Mapping the human connectome using diffusion MRI at 300 mT/m gradient strength: Methodological advances and scientific impact

Qiuyun Fan, Cornelius Eichner, Maryam Afzali, Lars Mueller, Chantal M W Tax, Mathias Davids, Mirsad Mahmutovic, Boris Keil, Berkin Bilgic, Kawin Setsompop, Hong-Hsi Lee, Qiyuan Tian, Chiara Maffei, Gabriel Ramos-Llordén, Aapo Nummenmaa, Thomas Witzel, Anastasia Yendiki, Yi-Qiao Song, Chu-Chung Huang, Ching-Po Lin, Nikolaus Weiskopf, Alfred Anwander, Derek K Jones, Bruce R Rosen, Lawrence L Wald, Susie Y Huang, Qiuyun Fan, Cornelius Eichner, Maryam Afzali, Lars Mueller, Chantal M W Tax, Mathias Davids, Mirsad Mahmutovic, Boris Keil, Berkin Bilgic, Kawin Setsompop, Hong-Hsi Lee, Qiyuan Tian, Chiara Maffei, Gabriel Ramos-Llordén, Aapo Nummenmaa, Thomas Witzel, Anastasia Yendiki, Yi-Qiao Song, Chu-Chung Huang, Ching-Po Lin, Nikolaus Weiskopf, Alfred Anwander, Derek K Jones, Bruce R Rosen, Lawrence L Wald, Susie Y Huang

Abstract

Tremendous efforts have been made in the last decade to advance cutting-edge MRI technology in pursuit of mapping structural connectivity in the living human brain with unprecedented sensitivity and speed. The first Connectom 3T MRI scanner equipped with a 300 mT/m whole-body gradient system was installed at the Massachusetts General Hospital in 2011 and was specifically constructed as part of the Human Connectome Project. Since that time, numerous technological advances have been made to enable the broader use of the Connectom high gradient system for diffusion tractography and tissue microstructure studies and leverage its unique advantages and sensitivity to resolving macroscopic and microscopic structural information in neural tissue for clinical and neuroscientific studies. The goal of this review article is to summarize the technical developments that have emerged in the last decade to support and promote large-scale and scientific studies of the human brain using the Connectom scanner. We provide a brief historical perspective on the development of Connectom gradient technology and the efforts that led to the installation of three other Connectom 3T MRI scanners worldwide - one in the United Kingdom in Cardiff, Wales, another in continental Europe in Leipzig, Germany, and the latest in Asia in Shanghai, China. We summarize the key developments in gradient hardware and image acquisition technology that have formed the backbone of Connectom-related research efforts, including the rich array of high-sensitivity receiver coils, pulse sequences, image artifact correction strategies and data preprocessing methods needed to optimize the quality of high-gradient strength diffusion MRI data for subsequent analyses. Finally, we review the scientific impact of the Connectom MRI scanner, including advances in diffusion tractography, tissue microstructural imaging, ex vivo validation, and clinical investigations that have been enabled by Connectom technology. We conclude with brief insights into the unique value of strong gradients for diffusion MRI and where the field is headed in the coming years.

Keywords: Diffusion MRI; Human Connectome Project (HCP); axon diameter; brain; clinical applications; data sharing; fiber tracking; high b-value; human connectome scanner; peripheral nerve stimulation; preprocessing; radio frequency coil; sequence; tissue microstructure; white matter.

Copyright © 2022. Published by Elsevier Inc.

Figures

Fig. 1.. Benefits of strong gradients for…
Fig. 1.. Benefits of strong gradients for diffusion MRI.
High gradient amplitudes up to 300 mT/m on the Connectome system (bottom) achieve a given diffusion-encoding gradient area in less time compared to conventional gradient systems (top), as illustrated through the pulsed gradient spin echo diffusion MRI sequence. Benefits of strong diffusion-encoding gradients include shortening the entire diffusion-encoding period and echo time (TE), and hence increasing the signal-to-noise ratio (SNR) by reducing signal loss due to T2 decay. The larger gradient amplitudes also enable stronger diffusion encoding (i.e., larger diffusion-encoding gradient areas, larger q- values and b-values) to be achieved with shorter diffusion times, providing higher “diffusion resolution” to improve the capability of resolving smaller length-scales for probing tissue microstructure and for resolving complex white matter structures such as crossing fibers. RF = radiofrequency, δ = diffusion-encoding gradient pulse duration, Δ = diffusion time.
Fig. 2.. Illustration of the different length…
Fig. 2.. Illustration of the different length scales accessible by diffusion MRI in the brain.
Macrostructure refers to structures on the whole-brain and regional level, while microstructure refers to structures on the microscopic level, e.g., cells and axons. Mesostructure resides in the intermediate, millimeter to sub-millimeter regime, on the order of the typical MRI voxel size. Figure contents adapted from (Reisert et al., 2017).
Fig. 3.. Distribution of the four 300…
Fig. 3.. Distribution of the four 300 mT/m gradient strength MRI systems installed worldwide.
Figure contents adapted from news announcements for the Cardiff University, Max Planck Institute for Human Cognitive and Brain Sciences, and Fudan University.
Fig. 4.. Peripheral Nerve Stimulation (PNS) Simulations.
Fig. 4.. Peripheral Nerve Stimulation (PNS) Simulations.
A: Experimental and simulated PNS threshold curves given as minimum stimulating gradient amplitude AG as a function of rise time for the y-axis of the Connectome gradient (experiments in blue, simulation in red) and the Prisma gradient (in grayscale). PNS thresholds were obtained for a trapezoidal bipolar train with 0.5 ms flat top duration. B: Simulated activation maps plotted as PNS oracle hot-spots (reciprocal PNS thresholds) in the male model for a head-imaging position and for a trapezoidal rise time of 0.5 ms. The overall nerve activation induced by the Connectome y-axis gradient was substantially lower than that of the Prisma y-axis gradient. The activation hot-spots in both coils occurred in the shoulders (suprascapular nerve) and close to the cervical spine (intercostal nerves).
Fig. 5.. Select array coils developed for…
Fig. 5.. Select array coils developed for the Connectome MRI scanner.
Starting in 2011 with a 32-channel head coil, Connectome coil technology has evolved from a 60-channel head-neck array, a 64-channel brain array, and a 48-channel ex vivo brain coil all the way to a 64-channel head coil with an integrated field monitoring system in 2021. Figure adapted from (Gruber et al., 2014; Keil et al., 2013; Mahmutovic et al., 2021; Scholz et al., 2021).
Fig. 6.. Combined brain and cervical-spine tractography.
Fig. 6.. Combined brain and cervical-spine tractography.
Data was obtained from 1.5 mm isotropic diffusion acquisition using the 60-channel head-neck array coil.
Fig. 7.. Illustration of spiral image reconstruction…
Fig. 7.. Illustration of spiral image reconstruction using concurrent field monitoring.
(A) Zero-order phase and higher-order dynamic field effects; (B) first-order read trajectory. Examples of temporal SNR (tSNR) maps (calculated from a series of 20 repetitions) obtained with the 64-ch coil using (C) spiral and (D) EPI acquisitions. Images reconstructed from the spiral acquisitions using concurrently monitored field information do not show evident distortions. Figure adapted from (Mahmutovic et al., 2021).
Fig. 8.. Schematic illustration of diffusion-encoding gradients…
Fig. 8.. Schematic illustration of diffusion-encoding gradients and induced eddy currents.
In the following diagrams, the x-axis represents time and the y-axis represents gradient strength. a) If the nominal temporal gradient profile (red dotted line) follows the desired shape, the actual gradient profile (blue continuous line) is distorted by eddy currents (yellow dashed line). b) This can be compensated by gradient pre-emphasis, i.e., overshooting the gradient profile. For demonstration purposes, the eddy current amplitude is exaggerated. c) Stejskal-Tanner diffusion encoding with eddy currents for a single time constant (with rescaled amplitude for better visibility). The short vertical dash between the two diffusion encoding lobes indicates the position of a 180° pulse. d) Twice refocused spin echo diffusion encoding with timing optimized to null the eddy current of this time constant. This method requires two RF pulses to achieve a high b-value and eddy current reduction.
Fig. 9.. Maps of the deviation in…
Fig. 9.. Maps of the deviation in diffusion encoding from the nominal prescribed b-value and corresponding histogram of the calculated variance across the whole brain volume.
The diffusion gradient direction [1, 0, 0] was used to generate the map. Figure adapted from (Eichner et al., 2019).
Fig. 10.. Effects of distortion correction with…
Fig. 10.. Effects of distortion correction with double versus single interpolation.
The left and middle panels compare enlarged views of a b = 0 image corrected using two successive interpolation steps versus a single concatenated interpolation. Adapted from (Eichner et al., 2019).
Fig. 11.. Illustration of the AxTract framework.
Fig. 11.. Illustration of the AxTract framework.
(a) Ground truth directions used to generate the data with their lengths scaled by the axon diameter index α. (b) Estimated fiber ODFs (fODFs), (c) fiber ODF peaks and (d) fiber ODF peaks with their lengths scaled by α, (e) show valid connections (VC) and invalid connections (IC) for AxTract. (f) VC and IC for conventional deterministic tractography (CDT) are provided for comparison. Figure adapted from (Girard et al., 2017).
Fig. 12.
Fig. 12.
Illustration of diffusion models and key concepts. The concept of compartmentalization was initially proposed by Stanisz et al. (a), following which the AxCaliber aims to estimate the diameter distribution of the restricted water compartment (b). Variations of the AxCaliber model was proposed, such as modifications to account for fiber dispersions (c) and crossings (d). Realistic axons are very different from ideal cylinders, instead, there are plenty of beadings and undulations (f) and structural disorder are commonly seen along neurites (g). In gray matter, a sphere (e) or dot (h) compartment is incorporated into the physical model to account for additional signal component present in the measurement. Figure adapted from the papers labeled therein.
Fig. 13.. Illustration of various diffusion encoding…
Fig. 13.. Illustration of various diffusion encoding schemes.
In each row, an exemplary diffusion weighting gradient waveform was shown on the left (x, y, and z components are shown in blue, green, and red, respectively) and its corresponding b-tensor shape was shown on the right. The diffusion encoding schemes shown here include: a) single diffusion encoding (SDE) (standard Stejskal-Tanner), b) double diffusion encoding (DDE), c) tiple diffusion encoding (TDE), (d-g) q-vector trajectory encoding, d) spherical tensor encoding (STE) or isotropic encoding, e) planar tensor encoding, f) prolate encoding, g) oblate encoding.
Fig. 14.. The concept of the multi-contrast…
Fig. 14.. The concept of the multi-contrast diffusion experiments.
(a) Illustration of the concept of multi-contrast encoding space with each MRI parameter as one dimension; (b) the distribution of different tissue types in the multi-dimensional space of tissue properties (figure adapted from de Almeida Martins et al., 2020, permission pending); (c) examples of the contrast dimensions include, but are not limited to, diffusion weighting directions, b-value, TE, delay time (TD), inversion time (TI), diffusion encoding schemes, etc. Figure adapted from (Tax et al., 2021b).
