importance of axonal undulation in diffusion MR measurements: a Monte Carlo simulation study. NMR Biomed. 25, 795–805.
    1. Novikov DS, Fieremans E, Jespersen SN, Kiselev VG, 2019. Quantifying brain microstructure with diffusion MRI: theory and parameter estimation. NMR Biomed. 32, e3998.
    1. Novikov DS, Jensen JH, Helpern JA, Fieremans E, 2014. Revealing mesoscopic structural universality with diffusion. Proc. Natl. Acad. Sci. U. S. A. 111, 5088–5093.
    1. Novikov DS, Kiselev VG, Jespersen SN, 2018. On modeling. Magn. Reson. Med. 79, 3172–3193.
    1. Nunes D, Cruz TL, Jespersen SN, Shemesh N, 2017. Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI. J. Magn. Reson. 277, 117–130.
    1. Olesen JL, Ostergaard L, Shemesh N, Jespersen SN, 2021. Beyond the diffusion standard model in fixed rat spinal cord with combined linear and planar encoding. Neuroimage 231, 117849.
    1. Ong HH, Wehrli FW, 2010. Quantifying axon diameter and intra-cellular volume fraction in excised mouse spinal cord with q-space imaging. Neuroimage 51, 1360–1366.
    1. Ong HH, Wright AC, Wehrli SL, Souza A, Schwartz ED, Hwang SN, Wehrli FW, 2008. Indirect measurement of regional axon diameter in excised mouse spinal cord with q-space imaging: simulation and experimental studies. Neuroimage 40, 1619–1632.
    1. Ozarslan E, 2009. Compartment shape anisotropy (CSA) revealed by double pulsed field gradient MR. J. Magn. Reson. 199, 56–67.
    1. Özarslan E, Koay CG, Shepherd TM, Komlosh ME, İrfanoğlu MO, Pierpaoli C, Basser PJ, 2013. Mean apparent propagator (MAP) MRI: A novel diffusion imaging method for mapping tissue microstructure. Neuroimage 78, 16–32.
    1. Özarslan E, Shepherd TM, Koay CG, Blackband SJ, Basser PJ, 2012. Temporal scaling characteristics of diffusion as a new MRI contrast: Findings in rat hippocampus. Neuroimage 60, 1380–1393.
    1. Palombo M, Alexander DC, Zhang H, 2019. A generative model of realistic brain cells with application to numerical simulation of the diffusion-weighted MR signal. Neuroimage 188, 391–402.
    1. Palombo M, Ianus A, Guerreri M, Nunes D, Alexander DC, Shemesh N, Zhang H, 2020. SANDI: A compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI. Neuroimage 215, 116835.
    1. Panagiotaki E, Schneider T, Siow B, Hall MG, Lythgoe MF, Alexander DC, 2012. Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison. Neuroimage 59, 2241–2254.
    1. Pathak S, Schneider W, Zuccolotto A, Huang S, Fan Q, Witzel T, Wald LL, Fieremans E, Komlosh ME, Benjamini D, Avram AV, Basser PJ, 2020. Diffusion ground truth quantification of axon scale phantom: Limits of diffusion MRI on 7T. 3T and Connectome 1.0 International Society for Magnetic Resonance in Medicine.
    1. Peca J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, Lascola CD, Fu Z, Feng G, 2011. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472, 437–442.
    1. Peca J, Feng G, 2012. Cellular and synaptic network defects in autism. Curr. Opin. Neurobiol. 22, 866–872.
    1. Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM, 2011. Dendritic spine pathology in neuropsychiatric disorders. Nat. Neurosci. 14, 285–293.
    1. Ramos-Llorden G, Maffei C, Tian Q, Bilgic B, Witzel T, Keil B, Yendiki A, Huang SY, 2021. Ex-vivo whole human brain high b-value diffusion MRI at 550 micron with a 3T Connectom scanner. In: Annual Meeting of the International Society of Magnetic Resonance in Medicine, Virtual Meeting, p. 300.