Fig. 15.. Whole-brain ex-vivo diffusion MRI at…
Fig. 15.. Whole-brain ex-vivo diffusion MRI at 550 micrometer isotropic resolution using b-values up to 10000s/mm2.
Axial, coronal, and sagittal views of a given diffusion direction are shown in (a), and the corresponding averaged DWI are displayed in (b). High-quality submillimeter diffusion MRI allows mapping diffusivity with unprecedented quality in fine anatomical structures often inaccessible in in-vivo settings, as seen in the internal capsule and transverse fibers in the pons (c), and anisotropic diffusivity in the primary and somatosensory cortex (d). Resolving fiber architecture of the hippocampus is achievable using this high-quality, high-spatial-resolution dataset, as can be seen in (e). Adapted from (Ramos-Llorden et al., 2021).

References

    1. Ades-Aron B, Veraart J, Kochunov P, McGuire S, Sherman P, Kellner E, Novikov DS, Fieremans E, 2018. Evaluation of the accuracy and precision of the diffusion parameter EStImation with Gibbs and NoisE removal pipeline. Neuroimage 183, 532–543.
    1. Afzali M, Aja-Fernández S, Jones DK, 2020. Direction-averaged diffusion-weighted MRI signal using different axisymmetric B-tensor encoding schemes. Magn Reson Med 84, 1579–1591.
    1. Afzali M, Nilsson M, Palombo M, Jones DKJN, 2021a. SPHERIOUSLY? The challenges of estimating spherical pore size non-invasively in the human brain from diffusion MRI. Neuroimage 237.
    1. Afzali M, Pieciak T, Newman S, Garyfallidis E, Özarslan E, Cheng H, Jones DK, 2021b. The sensitivity of diffusion MRI to microstructural properties and experimental factors. J. Neurosci. Methods 347, 108951.
    1. Afzali M, Tax CMW, Chatziantoniou C, Jones DK, 2019. Comparison of Different Tensor Encoding Combinations in Microstructural Parameter Estimation. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1471–1474.
    1. Ahn CB, Cho ZH, 1991. Analysis of the eddy-current induced artifacts and the temporal compensation in nuclear magnetic resonance imaging. IEEE Trans. Med. Imaging 10, 47–52.
    1. Aja-Fernández S, de Luis-García R, Afzali M, Molendowska M, Pieciak T, Tristán-Vega A, 2020. Micro-structure diffusion scalar measures from reduced MRI acquisitions. PLoS ONE 15, e0229526.
    1. Alexander DC, 2008. A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features. Magn. Reson. Med 60, 439–448.
    1. Alexander DC, Dyrby TB, Nilsson M, Zhang H, 2019. Imaging brain microstructure with diffusion MRI: practicality and applications. NMR Biomed.32, e3841.
    1. Alexander DC, Hubbard PL, Hall MG, Moore EA, Ptito M, Parker GJ, Dyrby TB, 2010. Orientationally invariant indices of axon diameter and density from diffusion MRI. Neuroimage 52, 1374–1389.
    1. Anderson AW, 2005. Measurement of fiber orientation distributions using high angular resolution diffusion imaging. Magn. Reson. Med 54, 1194–1206.
    1. Andersson JL, Graham MS, Drobnjak I, Zhang H, Campbell J, 2018. Susceptibility-induced distortion that varies due to motion: correction in diffusion MR without acquiring additional data. Neuroimage 171, 277–295.
    1. Andersson JL, Skare S, Ashburner J, 2003. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20, 870–888.
    1. Andersson JL, Sotiropoulos SN, 2015. Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes. Neuroimage 122, 166–176.
    1. Andersson JL, Sotiropoulos SN, 2016. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125, 1063–1078.
    1. Andersson M, Kjer HM, Rafael-Patino J, Pacureanu A, Pakkenberg B, Thiran J-P, Ptito M, Bech M, Bjorholm Dahl A, Andersen Dahl V, Dyrby TB, 2020. Axon morphology is modulated by the local environment and impacts the noninvasive investigation of its structure–function relationship. Proc. Natl. Acad. Sci 117, 33649–33659.
    1. Andrews TJ, Osborne MT, Does MD, 2006. Diffusion of myelin water. Magn. Reson. Med 56, 381–385.
    1. Antun V, Colbrook MJ, Hansen AC, 2021. Can stable and accurate neural networks be computed?–On the barriers of deep learning and Smale’s 18th problem. arXiv preprint arXiv:2101.08286
    1. Assaf Y, Blumenfeld-Katzir T, Yovel Y, Basser PJ, 2008. AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn. Reson. Med 59, 1347–1354.
    1. Attar FM, Dhital B, Edwards L, Weiskopf N, 2019. Exploring diffusion properties in neocortical grey matter using inversion recovery diffusion weighted imaging. In: Proc. 27th Annual Meeting of the ISMRM, Montreal, Canada, p. 1006.
    1. Avram AV, Guidon A, Song AW, 2010. Myelin water weighted diffusion tensor imaging. Neuroimage 53, 132–138.
    1. Bammer R, Markl M, Barnett A, Acar B, Alley M, Pelc N, Glover G, Moseley M, 2003. Analysis and generalized correction of the effect of spatial gradient field distortions in diffusion-weighted imaging. Magn. Resonance Med 50, 560–569.
    1. Barakovic M, Tax CMW, Rudrapatna U, Chamberland M, Rafael-Patino J, Granziera C, Thiran J-P, Daducci A, Canales-Rodríguez EJ, Jones DK, 2021. Resolving bundle-specific intra-axonal T2 values within a voxel using diffusion-relaxation tract-based estimation. Neuroimage 227, 117617.
    1. Bastiani M, Cottaar M, Dikranian K, Ghosh A, Zhang H, Alexander DC, Behrens TE, Jbabdi S, Sotiropoulos SN, 2017. Improved tractography using asymmetric fibre orientation distributions. NeuroImage 158, 205–218.
    1. Barazany D, Basser PJ, Assaf Y, 2009. In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain 132, 1210–1220.
    1. Barazany D, Jones D, Assaf Y, 2011. AxCaliber 3D. In: Proc. 19th Annual Meeting of the ISMRM, p. 76.
    1. Barmet C, De Zanche N, Pruessmann KP, 2008. Spatiotemporal magnetic field monitoring for MR. Magn. Reson. Med 60, 187–197.
    1. Barmet C, De Zanche N, Wilm BJ, Pruessmann KP, 2009. A transmit/receive system for magnetic field monitoring of in vivo MRI. Magn. Reson. Med 62, 269–276.
    1. Beaulieu C, Fenrich FR, Allen PS, 1998. Multicomponent water proton transverse relaxation and T2-discriminated water diffusion in myelinated and nonmyelinated nerve. Magn. Reson. Imaging 16, 1201–1210.
    1. Benjamini D, Basser PJ, 2017. Magnetic resonance microdynamic imaging reveals distinct tissue microenvironments. Neuroimage 163, 183–196.
    1. Benou I, Veksler R, Friedman A, Raviv TR, 2019. Combining white matter diffusion and geometry for tract-specific alignment and variability analysis. Neuroimage 200, 674–689.
    1. Bhushan C, Haldar JP, Choi S, Joshi AA, Shattuck DW, Leahy RM, 2015. Coregistration and distortion correction of diffusion and anatomical images based on inverse contrast normalization. Neuroimage 115, 269–280.
    1. Brabec J, Lasič S, Nilsson M, 2020. Time-dependent diffusion in undulating thin fibers: impact on axon diameter estimation. NMR Biomed.33, e4187.
    1. Brodsky EK, Klaers JL, Samsonov AA, Kijowski R, Block WF, 2013. Rapid measurement and correction of phase errors from B0 eddy currents: impact on image quality for non-Cartesian imaging. Magn. Reson. Med 69, 509–515.
    1. Callaghan PT, 1993. Principles of Nuclear Magnetic Resonance Microscopy, Corrected ed. Clarendon Press, Oxford.
    1. Callaghan PT, Jolley KW, Lelievre J, 1979. Diffusion of water in the endosperm tissue of wheat grains as studied by pulsed field gradient nuclear magnetic resonance. Biophys. J 28, 133–141.
    1. Casey BJ, Cannonier T, Conley MI, Cohen AO, Barch DM, Heitzeg MM, Soules ME, Teslovich T, Dellarco DV, Garavan H, Orr CA, Wager TD, Banich MT, Speer NK, Sutherland MT, Riedel MC, Dick AS, Bjork JM, Thomas KM, Chaarani B, Mejia MH, Hagler DJ, Daniela Cornejo M, Sicat CS, Harms MP, Dosenbach NUF, Rosenberg M, Earl E, Bartsch H, Watts R, Polimeni JR, Kuperman JM, Fair DA, Dale AM, 2018. The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition Across 21 Sites. Elsevier Ltd, pp. 43–54.
    1. Chamberland M, Genc S, Tax CMW, Shastin D, Koller K, Raven EP, Cunningham A, Doherty J, van den Bree MBM, Parker GD, Hamandi K, Gray WP, Jones DK, 2021. Detecting microstructural deviations in individuals with deep diffusion MRI tractometry. Nat. Comput. Sci 1, 598–606.
    1. Chamberland M, Tax CMW, Jones DK, 2018. Meyer’s loop tractography for image-guided surgery depends on imaging protocol and hardware. Neuroimage Clin 20, 458–465.
    1. Cieslak M, Cook PA, He X, Yeh F-C, Dhollander T, Adebimpe A, Aguirre GK, Bassett DS, Betzel RF, Bourque J, Cabral LM, Davatzikos C, Detre JA, Earl E, Elliott MA, Fadnavis S, Fair DA, Foran W, Fotiadis P, Garyfallidis E, Giesbrecht B, Gur RC, Gur RE, Kelz MB, Keshavan A, Larsen BS, Luna B, Mackey AP, Milham MP, Oathes DJ, Perrone A, Pines AR, Roalf DR, Richie-Halford A, Rokem A, Sydnor VJ, Tapera TM, Tooley UA, Vettel JM, Yeatman JD, Grafton ST, Satterthwaite TD, 2021. QSIPrep: an integrative platform for preprocessing and reconstructing diffusion MRI data. Nat. Methods 18, 775–778.
    1. Cory DG, Garroway AN, 1990. Measurement of translational displacement probabilities by NMR: an indicator of compartmentation. Magn. Reson. Med 14, 435–444.
    1. Daducci A, Dal Palú A, Descoteaux M, Thiran JP, 2016. Microstructure Informed Tractography: pitfalls and Open Challenges. Front. Neurosci 10, 247.
    1. Davids M, Dietz P, Ruyters G, Roesler M, Klein V, Guérin B, Feinberg D, Wald LL, 2021a. Pns optimization of a high-performance asymmetric gradient coil for head imaging., In: Proc. 28th Annual Meeting of the ISMRM, Sydney, Australia, p. 565.
    1. Davids M, Guérin B, Klein V, Schmelz M, Schad LR, Wald LL, 2020. Optimizing selective stimulation of peripheral nerves with arrays of coils or surface electrodes using a linear peripheral nerve stimulation metric. J. Neural Eng 17, 016–029.
    1. Davids M, Guerin B, Klein V, Wald LL, 2021b. Optimization of MRI Gradient Coils With Explicit Peripheral Nerve Stimulation Constraints. IEEE Trans. Med. Imaging 40, 129–142.
    1. Davids M, Guérin B, Malzacher M, Schad LR, Wald LL, 2017. Predicting magnetostimulation thresholds in the peripheral nervous system using realistic body models. Sci. Rep 7, 1–14.
    1. Davids M, Guérin B, Vom Endt A, Schad LR, Wald LL, 2019. Prediction of peripheral nerve stimulation thresholds of MRI gradient coils using coupled electromagnetic and neurodynamic simulations. Magn. Reson. Med 81, 686–701.
    1. Davids M, Guerin B, Wald LL, 2022. A Huygens’ surface approach to rapid characterization of peripheral nerve stimulation. Magn. Reson. Med 87, 377–393.
    1. de Almeida Martins JP, Tax CMW, Reymbaut A, Szczepankiewicz F, Chamberland M, Jones DK, Topgaard D, 2021. Computing and visualising intra-voxel orientation-specific relaxation–diffusion features in the human brain. Hum. Brain Mapp 42, 310–328.
    1. de Almeida Martins JP, Tax CMW, Szczepankiewicz F, Jones DK, Westin CF, Topgaard D, 2020. Transferring principles of solid-state and Laplace NMR to the field of in vivo brain MRI. Magn. Reson 1, 27–43.
    1. de Almeida Martins JP, Topgaard D, 2016a. Two-dimensional correlation of isotropic and directional diffusion using NMR. Phys. Rev. Lett 116, 087601.
    1. de Almeida Martins JP, Topgaard D, 2016b. Two-Dimensional Correlation of Isotropic and Directional Diffusion Using NMR. Phys. Rev. Lett 116, 087601.
    1. De Santis S, Assaf Y, Jones DK, 2016a. The Influence of T2 Relaxation in Measuring the Restricted Volume Fraction in Diffusion MRI. In: Proc. 24th Annual Meeting of the ISMRM, Honolulu, HI, USA, p. 1998.
    1. De Santis S, Barazany D, Jones DK, Assaf Y, 2016b. Resolving relaxometry and diffusion properties within the same voxel in the presence of crossing fibres by combining inversion recovery and diffusion-weighted acquisitions. Magn. Reson. Med 75, 372–380.
    1. De Santis S, Jones DK, Roebroeck A, 2016c. Including diffusion time dependence in the extra-axonal space improves in vivo estimates of axonal diameter and density in human white matter. Neuroimage 130, 91–103.
    1. Dela Haije T, Özarslan E, Feragen A, 2020. Enforcing necessary non-negativity constraints for common diffusion MRI models using sum of squares programming. Neuroimage 209, 116405.
    1. Dhital B, Kellner E, Kiselev VG, Reisert M, 2018a. The absence of restricted water pool in brain white matter. Neuroimage 182, 398–406.
    1. Dhital B, Kellner E, Reisert M, Kiselev VG, 2015. Isotropic diffusion weighting provides insight on diffusion compartments in human brain white matter in vivo. In: Proc. 23th Annual Meeting of the ISMRM, Toronto, Canada, p. 2788.
    1. Dhital B, Reisert M, Kellner E, Kiselev VG, 2018b. Diffusion Weighting with linear and planar encoding solves degeneracy in parameter estimation. In: Proc. 26th Annual Meeting of the ISMRM, Paris, France, p. 5239.
    1. Dhital B, Reisert M, Kellner E, Kiselev VG, 2019. Intra-axonal diffusivity in brain white matter. Neuroimage 189, 543–550.
    1. Dietrich BE, Brunner DO, Wilm BJ, Barmet C, Gross S, Kasper L, Haeberlin M, Schmid T, Vannesjo SJ, Pruessmann KP, 2016. A field camera for MR sequence monitoring and system analysis. Magn. Reson. Med 75, 1831–1840.
    1. Ding G, Liu Y, Zhang R, Xin HL, 2019. A joint deep learning model to recover information and reduce artifacts in missing-wedge sinograms for electron tomography and beyond. Sci. Rep 9, 12803.
    1. Does MD, Gore JC, 2000. Compartmental study of diffusion and relaxation measured in vivo in normal and ischemic rat brain and trigeminal nerve. Magn. Reson. Med 43, 837–844.
    1. Drakesmith M, Harms R, Rudrapatna SU, Parker GD, Evans CJ, Jones DK, 2019. Estimating axon conduction velocity in vivo from microstructural MRI. Neuroimage 203, 116186.
    1. Duval T, McNab JA, Setsompop K, Witzel T, Schneider T, Huang SY, Keil B, Klawiter EC, Wald LL, Cohen-Adad J, 2015. In vivo mapping of human spinal cord microstructure at 300mT/m. Neuroimage 118, 494–507.
    1. Duval T, Smith V, Stikov N, Klawiter EC, Cohen-Adad J, 2018. Scan-rescan of axcaliber, macromolecular tissue volume, and g-ratio in the spinal cord. Magn. Reson. Med 79, 2759–2765.
    1. Duval T, Stikov N, Cohen-Adad J, 2016. Modeling white matter microstructure. Funct. Neurol 31, 217–228.
    1. Duyn JH, Yang Y, Frank JA, van der Veen JW, 1998. Simple correction method for k-space trajectory deviations in MRI. J. Magn. Reson 132, 150–153.
    1. Dyrby TB, Sogaard LV, Hall MG, Ptito M, Alexander DC, 2013. Contrast and stability of the axon diameter index from microstructure imaging with diffusion MRI. Magn. Reson. Med 70, 711–721.
    1. Edlow BL, McNab JA, Witzel T, Kinney HC, 2016. The Structural Connectome of the Human Central Homeostatic Network. Brain Connect 6, 187–200.
    1. Edwards L, Kirilina E, Jäger C, Garus K, Cremer M, Amunts K, Weiskopf N, 2021a. Scanning post mortem fixed whole human brain for advanced higher order diffusion modelling using a 300 mT/m whole-body MRI scanner. In: Proc. 29th Annual Meeting of the ISMRM, Online, p. 2034.
    1. Edwards LJ, Pine KJ, Paul S, Attar FM, Herbst M, Mahmutovic M, Keil B, Moller HE, Kirilina E, Weiskopf N, 2021b. Spiral difusion imaging at 800μm resolution using a scanner with 300 mT/m gradients and gradient field monitoring. In: Proc. 29th Annual Meeting of the ISMRM, Online, p. 1710.
    1. Eichner C, Cauley SF, Cohen-Adad J, Moller HE, Turner R, Setsompop K, Wald LL, 2015. Real diffusion-weighted MRI enabling true signal averaging and increased diffusion contrast. Neuroimage 122, 373–384.
    1. Eichner C, Fan Q, Huang S, Jones D, Kirilina E, Paquette M, Rudrapatna U, Tax C, Tian Q, Weiskopf N, Anwander A, 2019. A Joint Recommendation for Optimized Preprocessing of Connectom Diffusion MRI Data. In: Proc. 27th Annual Meeting of the ISMRM, Montreal, Canada, p. 1047.
    1. Eichner C, Paquette M, Gallardo G, Bock C, Jaffe JE, Jäger C, Kirilina E, Lipp I, Mildner T, Schlumm T, Wermter FC, Möller HE, Weiskopf N, Crockford C, Wittig R, Friederici AD, Anwander A, 2021. High-Resolution Post-Mortem Diffusion MRI Acquisitions for Connectivity Analyses in Chimpanzees. In: Proc. 29th Annual Meeting of the ISMRM, Online, p. 1712.
    1. Eichner C, Paquette M, Mildner T, Schlumm T, Pléh K, Samuni L, Crockford C, Wittig RM, Jäger C, Möller HE, Friederici AD, Anwander A, 2020. Increased sensitivity and signal-to-noise ratio in diffusion-weighted MRI using multi-echo acquisitions. Neuroimage 221, 117172.
    1. Elam JS, Glasser MF, Harms MP, Sotiropoulos SN, Andersson JLR, Burgess GC, Curtiss SW, Oostenveld R, Larson-Prior LJ, Schoffelen J-M, Hodge MR, Cler EA, Marcus DM, Barch DM, Yacoub E, Smith SM, Ugurbil K, Van Essen DC, 2021. The Human Connectome Project: a retrospective. Neuroimage 244, 118543.
    1. Evangelou N, Esiri MM, Smith S, Palace J, Matthews PM, 2000. Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann. Neurol 47, 391–395.
    1. Fan Q, Nummenmaa A, Polimeni JR, Witzel T, Huang SY, Wedeen VJ, Rosen BR, Wald LL, 2017. HIgh b-value and high Resolution Integrated Diffusion (HIBRID) imaging. Neuroimage 150, 162–176.
    1. Fan Q, Nummenmaa A, Wichtmann B, Witzel T, Mekkaoui C, Schneider W, Wald LL, Huang SY, 2018a. A comprehensive diffusion MRI dataset acquired on the MGH Connectome scanner in a biomimetic brain phantom. Data Brief 18, 334–339.
    1. Fan Q, Nummenmaa A, Wichtmann B, Witzel T, Mekkaoui C, Schneider W, Wald LL, Huang SY, 2018b. Validation of diffusion MRI estimates of compartment size and volume fraction in a biomimetic brain phantom using a human MRI scanner with 300 mT/m maximum gradient strength. Neuroimage 182, 469–478.
    1. Fan Q, Nummenmaa A, Witzel T, Huang S, Polimeni JR, Van Wedeen J, Rosen BR, Wald LL, 2015. Improved Diffusion Tractography at the Cortical Boundary Using HARDI Acquisitions with High-b/low-K in White Matter and Low-b/high-K Within and Near the Cortex. In: Proc. 23th Annual Meeting of the ISMRM, Toronto, Ontario, Canada, p. 564.
    1. Fan Q, Nummenmaa A, Witzel T, Ohringer N, Tian Q, Setsompop K, Klawiter EC, Rosen BR, Wald LL, Huang SY, 2020. Axon diameter index estimation independent of fiber orientation distribution using high-gradient diffusion MRI. Neuroimage 222, 117197.
    1. Fan Q, Nummenmaa A, Witzel T, Zanzonico R, Keil B, Cauley S, Polimeni JR, Tisdall D, Van Dijk KR, Buckner RL, Wedeen VJ, Rosen BR, Wald LL, 2014. Investigating the capability to resolve complex white matter structures with high b-value diffusion magnetic resonance imaging on the MGH-USC Connectom scanner. Brain Connect 4, 718–726.