    1. Ramos-Llorden G, Ning L, Liao C, Mukhometzianov R, Michailovich O, Setsompop K, Rathi Y, 2020. High-fidelity, accelerated whole-brain submillimeter in vivo diffusion MRI using gSlider-spherical ridgelets (gSlider-SR). Magn. Reson. Med. 84, 1781–1795.
    1. Reischauer C, Staempfli P, Jaermann T, Boesiger P, 2009. Construction of a temperature-controlled diffusion phantom for quality control of diffusion measurements. J. Magn. Reson. Imaging 29, 692–698.
    1. Richardson S, Siow B, Batchelor AM, Lythgoe MF, Alexander DC, 2013. A viable isolated tissue system: a tool for detailed MR measurements and controlled perturbation in physiologically stable tissue. Magn. Reson. Med. 69, 1603–1610.
    1. Roebroeck A, Miller KL, Aggarwal M, 2019. Ex vivo diffusion MRI of the human brain: Technical challenges and recent advances. NMR Biomed. 32, e3941.
    1. Safadi Z, Grisot G, Jbabdi S, Behrens TE, Heilbronner SR, McLaughlin NCR, Mandeville J, Versace A, Phillips ML, Lehman JF, Yendiki A, Haber SN, 2018. Functional segmentation of the anterior limb of the internal capsule: linking white matter abnormalities to specific connections. J. Neurosci. 38, 2106–2117.
    1. Schmitt F, Stehling MK, Turner R, 2012. Echo-Planar Imaging: Theory, Technique and Application. Springer Science & Business Media.
    1. Scholz A, Etzel R, May MW, Mahmutovic M, Tian Q, Ramos-Llorden G, Maffei C, Bilgic B, Witzel T, Stockmann JP, Mekkaoui C, Wald LL, Huang SY, Yendiki A, Keil B, 2021. A 48-channel receive array coil for mesoscopic diffusion-weighted MRI of ex vivo human brain on the 3 T connectome scanner. Neuroimage 238, 118256.
    1. Scholz A, May M, Etzel R, Mahmutovic M, Kutscha N, Wald LL, Yendiki A, Keil B, 2019. A 48-channel ex vivo brain array coil for diffusion-weighted MRI at 3T. In: Proceedings of the 27th Annual Meeting of the ISMRM, Montreal, Canada, p. 1494.
    1. Setsompop K, Fan Q, Stockmann J, Bilgic B, Huang S, Cauley SF, Nummenmaa A, Wang F, Rathi Y, Witzel T, Wald LL, 2017. High-resolution in vivo diffusion imaging of the human brain with generalized slice dithered enhanced resolution: simultaneous multislice (gSlider-SMS). Magn. Reson. Med..
    1. Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL, 2012. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn. Reson. Med. 67, 1210–1224.
    1. Setsompop K, Kimmlingen R, Eberlein E, Witzel T, Cohen-Adad J, McNab JA, Keil B, Tisdall MD, Hoecht P, Dietz P, Cauley SF, Tountcheva V, Matschl V, Lenz VH, Heberlein K, Potthast A, Thein H, Van Horn J, Toga A, Schmitt F, Lehne D, Rosen BR, Wedeen V, Wald LL, 2013. Pushing the limits of in vivo diffusion MRI for the Human Connectome Project. Neuroimage 80, 220–233.
    1. Shemesh N, Cohen Y, 2011. Microscopic and compartment shape anisotropies in gray and white matter revealed by angular bipolar double-PFG MR. Magn. Reson. Med. 65, 1216–1227.
    1. Shemesh N, Ozarslan E, Adiri T, Basser PJ, Cohen Y, 2010a. Noninvasive bipolar double-pulsed-field-gradient NMR reveals signatures for pore size and shape in polydisperse, randomly oriented, inhomogeneous porous media. J. Chem. Phys. 133, 044705.