    1. Fan Q, Polackal MN, Tian Q, Ngamsombat C, Nummenmaa A, Witzel T, Klawiter EC, Huang SY, 2021. Scan-Rescan Repeatability of Axonal Imaging Metrics using High-Gradient Diffusion MRI and Statistical Implications for Study Design. Neuroimage 240, 118323.
    1. Fan Q, Tian Q, Ohringer NA, Nummenmaa A, Witzel T, Tobyne SM, Klawiter EC, Mekkaoui C, Rosen BR, Wald LL, Salat DH, Huang SY, 2019. Age-related alterations in axonal microstructure in the corpus callosum measured by high-gradient diffusion MRI. Neuroimage 191, 325–336.
    1. Fan Q, Witzel T, Nummenmaa A, Van Dijk KR, Van Horn JD, Drews MK, Somerville LH, Sheridan MA, Santillana RM, Snyder J, Hedden T, Shaw EE, Hollinshead MO, Renvall V, Zanzonico R, Keil B, Cauley S, Polimeni JR, Tisdall D, Buckner RL, Wedeen VJ, Wald LL, Toga AW, Rosen BR, 2016. MGH-USC Human Connectome Project datasets with ultra-high b-value diffusion MRI. Neuroimage 124, 1108–1114.
    1. Farooq H, Chen Y, Georgiou TT, Tannenbaum A, Lenglet C, 2019. Network curvature as a hallmark of brain structural connectivity. Nat. Commun 10.
    1. Feinberg D, Dietz P, Liu C, Setsompop K, Mukherjee P, Wald L, Vu A, Beckett A, Insua IG, Schroeder M, 2021. Design and Development of a Next-Generation 7T human brain scanner with high-performance gradient coil and dense RF arrays. In: Proc. 29th Annual Meeting of the ISMRM.
    1. Feinberg DA, Moeller S, Smith SM, Auerbach E, Ramanna S, Glasser MF, Miller KL, Ugurbil K, Yacoub E, 2010. Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging. PLoS ONE 5, e15710–e15710.
    1. Ferizi U, Scherrer B, Schneider T, Alipoor M, Eufracio O, Fick RHJ, Deriche R, Nilsson M, Loya-Olivas AK, Rivera M, Poot DHJ, Ramirez-Manzanares A, Marroquin JL, Rokem A, Pötter C, Dougherty RF, Sakaie K, Wheeler-Kingshott C, Warfield SK, Witzel T, Wald LL, Raya JG, Alexander DC, 2017. Diffusion MRI microstructure models with in vivo human brain Connectome data: results from a multi-group comparison. NMR Biomed.30, e3734.
    1. Ferizi U, Schneider T, Witzel T, Wald LL, Zhang H, Wheeler-Kingshott CAM, Alexander DC, 2015. White matter compartment models for in vivo diffusion MRI at 300mT/m. Neuroimage 118, 468–483.
    1. Fick RH, Wassermann D, Caruyer E, Deriche R, 2016. MAPL: tissue microstructure estimation using Laplacian-regularized MAP-MRI and its application to HCP data. Neuroimage 134, 365–385.
    1. Fieremans E, Veraart J, Ades-Aron B, Szczepankiewicz F, Nilsson M, Novikov DS, 2018. Effect of combining linear with spherical tensor encoding on estimating brain microstructural parameters. In: Proc. 26th Annual Meeting of the ISMRM, Paris, France, p. 254.
    1. Foo TKF, Tan ET, Vermilyea ME, Hua Y, Fiveland EW, Piel JE, Park K, Ricci J, Thompson PS, Graziani D, Conte G, Kagan A, Bai Y, Vasil C, Tarasek M, Yeo DTB, Snell F, Lee D, Dean A, DeMarco JK, Shih RY, Hood MN, Chae H, Ho VB, 2020. Highly efficient head-only magnetic field insert gradient coil for achieving simultaneous high gradient amplitude and slew rate at 3.0T (MAGNUS) for brain microstructure imaging. Magn. Reson. Med 83, 2356–2369.
    1. Fritz FJ, Sengupta S, Harms RL, Tse DH, Poser BA, Roebroeck A, 2019. Ultra-high resolution and multi-shell diffusion MRI of intact ex vivo human brains using kT-dSTEAM at 9.4T. Neuroimage 202, 116087.
    1. Genc S, Chamberland M, Koller K, Tax CM, Zhang H, Palombo M, Jones DK, 2021. Repeatability of soma and neurite metrics in cortical and subcortical grey matter. Computational Diffusion MRI. Springer, pp. 135–145.
    1. Genc S, Tax CMW, Raven EP, Chamberland M, Parker GD, Jones DK, 2020. Impact of b-value on estimates of apparent fibre density. 41, 2583–2595.
    1. Grisot G, Haber SN, Yendiki A, 2021. Diffusion MRI and anatomic tracing in the same brain reveal common failure modes of tractography. Neuroimage 239, 118300.
    1. Girard G, Daducci A, Petit L, Thiran JP, Whittingstall K, Deriche R, Wassermann D, Descoteaux M, 2017. AxTract: toward Microstructure Informed Tractography. Hum. Brain Mapp 38, 5485–5500.
    1. Gkotsoulias DG, Metere R, Su Y, Eichner C, Schlumm S, Müller R, Anwander A, Mildner T, Jäger C, Pampel A, Crockford C, Wittig R, Samuni L, Pleh K, He LCM, 2021. High angular resolution susceptibility and diffusion imaging in post mortem chimpanzee brain: tensor characteristics and similarities. In: Proc. 29th Annual Meeting of the ISMRM, Online, p. 3966.
    1. Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, Xu J, Jbabdi S, Webster M, Polimeni JR, Van Essen DC, Jenkinson M, Consortium W-MH, 2013. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124.
    1. Glover PM, 2009. Interaction of MRI field gradients with the human body. Phys. Med. Biol 54, R99–R115.
    1. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A, 2002. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med 47, 1202–1210.
    1. Gruber B, Keil B, Witzel T, Nummenmaa A, Wald LL, 2014. A 60-Channel Ex-Vivo Brain-Slice Coil Array for 3T Imaging. In: Proc. 22th Annual Meeting of the ISMRM, Milan, Italy, p. 4885.
    1. Grussu F, Blumberg SB, Battiston M, Kakkar LS, Lin H, Ianuş A, Schneider T, Singh S, Bourne R, Punwani S, Atkinson D, Gandini Wheeler-Kingshott CAM, Panagiotaki E, Mertzanidou T, Alexander DC, 2020. “Select and retrieve via direct upsampling” network (SARDU-Net): a data-driven, model-free, deep learning approach for quantitative MRI protocol design. bioRxiv, 2020.2005.2026.116491
    1. Guo F, de Luca A, Parker G, Jones DK, Viergever MA, Leemans A, Tax CMW, 2021. The effect of gradient nonlinearities on fiber orientation estimates from spherical deconvolution of diffusion magnetic resonance imaging data. Hum. Brain Mapp 42, 367–383.
    1. Harms MP, Somerville LH, Ances BM, Andersson J, Barch DM, Bastiani M, Bookheimer SY, Brown TB, Buckner RL, Burgess GC, Coalson TS, Chappell MA, Dapretto M, Douaud G, Fischl B, Glasser MF, Greve DN, Hodge C, Jamison KW, Jbabdi S, Kandala S, Li X, Mair RW, Mangia S, Marcus D, Mascali D, Moeller S, Nichols TE, Robinson EC, Salat DH, Smith SM, Sotiropoulos SN, Terpstra M, Thomas KM, Tisdall MD, Ugurbil K, van der Kouwe A, Woods RP, Zollei L, Van Essen DC, Yacoub E, 2018. Extending the Human Connectome Project across ages: imaging protocols for the Lifespan Development and Aging projects. Neuroimage 183, 972–984.
    1. Harms RL, Fritz FJ, Tobisch A, Goebel R, Roebroeck A, 2017. Robust and fast nonlinear optimization of diffusion MRI microstructure models. Neuroimage 155, 82–96.
    1. Haselgrove JC, Moore JR, 1996. Correction for distortion of echo-planar images used to calculate the apparent diffusion coefficient. Magn. Reson. Med 36, 960–964.
    1. Henriques RN, Jespersen SN, Jones DK, Veraart J, 2021a. Toward more robust and reproducible diffusion kurtosis imaging. Magn. Reson. Med 86, 1600–1613.
    1. Henriques RN, Palombo M, Jespersen SN, Shemesh N, Lundell H, Ianuş A, 2021b. Double diffusion encoding and applications for biomedical imaging. J. Neurosci. Methods 348, 108989.
    1. Horn A, Reich M, Vorwerk J, Li N, Wenzel G, Fang Q, Schmitz-Hübsch T, Nickl R, Kupsch A, Volkmann J, 2017. Connectivity predicts deep brain stimulation outcome in Parkinson disease. Ann. Neurol 82, 67–78.
    1. Huang CC, Hsu CH, Zhou FL, Kusmia S, Drakesmith M, Parker GJM, Lin CP, Jones DK, 2021a. Validating pore size estimates in a complex microfiber environment on a human MRI system. Magn. Reson. Med 86, 1514–1530.
    1. Huang S, Witzel T, Fan Q, McNab JA, Wald LL, Nummenmaa A, 2015a. TractCaliber: axon Diameter Estimation Across White Matter Tracts in the In Vivo Human Brain Using 300 MT/m Gradients. In: Proc. 23th Annual Meeting of the ISMRM, Toronto, Ontario, Canada, p. 470.
    1. Huang SY, Fan Q, Machado N, Eloyan A, Bireley JD, Russo AW, Tobyne SM, Patel KR, Brewer K, Rapaport SF, Nummenmaa A, Witzel T, Sherman JC, Wald LL, Klawiter EC, 2019. Corpus callosum axon diameter relates to cognitive impairment in multiple sclerosis. Ann. Clin. Transl. Neurol 6, 882–892.
    1. Huang SY, Nummenmaa A, Witzel T, Duval T, Cohen-Adad J, Wald LL, McNab JA, 2015b. The impact of gradient strength on in vivo diffusion MRI estimates of axon diameter. Neuroimage 106, 464–472.
    1. Huang SY, Tian Q, Fan Q, Witzel T, Wichtmann B, McNab JA, Daniel Bireley J, Machado N, Klawiter EC, Mekkaoui C, Wald LL, Nummenmaa A, 2020. High-gradient diffusion MRI reveals distinct estimates of axon diameter index within different white matter tracts in the in vivo human brain. Brain Struct. Funct 225, 1277–1291.
    1. Huang SY, Tobyne SM, Nummenmaa A, Witzel T, Wald LL, McNab JA, Klawiter EC, 2016. Characterization of Axonal Disease in Patients with Multiple Sclerosis Using High-Gradient-Diffusion MR Imaging. Radiology, 151582.
    1. Huang SY, Witzel T, Keil B, Scholz A, Davids M, Dietz P, Rummert E, Ramb R, Kirsch JE, Yendiki A, Fan Q, Tian Q, Ramos-Llorden G, Lee HH, Nummenmaa A, Bilgic B, Setsompop K, Wang F, Avram AV, Komlosh M, Benjamini D, Magdoom KN, Pathak S, Schneider W, Novikov DS, Fieremans E, Tounekti S, Mekkaoui C, Augustinack J, Berger D, Shapson-Coe A, Lichtman J, Basser PJ, Wald LL, Rosen BR, 2021b. Connectome 2.0: developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome. Neuroimage 243, 118530.
    1. Jehenson P, Westphal M, Schuff N, 1990. Analytical method for the compensation of eddy-current effects induced by pulsed magnetic field gradients in NMR systems. J. Magn. Reson. (1969) 90, 264–278.
    1. Jelescu IO, Palombo M, Bagnato F, Schilling KG, 2020. Challenges for biophysical modeling of microstructure. J. Neurosci. Methods 344, 108861.
    1. Jelescu IO, Veraart J, Fieremans E, Novikov DS, 2016. Degeneracy in model parameter estimation for multi-compartmental diffusion in neuronal tissue. NMR Biomed.29, 33–47.
    1. Jenkins C, Kleban E, Mueller L, Evans CJ, Rudrapanta U, Jones D, Branzoli F, Ronen I, Tax C, 2020. DW-MRS with ultra-strong diffusion gradients. In: Proc. 28th Annual Meeting of ISMRM, Virtual Meeting, p. 4307.
    1. Jespersen SN, Lundell H, Sønderby CK, Dyrby TB, 2013. Orientationally invariant metrics of apparent compartment eccentricity from double pulsed field gradient diffusion experiments. NMR Biomed.26, 1647–1662.
    1. Jeurissen B, Tournier JD, Dhollander T, Connelly A, Sijbers J, 2014. Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. Neuroimage 103, 411–426.
    1. Jezzard P, Barnett AS, Pierpaoli C, 1998. Characterization of and correction for eddy current artifacts in echo planar diffusion imaging. Magn. Reson. Med 39, 801–812.
    1. Jones R, Grisot G, Augustinack J, Magnain C, Boas DA, Fischl B, Wang H, Yendiki A, 2020. Insight into the fundamental trade-offs of diffusion MRI from polarization-sensitive optical coherence tomography in ex vivo human brain. Neuroimage 214, 116704.
    1. Jones R, Maffei C, Augustinack J, Fischl B, Wang H, Bilgic B, Yendiki A, 2021. High-fidelity approximation of grid- and shell-based sampling schemes from undersampled DSI using compressed sensing: Post mortem validation. Neuroimage 244, 118621.
    1. Jones DK, Alexander DC, Bowtell R, Cercignani M, Dell’Acqua F, McHugh DJ, Miller KL, Palombo M, Parker GJM, Rudrapatna US, Tax CMW, 2018. Microstructural imaging of the human brain with a ‘super-scanner’: 10 key advantages of ultra-strong gradients for diffusion MRI. Neuroimage 182, 8–38.
    1. Jovicich J, Czanner S, Greve D, Haley E, van der Kouwe A, Gollub R, Kennedy D, Schmitt F, Brown G, Macfall J, Fischl B, Dale A, 2006. Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. Neuroimage 30, 436–443.
    1. Kaden E, Kelm ND, Carson RP, Does MD, Alexander DC, 2016a. Multicompartment microscopic diffusion imaging. Neuroimage 139, 346–359.
    1. Kaden E, Kruggel F, Alexander DC, 2016b. Quantitative mapping of the per-axon diffusion coefficients in brain white matter. Magn. Reson. Med 75, 1752–1763.
    1. Keil B, Blau JN, Biber S, Hoecht P, Tountcheva V, Setsompop K, Triantafyllou C, Wald LL, 2013. A 64-channel 3T array coil for accelerated brain MRI. Magn. Reson. Med 70, 248–258.
    1. Kellner E, Dhital B, Kiselev VG, Reisert M, 2016. Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn. Reson. Med 76, 1574–1581.
    1. Kim D, Doyle EK, Wisnowski JL, Kim JH, Haldar JP, 2017. Diffusion-relaxation correlation spectroscopic imaging: a multidimensional approach for probing microstructure. Magn. Reson. Med
    1. Kiselev VG, 2021. Microstructure with diffusion MRI: what scale we are sensitive to? J. Neurosci. Methods 347, 108910.
    1. Kleban E, Tax CMW, Rudrapatna US, Jones DK, Bowtell R, 2020. Strong diffusion gradients allow the separation of intra- and extra-axonal gradient-echo signals in the human brain. Neuroimage 217, 116793.
    1. Koay CG, Basser PJ, 2006. Analytically exact correction scheme for signal extraction from noisy magnitude MR signals. J. Magn. Reson 179, 317–322.
    1. Koller K, Rudrapatna U, Chamberland M, Raven EP, Parker GD, Tax CMW, Drakesmith M, Fasano F, Owen D, Hughes G, Charron C, Evans CJ, Jones DK, 2021. MICRA: microstructural image compilation with repeated acquisitions. Neuroimage 225, 117406.
    1. Koonjoo N, Zhu B, Bagnall GC, Bhutto D, Rosen MS, 2021. Boosting the signal-to-noise of low-field MRI with deep learning image reconstruction. Sci. Rep 11, 8248.
    1. Lampinen B, Szczepankiewicz F, Mårtensson J, van Westen D, Hansson O, Westin C-F, Nilsson M, 2020. Towards unconstrained compartment modeling in white matter using diffusion-relaxation MRI with tensor-valued diffusion encoding. Magn. Reson. Med 84, 1605–1623.
    1. Mancini Matteo, Tian Qiyuan, Fan Qiuyun, Cercignani Mara, Huang Susie, 2021. Dissecting whole-brain conduction delays through MRI microstructural measures. Brain Structure and Function 226 (8), 2651–2663. doi:10.1007/s00429-021-02358-w.
    1. Lanzafame S, Giannelli M, Garaci F, Floris R, Duggento A, Guerrisi M, Toschi N, 2016. Differences in Gaussian diffusion tensor imaging and non-Gaussian diffusion kurtosis imaging model-based estimates of diffusion tensor invariants in the human brain. Med. Phys 43, 2464.
    1. Larkman DJ, Hajnal JV, Herlihy AH, Coutts GA, Young IR, Ehnholm G, 2001. Use of multicoil arrays for separation of signal from multiple slices simultaneously excited. J. Magn. Reson. Imaging 13, 313–317.
    1. Lasič S, Szczepankiewicz F, Eriksson S, Nilsson M, Topgaard D, 2014. Microanisotropy imaging: quantification of microscopic diffusion anisotropy and orientational order parameter by diffusion MRI with magic-angle spinning of the q-vector. Front. Phys 2.
    1. Latta P, Gruwel ML, Volotovskyy V, Weber MH, Tomanek B, 2007. Simple phase method for measurement of magnetic field gradient waveforms. Magn. Reson. Imaging 25, 1272–1276.
    1. Lee H-H, Fieremans E, Novikov DS, 2018a. LEMONADE (t): exact relation of time-dependent diffusion signal moments to neuronal microstructure. In: Proc. 26th Annual Meeting of the ISMRM, p. 884.
    1. Lee H-H, Novikov DS, Fieremans E, 2021a. Removal of partial Fourier-induced Gibbs (RPG) ringing artifacts in MRI. Magn. Reson. Med 86, 2733–2750.
    1. Lee HH, Fieremans E, Novikov DS, 2018b. What dominates the time dependence of diffusion transverse to axons: intra- or extra-axonal water? Neuroimage 182, 500–510.
    1. Lee HH, Jespersen SN, Fieremans E, Novikov DS, 2020a. The impact of realistic axonal shape on axon diameter estimation using diffusion MRI. Neuroimage 223, 117228.
    1. Lee HH, Papaioannou A, Kim SL, Novikov DS, Fieremans E, 2020b. A time-dependent diffusion MRI signature of axon caliber variations and beading. Commun. Biol 3, 354.
    1. Lee HH, Papaioannou A, Novikov DS, Fieremans E, 2020c. In vivo observation and biophysical interpretation of time-dependent diffusion in human cortical gray matter. Neuroimage 222, 117054.
    1. Lee HH, Yaros K, Veraart J, Pathan JL, Liang FX, Kim SG, Novikov DS, Fieremans E, 2019. Along-axon diameter variation and axonal orientation dispersion revealed with 3D electron microscopy: implications for quantifying brain white matter microstructure with histology and diffusion MRI. Brain Struct. Funct 224, 1469–1488.
    1. Lee Y, Wilm BJ, Brunner DO, Gross S, Schmid T, Nagy Z, Pruessmann KP, 2021b. On the signal-to-noise ratio benefit of spiral acquisition in diffusion MRI. Magn. Reson. Med 85, 1924–1937.
    1. Lemberskiy G, Baete S, Veraart J, Shepherd TM, Fieremans E, Novikov DS, 2019. Achieving sub-mm clinical diffusion MRI resolution by removing noise during reconstruction using random matrix theory. In: Proc. 27th Annual Meeting of the ISMRM, Montreal, Canada, p. 770.
    1. Lemberskiy G, Fieremans E, Veraart J, Deng F-M, Rosenkrantz AB, Novikov DS, 2018. Characterization of prostate microstructure using water diffusion and NMR relaxation. Front. Phys 6, 91.
    1. Lemberskiy G, Veraart J, Ades-aron B, Fieremans E, Novikov DS, 2021. Marchenko-Pastur Virtual Coil Compression (MP-VCC). In: Proc. 29th Annual Meeting of the ISMRM, Online, p. 1155.
    1. Li H, Chow HM, Chugani DC, Chugani HT, 2018. Minimal number of gradient directions for robust measurement of spherical heck mean diffusion weighted signal. Magn. Reson. Imaging 54, 148–152.
    1. Li H, Chow HM, Chugani DC, Chugani HT, 2019a. Linking spherical mean diffusion weighted signal with intra-axonal volume fraction. Magn. Reson. Imaging 57, 75–82.
    1. Li H, Nikam R, Kandula V, Chow HM, Choudhary AK, 2019b. Comparison of NODDI and spherical mean signal for measuring intra-neurite volume fraction. Magn. Reson. Imaging 57, 151–155.
    1. Li TQ, Takahashi AM, Hindmarsh T, Moseley ME, 1999. ADC mapping by means of a single-shot spiral MRI technique with application in acute cerebral ischemia. Magn. Reson. Med 41, 143–147.
    1. Liao C, Bilgic B, Tian Q, Stockmann JP, Cao X, Fan Q, Iyer SS, Wang F, Ngamsombat C, Lo W-C, Manhard MK, Huang SY, Wald LL, Setsompop K, 2021. Distortion-free, high-isotropic-resolution diffusion MRI with gSlider BUDA-EPI and multicoil dynamic B0 shimming. Magn. Reson. Med 86, 791–803.