    1. Shemesh N, Ozarslan E, Komlosh ME, Basser PJ, Cohen Y, 2010b. From single-pulsed field gradient to double-pulsed field gradient MR: gleaning new microstructural information and developing new forms of contrast in MRI. NMR Biomed. 23, 757–780.
    1. Stanisz GJ, Szafer A, Wright GA, Henkelman RM, 1997. An analytical model of restricted diffusion in bovine optic nerve. Magn. Reson. Med. 37, 103–111.
    1. Swanson LW, Lichtman JW, 2016. From cajal to connectome and beyond. Annu. Rev. Neurosci. 39, 197–216.
    1. Szczepankiewicz F, Lasic S, van Westen D, Sundgren PC, Englund E, Westin CF, Stahlberg F, Latt J, Topgaard D, Nilsson M, 2015. Quantification of microscopic diffusion anisotropy disentangles effects of orientation dispersion from microstructure: applications in healthy volunteers and in brain tumors. Neuroimage 104, 241–252.
    1. Szczepankiewicz F, Westin CF, Nilsson M, 2021. Gradient waveform design for tensor-valued encoding in diffusion MRI. J. Neurosci. Methods 348, 109007.
    1. Tan ET, Hua Y, Fiveland EW, Vermilyea ME, Piel JE, Park KJ, Ho VB, Foo TKF, 2019. Peripheral nerve stimulation limits of a high amplitude and slew rate magnetic field gradient coil for neuroimaging. Magn. Reson. Med..
    1. Tapia JC, Kasthuri N, Hayworth KJ, Schalek R, Lichtman JW, Smith SJ, Buchanan J, 2012. High-contrast en bloc staining of neuronal tissue for field emission scanning electron microscopy. Nat. Protoc. 7, 193–206.
    1. Tax CMW, Szczepankiewicz F, Nilsson M, Jones DK, 2020. The dot-compartment revealed? Diffusion MRI with ultra-strong gradients and spherical tensor encoding in the living human brain. Neuroimage 210, 116534.
    1. Teh I, McClymont D, Burton RA, Maguire ML, Whittington HJ, Lygate CA, Kohl P, Schneider JE, 2016. Resolving fine cardiac structures in rats with high--resolution diffusion tensor imaging. Sci. Rep. 6, 30573.
    1. Tian Q, Ngamsombat C, Lee HH, Berger DR, Wu Y, Fan Q, Bilgic B, Novikov DS, Fieremans E, Rosen BR, Lichtman JW, Huang SY, 2020. Automated segmentation of human axon and myelin from electron microscopy data using deep learning for microstructural validation and simulation. Proc. Intl. Soc. Mag. Reson. Med. 28.
    1. Topgaard D, 2017. Multidimensional diffusion MRI. J. Magn. Reson. 275, 98–113.
    1. Ugurbil K, Xu J, Auerbach EJ, Moeller S, Vu AT, Duarte-Carvajalino JM, Lenglet C, Wu X, Schmitter S, Van de Moortele PF, Strupp J, Sapiro G, De Martino F, Wang D, Harel N, Garwood M, Chen L, Feinberg DA, Smith SM, Miller KL, Sotiropoulos SN, Jbabdi S, Andersson JL, Behrens TE, Glasser MF, Van Essen DC, Yacoub E, Consortium, W.U.-M.H., 2013. Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project. Neuroimage 80, 80–104.
    1. Van Vaals J, Bergman A, 1990. Optimization of eddy-current compensation. J. Magn. Reson. 90, 52–70 (1969).
    1. Veraart J, Fieremans E, Novikov DS, 2019. On the scaling behavior of water diffusion in human brain white matter. Neuroimage 185, 379–387.
    1. Veraart J, Nunes D, Rudrapatna U, Fieremans E, Jones DK, Novikov DS, Shemesh N, 2020. Nonivasive quantification of axon radii using diffusion MRI. Elife 9.
    1. Wang F, Dong Z, Tian Q, Liao C, Fan Q, Hoge WS, Keil B, Polimeni JR, Wald LL, Huang SY, Setsompop K, 2020. In vivo human whole-brain Connectom diffusion MRI dataset at 760 μm isotropic resolution. bioRxiv.