    1. Liao C, Stockmann J, Tian Q, Bilgic B, Arango NS, Manhard MK, Huang SY, Grissom WA, Wald LL, Setsompop K, 2020. High-fidelity, high-isotropic-resolution diffusion imaging through gSlider acquisition with and T1corrections and integrated Δ B0/Rxshim array. Magn. Reson. Med 83, 56–67.
    1. Lin M, He H, Tong Q, Ding Q, Yan X, Feiweier T, Zhong J, 2018. Effect of myelin water exchange on DTI-derived parameters in diffusion MRI: elucidation of TE dependence. Magn. Reson. Med 79, 1650–1660.
    1. Liu C, Bammer R, Kim DH, Moseley ME, 2004. Self-navigated interleaved spiral (SNAILS): application to high-resolution diffusion tensor imaging. Magn. Reson. Med 52, 1388–1396.
    1. Liu C, Ye FQ, Newman JD, Szczupak D, Tian X, Yen CC, Majka P, Glen D, Rosa MGP, Leopold DA, Silva AC, 2020. A resource for the detailed 3D mapping of white matter pathways in the marmoset brain. Nat. Neurosci 23, 271–280.
    1. Maffei C, Jovicich J, De Benedictis A, Corsini F, Barbareschi M, Chioffi F, Sarubbo S, 2018. Topography of the human acoustic radiation as revealed by ex vivo fibers micro-dissection and in vivo diffusion-based tractography. Brain Struct. Funct 223, 449–459.
    1. Maffei C, Lee C, Planich M, Ramprasad M, Ravi N, Trainor D, Urban Z, Kim M, Jones RJ, Henin A, Hofmann SG, Pizzagalli DA, Auerbach RP, Gabrieli JDE, Whitfield-Gabrieli S, Greve DN, Haber SN, Yendiki A, 2021. Using diffusion MRI data acquired with ultra-high gradient strength to improve tractography in routine-quality data. Neuroimage 245, 118706.
    1. Maffei C, Sarubbo S, Jovicich J, 2019. Diffusion-based tractography atlas of the human acoustic radiation. Sci. Rep 9, 4046.
    1. Magdoom KN, Pajevic S, Dario G, Basser PJ, 2021. A new framework for MR diffusion tensor distribution. Sci. Rep 11, 2766.
    1. Mahmutovic M, Scholz A, Kutscha N, May M, Schlumm T, Müller R, Pine K, Edwards L, Weiskopf N, Brunner D, Möller H, Keil B, 2021. A 64-Channel Brain Array Coil with an Integrated 16-Channel Field Monitoring System for 3T MRI. In: Proc. 29th Annual Meeting of the ISMRM, Online, p. 623.
    1. Makris N, Rathi Y, Mouradian P, Bonmassar G, Papadimitriou G, Ing WI, Yeterian EH, Kubicki M, Eskandar EN, Wald LL, Fan Q, Nummenmaa A, Widge AS, Dougherty DD, 2016. Variability and anatomical specificity of the orbitofrontothalamic fibers of passage in the ventral capsule/ventral striatum (VC/VS): precision care for patient-specific tractography-guided targeting of deep brain stimulation (DBS) in obsessive compulsive disorder (OCD). Brain Imaging Behav.10, 1054–1067.
    1. Mansfield P, Chapman B, 1987. Multishield active magnetic screening of coil structures in NMR. J. Magn. Resonance (1969) 72, 211–223.
    1. McKinnon ET, Jensen JH, 2019. Measuring intra-axonal T(2) in white matter with direction-averaged diffusion MRI. Magn. Reson. Med 81, 2985–2994.
    1. McKinnon ET, Jensen JH, Glenn GR, Helpern JA, 2017. Dependence on b-value of the direction-averaged diffusion-weighted imaging signal in brain. Magn. Reson. Imaging 36, 121–127.
    1. McNab JA, Edlow BL, Witzel T, Huang SY, Bhat H, Heberlein K, Feiweier T, Liu K, Keil B, Cohen-Adad J, Tisdall MD, Folkerth RD, Kinney HC, Wald LL, 2013a. The Human Connectome Project and beyond: initial applications of 300 mT/m gradients. Neuroimage 80, 234–245.
    1. McNab JA, Polimeni JR, Wang R, Augustinack JC, Fujimoto K, Stevens A, Janssens T, Farivar R, Folkerth RD, Vanduffel W, 2013b. Surface based analysis of diffusion orientation for identifying architectonic domains in the in vivo human cortex. Neuroimage 69, 87–100.
    1. Mesri HY, David S, Viergever MA, Leemans A, 2020. The adverse effect of gradient nonlinearities on diffusion MRI: from voxels to group studies. Neuroimage 205, 116127.
    1. Miller KL, Alfaro-Almagro F, Bangerter NK, Thomas DL, Yacoub E, Xu J, Bartsch AJ, Jbabdi S, Sotiropoulos SN, Andersson JLR, Griffanti L, Douaud G, Okell TW, Weale P, Dragonu I, Garratt S, Hudson S, Collins R, Jenkinson M, Matthews PM, Smith SM, 2016. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci 19, 1523–1536.
    1. Miller KL, Stagg CJ, Douaud G, Jbabdi S, Smith SM, Behrens TE, Jenkinson M, Chance SA, Esiri MM, Voets NL, Jenkinson N, Aziz TZ, Turner MR, Johansen-Berg H, McNab JA, 2011. Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner. Neuroimage 57, 167–181.
    1. Moeller S, Pisharady PK, Ramanna S, Lenglet C, Wu X, Dowdle L, Yacoub E, Uğurbil K, Akçakaya M, 2021. NOise reduction with DIstribution Corrected (NORDIC) PCA in dMRI with complex-valued parameter-free locally low-rank processing. Neuroimage 226, 117539.
    1. Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J, Harel N, Uğurbil K, 2010. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn. Reson. Med 63, 1144–1153.
    1. Moeller S, Yacoub E, Ramanna S, Kittelson E, Ugurbil K, Lenglet C, 2017. Feasibility of very high b-value diffusion imaging using a clinical scanner. In: Proc. 25th Annual Meeting of ISMRM, Honolulu, HI, USA.
    1. Mohammadi S, Nagy Z, Möller HE, Symms MR, Carmichael DW, Josephs O, Weiskopf N, 2012. The effect of local perturbation fields on human DTI: characterisation, measurement and correction. Neuroimage 60, 562–570.
    1. Morez J, Sijbers J, Vanhevel F, Jeurissen B, 2021. Constrained spherical deconvolution of nonspherically sampled diffusion MRI data. Hum. Brain Mapp 42, 521–538.
    1. Morich MA, Lampman DA, Dannels WR, Goldie FD, 1988. Exact temporal eddy current compensation in magnetic resonance imaging systems. IEEE Trans. Med. Imaging 7, 247–254.
    1. Movahedian Attar F, Kirilina E, Haenelt D, Pine KJ, Trampel R, Edwards LJ, Weiskopf N, 2020. Mapping Short Association Fibers in the Early Cortical Visual Processing Stream Using In Vivo Diffusion Tractography. Cereb. Cortex 30, 4496–4514.
    1. Moyer D, Ver Steeg G, Tax CMW, Thompson PM, 2020. Scanner invariant representations for diffusion MRI harmonization. Magn. Reson. Med 84, 2174–2189.
    1. Mozumder M, Pozo JM, Coelho S, Frangi AF, 2019. Population-based Bayesian regularization for microstructural diffusion MRI with NODDIDA. Magn. Reson. Med 82, 1553–1565.
    1. Muckley MJ, Ades-Aron B, Papaioannou A, Lemberskiy G, Solomon E, Lui YW, Sodickson DK, Fieremans E, Novikov DS, Knoll F, 2021. Training a neural network for Gibbs and noise removal in diffusion MRI. Magn. Reson. Med 85, 413–428.
    1. Mueller L, Rudrapatna S, Tax C, Wise R, Jones D, 2019a. Diffusion MRI with b=1000s/mm2 at TE< 22ms using single-shot spiral readout and ultra-strong gradients: implications for microstructure imaging. In: Proc. 27th Annual Meeting of the ISMRM, Montréal, QC, Canada, p. 0766.
    1. Mueller L, Tax CM, Jones DK, 2019b. Unprecedented echo times for diffusion MRI using connectom gradients, spiral readouts and field monitoring. MAGNETOM Flash 74, 21–26.
    1. Mueller L, Wetscherek A, Kuder TA, Laun FB, 2017. Eddy current compensated double diffusion encoded (DDE) MRI. Magn. Reson. Med 77, 328–335.
    1. Mulkern RV, Zengingonul HP, Robertson RL, Bogner P, Zou KH, Gudbjartsson H, Guttmann CR, Holtzman D, Kyriakos W, Jolesz FA, Maier SE, 2000. Multicomponent apparent diffusion coefficients in human brain: relationship to spin-lattice relaxation. Magn. Reson. Med 44, 292–300.
    1. Nam Y, Lee J, Hwang D, Kim DH, 2015. Improved estimation of myelin water fraction using complex model fitting. Neuroimage 116, 214–221.
    1. Ngamsombat C, Tian Q, Fan Q, Russo A, Machado N, Polackal M, George IC, Witzel T, Klawiter EC, Huang SY, 2020. Axonal damage in the optic radiation assessed by white matter tract integrity metrics is associated with retinal thinning in multiple sclerosis. Neuroimage Clin.27, 102293.
    1. Nilsson M, Englund E, Szczepankiewicz F, van Westen D, Sundgren PC, 2018. Imaging brain tumour microstructure. Neuroimage 182, 232–250.
    1. Nilsson M, Lasic S, Drobnjak I, Topgaard D, Westin CF, 2017. Resolution limit of cylinder diameter estimation by diffusion MRI: the impact of gradient waveform and orientation dispersion. NMR Biomed.30.
    1. Ning L, Bonet-Carne E, Grussu F, Sepehrband F, Kaden E, Veraart J, Blumberg SB, Khoo CS, Palombo M, Coll-Font J, 2019. Muti-shell diffusion MRI harmonisation and enhancement challenge (MUSHAC): progress and results. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 217–224.
    1. Ning L, Bonet-Carne E, Grussu F, Sepehrband F, Kaden E, Veraart J, Blumberg SB, Khoo CS, Palombo M, Kokkinos I, Alexander DC, Coll-Font J, Scherrer B, Warfield SK, Karayumak SC, Rathi Y, Koppers S, Weninger L, Ebert J, Merhof D, Moyer D, Pietsch M, Christiaens D, Gomes Teixeira RA, Tournier J-D, Schilling KG, Huo Y, Nath V, Hansen C, Blaber J, Landman BA, Zhylka A, Pluim JPW, Parker G, Rudrapatna U, Evans J, Charron C, Jones DK, Tax CMW, 2020a. Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: algorithms and results. Neuroimage 221, 117128.
    1. Ning L, Gagoski B, Szczepankiewicz F, Westin CF, Rathi Y, 2020b. Joint RElaxation-Diffusion Imaging Moments to Probe Neurite Microstructure. IEEE Trans Med. Imaging 39, 668–677.
    1. Novikov DS, 2021a. The present and the future of microstructure MRI: from a paradigm shift to normal science. J. Neurosci. Methods 351, 108947.
    1. Novikov DS, 2021b. The present and the future of microstructure MRI: from a paradigm shift to normal science. J. Neurosci. Methods 351, 108947.
    1. Novikov DS, Fieremans E, Jespersen SN, Kiselev VG, 2019. Quantifying brain microstructure with diffusion MRI: theory and parameter estimation. NMR Biomed.32, e3998.
    1. Novikov DS, Kiselev VG, Jespersen SN, 2018. On modeling. Magn. Reson. Med 79, 3172–3193.
    1. Oh CH, Park HW, Cho ZH, 1984. Line-Integral Projection Reconstruction (LPR) with Slice Encoding Techniques: multislice Regional Imaging in NMR Tomography. IEEE Trans. Med. Imaging 3, 170–178.
    1. Ou SQ, Wei PH, Fan XT, Wang YH, Meng F, Li MY, Shan YZ, Zhao GG, 2021. Delineating the Decussating Dentato-rubro-thalamic Tract and Its Connections in Humans Using Diffusion Spectrum Imaging Techniques. Cerebellum.
    1. Palombo M, Ianus A, Guerreri M, Nunes D, Alexander DC, Shemesh N, Zhang H, 2020. SANDI: a compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI. Neuroimage 215, 116835.
    1. Palombo M, Shemesh N, Ronen I, Valette J, 2018. Insights into brain microstructure from in vivo DW-MRS. Neuroimage 182, 97–116.
    1. Paquette M, Eichner C, Anwander A, 2019. Gradient non-linearity correction for spherical mean diffusion imaging. In: Proc. 27th Annual Meeting of the ISMRM, Montréal, QC, Canada, p. 0550.
    1. Paquette M, Eichner C, Knösche TR, Anwander A, 2020a. Axon Diameter Measurements using Diffusion MRI are Infeasible. bioRxiv.
    1. Paquette M, Tax CM, Eichner C, Anwander A, 2020b. Impact of gradient nonlinearities on B-tensor diffusion encoding. In: Proc. 28th Annual Meeting of the ISMRM, Online, p. 4412.
    1. Perea RD, Rabin JS, Fujiyoshi MG, Neal TE, Smith EE, Van Dijk KRA, Hedden T, 2018. Connectome-derived diffusion characteristics of the fornix in Alzheimer’s disease. Neuroimage Clin 19, 331–342.
    1. Peled S, Cory DG, Raymond SA, Kirschner DA, Jolesz FA, 1999. Water diffusion, T(2), and compartmentation in frog sciatic nerve. Magn. Reson. Med 42, 911–918.
    1. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P, 1999. SENSE: sensitivity encoding for fast MRI. Magn. Reson. Med 42, 952–962.
    1. Qin W, Yu CS, Zhang F, Du XY, Jiang H, Yan YX, Li KC, 2009. Effects of echo time on diffusion quantification of brain white matter at 1.5 T and 3.0 T. Magn. Reson. Med 61, 755–760.
    1. Qin Y, Liu Z, Liu C, Li Y, Zeng X, Ye C, 2021. Super-Resolved q-Space deep learning with uncertainty quantification. Med. Image Anal.67, 101885.
    1. Rahmer J, Mazurkewitz P, Bornert P, Nielsen T, 2019. Rapid acquisition of the 3D MRI gradient impulse response function using a simple phantom measurement. Magn. Reson. Med 82, 2146–2159.
    1. Ramos-Llorden G, M. C, T. Q, Bilgic B, Witzel T, Keil B, Yendiki A, Huang S, 2021. Ex-vivo whole human brain high b-value diffusion MRI at 550 μm with a 3T Connectom scanner. In: Proc. 29th Annual Meeting of the ISMRM, Online, p. 300.
    1. Ramos-Llorden G, Park D, Mirkes C, Cushing C, Weavers P, Lee HH, Scholz A, Keil B, Bilgic B, Yendiki A, Witzel T, Huang SY, 2022. Distortion- and ghosting-free high-resolution high b-value ex vivo human brain diffusion MRI achieved with spatiotemporal magnetic field monitoring. In: Proc. 31st Annual Meeting of the ISMRM, London.
    1. Reisert M, Kellner E, Dhital B, Hennig J, Kiselev VG, 2017. Disentangling micro from mesostructure by diffusion MRI: a Bayesian approach. Neuroimage 147, 964–975.
    1. Reisert M, Kellner E, Kiselev VG, 2012. About the geometry of asymmetric fiber orientation distributions. IEEE Trans Med Imaging 31, 1240–1249.
    1. Reymbaut A, Martins J, Tax C, Szczepankiewicz F, Jones D, Topgaard D, 2020a. Resolving orientation-specific diffusion-relaxation features via Monte-Carlo density-peak clustering in heterogeneous brain tissue. arXiv preprint arXiv:2004.08626
    1. Reymbaut A, Mezzani P, de Almeida Martins JP, Topgaard D, 2020b. Accuracy and precision of statistical descriptors obtained from multidimensional diffusion signal inversion algorithms. NMR Biomed.33, e4267.
    1. Roebroeck A, Miller KL, Aggarwal M, 2019. Ex vivo diffusion MRI of the human brain: technical challenges and recent advances. NMR Biomed.32, e3941.
    1. Roemer PB, Edelstein WA, Hickey JS, 1986. Self Shielded Gradient Coils. In: Proc. 5th Annual Meeting of the ISMRM, Montreal, p. 1067.
    1. Rudrapatna U, Parker GD, Roberts J, Jones DK, 2021. A comparative study of gradient nonlinearity correction strategies for processing diffusion data obtained with ultra-strong gradient MRI scanners. Magn. Reson. Med 85, 1104–1113.
    1. Safadi Z, Grisot G, Jbabdi S, Behrens TE, Heilbronner SR, McLaughlin NCR, Mandeville J, Versace A, Phillips ML, Lehman JF, Yendiki A, Haber SN, 2018. Functional Segmentation of the Anterior Limb of the Internal Capsule: linking White Matter Abnormalities to Specific Connections. J. Neurosci 38, 2106–2117.
    1. Salat DH, Tuch DS, Greve DN, van der Kouwe AJ, Hevelone ND, Zaleta AK, Rosen BR, Fischl B, Corkin S, Rosas HD, Dale AM, 2005. Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol. Aging 26, 1215–1227.
    1. Saritas EU, Lee D, Çukur T, Shankaranarayanan A, Nishimura DG, 2014. Hadamard slice encoding for reduced-FOV diffusion-weighted imaging. 72, 1277–1290.
    1. Savadjiev P, Campbell JS, Descoteaux M, Deriche R, Pike GB, Siddiqi K, 2008. Labeling of ambiguous subvoxel fibre bundle configurations in high angular resolution diffusion MRI. Neuroimage 41, 58–68.
    1. Schaefer DJ, Bourland JD, Nyenhuis JA, 2000. Review of patient safety in time-varying gradient fields. J. Magn. Reson. Imaging 12, 20–29.
    1. Schilling KG, Blaber J, Hansen C, Cai L, Rogers B, Anderson AW, Smith S, Kanakaraj P, Rex T, Resnick SM, 2020. Distortion correction of diffusion weighted MRI without reverse phase-encoding scans or field-maps. PLoS ONE 15, e0236418.
    1. Scholz A, Etzel R, May MW, Mahmutovic M, Tian Q, Ramos-Llordén G, Maffei C, Bilgiç B, Witzel T, Stockmann JP, Mekkaoui C, Wald LL, Huang SY, Yendiki A, Keil B, 2021. A 48-channel receive array coil for mesoscopic diffusion-weighted MRI of ex vivo human brain on the 3 T connectome scanner. Neuroimage 238, 118256.
    1. Sepehrband F, Alexander DC, Kurniawan ND, Reutens DC, Yang Z, 2016. Towards higher sensitivity and stability of axon diameter estimation with diffusion-weighted MRI. NMR Biomed.29, 293–308.
    1. Setsompop K, Fan Q, Stockmann J, Bilgic B, Huang S, Cauley SF, Nummenmaa A, Wang F, Rathi Y, Witzel T, Wald LL, 2018. High-resolution in vivo diffusion imaging of the human brain with generalized slice dithered enhanced resolution: simultaneous multislice (gSlider-SMS). Magn. Reson. Med 79, 141–151.
    1. Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL, 2012. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn. Reson. Med 67, 1210–1224.
    1. Setsompop K, Kimmlingen R, Eberlein E, Witzel T, Cohen-Adad J, McNab JA, Keil B, Tisdall MD, Hoecht P, Dietz P, Cauley SF, Tountcheva V, Matschl V, Lenz VH, Heberlein K, Potthast A, Thein H, Van Horn J, Toga A, Schmitt F, Lehne D, Rosen BR, Wedeen V, Wald LL, 2013. Pushing the limits of in vivo diffusion MRI for the Human Connectome Project. Neuroimage 80, 220–233.
    1. Shakya S, Batool N, Özarslan E, Knutsson H, 2017. Multi-Fiber Reconstruction Using Probabilistic Mixture Models for Diffusion MRI Examinations of the Brain. Springer International Publishing, Cham, pp. 283–308.
    1. Shan YZ, Wang ZM, Fan XT, Zhang HQ, Ren LK, Wei PH, Zhao GG, 2019. Automatic labeling of the fanning and curving shape of Meyer’s loop for epilepsy surgery: an atlas extracted from high-definition fiber tractography. BMC Neurol.19, 302.
    1. Shi D, Pan Z, Li X, Guo H, Zheng Q, 2021. Diffusion coefficient orientation distribution function for diffusion magnetic resonance imaging. J. Neurosci. Methods 348, 108986.
    1. Siless V, Chang K, Fischl B, Yendiki A, 2018. AnatomiCuts: hierarchical clustering of tractography streamlines based on anatomical similarity. Neuroimage 166, 32–45.
    1. Skinner NP, Kurpad SN, Schmit BD, Tugan Muftuler L, Budde MD, 2017. Rapid in vivo detection of rat spinal cord injury with double-diffusion-encoded magnetic resonance spectroscopy. Magn. Reson. Med 77, 1639–1649.
    1. Sotiropoulos SN, Hernandez-Fernandez M, Vu AT, Andersson JL, Moeller S, Yacoub E, Lenglet C, Ugurbil K, Behrens TE, Jbabdi S, 2016. Fusion in diffusion MRI for improved fibre orientation estimation: an application to the 3T and 7T data of the Human Connectome Project. Neuroimage 134, 396–409.