    1. Wang F, Dong Z, Tian Q, Liao C, Fan Q, Hoge WS, Keil B, Polimeni JR, Wald LL, Huang SY, Setsompop K, 2021. In vivo human whole-brain Connectom diffusion MRI dataset at 760 microm isotropic resolution. Sci. Data 8, 122.
    1. Waxman SG, Kocsis JD, Stys PK, 1995. The Axon: Structure, Function and Pathophysiology. Oxford University Press, New York.
    1. Weiger M, Overweg J, Rösler MB, Froidevaux R, Hennel F, Wilm BJ, Penn A, Sturzenegger U, Schuth W, Mathlener M, Borgo M, Börnert P, Leussler C, Luechinger R, Dietrich BE, Reber J, Brunner DO, Schmid T, Vionnet L, Pruessmann KP, 2017. A high-performance gradient insert for rapid and short-T2 imaging at full duty cycle. Magn. Reson. Med..
    1. Westin CF, Knutsson H, Pasternak O, Szczepankiewicz F, Ozarslan E, van Westen D, Mattisson C, Bogren M, O’Donnell LJ, Kubicki M, Topgaard D, Nilsson M, 2016. Q-space trajectory imaging for multidimensional diffusion MRI of the human brain. Neuroimage 135, 345–362.
    1. Wieseotte C, Witzel T, Polimeni J, Nummenmaa A, Gruber B, Schreiber LM, Wald LL, 2015. Pushing the limits of ex-vivo diffusion MRI and tractography of the human brain. In: Proceedings of the 23rd Annual Meeting of the ISMRM, Toronto, Canada, p. 2847.
    1. Wilm BJ, Barmet C, Pavan M, Pruessmann KP, 2011. Higher order reconstruction for MRI in the presence of spatiotemporal field perturbations. Magn. Reson. Med. 65, 1690–1701.
    1. Wilm BJ, Nagy Z, Barmet C, Vannesjo SJ, Kasper L, Haeberlin M, Gross S, Dietrich BE, Brunner DO, Schmid T, 2015. Diffusion MRI with concurrent magnetic field monitoring. Magn. Reson. Med. 74, 925–933.
    1. Winkler SA, Schmitt F, Landes H, de Bever J, Wade T, Alejski A, Rutt BK, 2018. Gradient and shim technologies for ultra high field MRI. Neuroimage 168, 59–70.
    1. Xu J, 2021. Probing neural tissues at small scales: Recent progress of oscillating gradient spin echo (OGSE) neuroimaging in humans. J. Neurosci. Methods 349, 109024.
    1. Xu J, Li H, Harkins KD, Jiang X, Xie J, Kang H, Does MD, Gore JC, 2014. Mapping mean axon diameter and axonal volume fraction by MRI using temporal diffusion spectroscopy. Neuroimage 103, 10–19.
    1. Xu T, Foxley S, Kleinnijenhuis M, Chen WC, Miller KL, 2018. The effect of realistic geometries on the susceptibility-weighted MR signal in white matter. Magn. Reson. Med. 79, 489–500.
    1. Yang G, Tian Q, Leuze C, Wintermark M, McNab JA, 2018. Double diffusion encoding MRI for the clinic. Magn. Reson. Med. 80, 507–520.
    1. Yendiki A,..., 2021. Postmortem validation of the connectome. Neuroimage.
    1. Zhang B, Yen YF, Chronik BA, McKinnon GC, Schaefer DJ, Rutt BK, 2003. Peripheral nerve stimulation properties of head and body gradient coils of various sizes. Magn. Reson. Med. 50, 50–58.
    1. Zhang H, Hubbard PL, Parker GJ, Alexander DC, 2011. Axon diameter mapping in the presence of orientation dispersion with diffusion MRI. Neuroimage 56, 1301–1315.

Source: PubMed

3
Subskrybuj