    1. Sotiropoulos SN, Jbabdi S, Andersson JL, Woolrich MW, Ugurbil K, Behrens TE, 2013a. RubiX: combining spatial resolutions for Bayesian inference of crossing fibers in diffusion MRI. IEEE Trans. Med. Imaging 32, 969–982.
    1. Sotiropoulos SN, Jbabdi S, Xu J, Andersson JL, Moeller S, Auerbach EJ, Glasser MF, Hernandez M, Sapiro G, Jenkinson M, Feinberg DA, Yacoub E, Lenglet C, Van Essen DC, Ugurbil K, Behrens TE, Consortium, W.U.-M.H., 2013b. Advances in diffusion MRI acquisition and processing in the Human Connectome Project. Neuroimage 80, 125–143.
    1. Sotiropoulos SN, Moeller S, Jbabdi S, Xu J, Andersson JL, Auerbach EJ, Yacoub E, Feinberg D, Setsompop K, Wald LL, Behrens TEJ, Ugurbil K, Lenglet C, 2013c. Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using SENSE. Magn. Reson. Med 70, 1682–1689.
    1. Souza SP, Szumowski J, Dumoulin CL, Plewes DP, Glover G, 1988. SIMA: simultaneous multislice acquisition of MR images by Hadamard-encoded excitation. J. Comput. Assist. Tomogr 12, 1026–1030.
    1. St-Jean S, De Luca A, Tax CMW, Viergever MA, Leemans A, 2020a. Automated characterization of noise distributions in diffusion MRI data. Med. Image Anal 65, 101758.
    1. St-Jean S, Viergever MA, Leemans A, 2020b. Harmonization of diffusion MRI data sets with adaptive dictionary learning. Hum. Brain Mapp 41, 4478–4499.
    1. Stanisz GJ, Henkelman RM, 1998. Diffusional anisotropy of T2 components in bovine optic nerve. Magn. Reson. Med 40, 405–410.
    1. Stanisz GJ, Wright GA, Henkelman RM, Szafer A, 1997. An analytical model of restricted diffusion in bovine optic nerve. Magn. Reson. Med 37, 103–111.
    1. Sun J, Entezari A, Vemuri BC, 2019. Exploiting structural redundancy in q-space for improved EAP reconstruction from highly undersampled (k, q)-space in DMRI. Med. Image Anal 54, 122–137.
    1. Szczepankiewicz F, Eichner C, Anwander A, Westin C-F, Paquette M, 2020. The impact of gradient non-linearity on Maxwell compensation when using asymmetric gradient waveforms for tensor-valued diffusion encoding. In: Proc. 28th Annual Meeting of the ISMRM, Online, p. 3391.
    1. Szczepankiewicz F, Lasic S, van Westen D, Sundgren PC, Englund E, Westin CF, Stahlberg F, Latt J, Topgaard D, Nilsson M, 2015. Quantification of microscopic diffusion anisotropy disentangles effects of orientation dispersion from microstructure: applications in healthy volunteers and in brain tumors. Neuroimage 104, 241–252.
    1. Szczepankiewicz F, van Westen D, Englund E, Westin CF, Ståhlberg F, Lätt J, Sundgren PC, Nilsson M, 2016. The link between diffusion MRI and tumor heterogeneity: mapping cell eccentricity and density by diffusional variance decomposition (DIVIDE). Neuroimage 142, 522–532.
    1. Szczepankiewicz F, Westin C-F, Nilsson M, 2021. Gradient waveform design for tensor-valued encoding in diffusion MRI. J. Neurosci. Methods 348, 109007.
    1. Szczepankiewicz F, Westin CF, Nilsson M, 2019. Maxwell-compensated design of asymmetric gradient waveforms for tensor-valued diffusion encoding. Magn. Reson. Med 82, 1424–1437.
    1. Tan ET, Hua Y, Fiveland EW, Vermilyea ME, Piel JE, Park KJ, Ho VB, Foo TKF, 2020a. Peripheral nerve stimulation limits of a high amplitude and slew rate magnetic field gradient coil for neuroimaging. Magn. Reson. Med 83, 352–366.
    1. Tan ET, Shih RY, Mitra J, Sprenger T, Hua Y, Bhushan C, Bernstein MA, McNab JA, DeMarco JK, Ho VB, Foo TKF, 2020b. Oscillating diffusion-encoding with a high gradient-amplitude and high slew-rate head-only gradient for human brain imaging. Magn. Reson. Med 84, 950–965.
    1. Tang W, Jbabdi S, Zhu Z, Cottaar M, Grisot G, Lehman JF, Yendiki A, Haber SN, 2019. A connectional hub in the rostral anterior cingulate cortex links areas of emotion and cognitive control. Elife 8, e43761.
    1. Tax C, de Almeida Martins J, Szczepankiewicz F, Westin C, Chamberland M, Topgaard D, Jones D, 2018. From physical chemistry to human brain biology: unconstrained inversion of 5-dimensional diffusion-T2 correlation data. In: Proc. 26th Annual Meeting of ISMRM, p. 1101.
    1. Tax C, Rudrapatna U, Witzel T, Jones D, 2017. Disentangling in Two Dimensions in the Living Human Brain: feasbilty of Relaxometry-Diffusometry Using Ultra-Strong Gradients. In: Proc. 25th Annual Meeting of the ISMRM, Honolulu, HI, USA, p. 838.
    1. Tax CM, 2020. Estimating chemical and microstructural heterogeneity by correlating relaxation and diffusion. Adv. Diffus. Encoding Methods MRI 24, 186.
    1. Tax CM, Grussu F, Kaden E, Ning L, Rudrapatna U, John Evans C, St-Jean S, Leemans A, Koppers S, Merhof D, Ghosh A, Tanno R, Alexander DC, Zappala S, Charron C, Kusmia S, Linden DE, Jones DK, Veraart J, 2019. Cross-scanner and cross-protocol diffusion MRI data harmonisation: a benchmark database and evaluation of algorithms. Neuroimage 195, 285–299.
    1. Tax CMW, Bastiani M, Veraart J, Garyfallidis E, Okan Irfanoglu M, 2022. What’s new and what’s next in diffusion MRI preprocessing. Neuroimage 249, 118830.
    1. Tax CMW, Kleban E, Chamberland M, Baraković M, Rudrapatna U, Jones DK, 2021a. Measuring compartmental T2-orientational dependence in human brain white matter using a tiltable RF coil and diffusion-T2 correlation MRI. Neuroimage 236, 117967.
    1. Tax CMW, Larochelle H, De Almeida Martins JP, Hutter J, Jones DK, Chamberland M, Descoteaux M, 2021b. Optimising multi-contrast MRI experiment design using concrete autoencoders. In: Proc. 29th Annual Meeting of the ISMRM, Online, p. 1240.
    1. Tax CMW, Szczepankiewicz F, Nilsson M, Jones DK, 2020. The dot-compartment revealed? Diffusion MRI with ultra-strong gradients and spherical tensor encoding in the living human brain. Neuroimage 210, 116534.
    1. Tian Q, Fan Q, Witzel T, Polackal MN, Ohringer NA, Ngamsombat C, Russo AW, Machado N, Brewer K, Wang F, Setsompop K, Polimeni JR, Keil B, Wald LL, Rosen BR, Klawiter EC, Nummenmaa A, Huang SY, 2022. Comprehensive diffusion MRI dataset for in vivo human brain microstructure mapping using 300 mT/m gradients. Sci. Data 9, 7.
    1. Tian Q, Rokem A, Folkerth RD, Nummenmaa A, Fan Q, Edlow BL, McNab JA, 2016. Q-space truncation and sampling in diffusion spectrum imaging. Magn. Reson. Med 76, 1750–1763.
    1. Tian Q, Yang G, Leuze C, Rokem A, Edlow BL, McNab JA, 2019. Generalized diffusion spectrum magnetic resonance imaging (GDSI) for model-free reconstruction of the ensemble average propagator. Neuroimage 189, 497–515.
    1. Topgaard D, 2019. Diffusion tensor distribution imaging. NMR Biomed.32, e4066.
    1. Tournier JD, Calamante F, Connelly A, 2007. Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35, 1459–1472.
    1. Tournier JD, Calamante F, Gadian DG, Connelly A, 2004. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 23, 1176–1185.
    1. Tristan-Vega A, Aja-Fernandez S, 2021. Efficient and accurate EAP imaging from multi-shell dMRI with micro-structure adaptive convolution kernels and dual Fourier Integral Transforms (MiSFIT). Neuroimage 227, 117616.
    1. Truong TK, Guidon A, 2014. High-resolution multishot spiral diffusion tensor imaging with inherent correction of motion-induced phase errors. Magn. Reson. Med 71, 790–796.
    1. Uesaki M, Takemura H, Ashida H, 2018. Computational neuroanatomy of human stratum proprium of interparietal sulcus. Brain Struct. Funct 223, 489–507.
    1. Van Vaals JJ, Bergman AH, 1990. Optimization of eddy-current compensation. J. Magn. Reson. (1969) 90, 52–70.
    1. Varela-Mattatall G, Castillo-Passi C, Koch A, Mura J, Stirnberg R, Uribe S, Tejos C, Stoecker T, Irarrazaval P, 2020. MAPL1:q-space reconstruction usingl1-regularized mean apparent propagator. Magn. Reson. Med 84, 2219–2230.
    1. Veraart AJ, Fieremans E, Rudrapatna U, Jones DK, Novikov DS, 2018a. Breaking the power law scaling of the dMRI signal on the Connectom scanner reveals its sensitivity to axon diameters. In: Proc. 26th Annual Meeting of the ISMRM, Paris, France, p. 252.
    1. Veraart J, Fieremans E, Jelescu IO, Knoll F, Novikov DS, 2016a. Gibbs ringing in diffusion MRI. Magn. Reson. Med 76, 301–314.
    1. Veraart J, Fieremans E, Novikov DS, 2016b. Diffusion MRI noise mapping using random matrix theory. Magn. Reson. Med 76, 1582–1593.
    1. Veraart J, Fieremans E, Novikov DS, 2019. On the scaling behavior of water diffusion in human brain white matter. Neuroimage 185, 379–387.
    1. Veraart J, Novikov DS, Christiaens D, Ades-aron B, Sijbers J, Fieremans E, 2016c. Denoising of diffusion MRI using random matrix theory. Neuroimage 142, 394–406.
    1. Veraart J, Novikov DS, Fieremans E, 2018b. TE dependent Diffusion Imaging (TEdDI) distinguishes between compartmental T(2) relaxation times. Neuroimage 182, 360–369.
    1. Veraart J, Nunes D, Rudrapatna U, Fieremans E, Jones DK, Novikov DS, Shemesh N, 2020. Noninvasive quantification of axon radii using diffusion MRI. Elife 9, e49855.
    1. Veraart J, Raven EP, Edwards LJ, Weiskopf N, Jones DK, 2021. The variability of MR axon radii estimates in the human white matter. Hum. Brain Mapp 42, 2201–2213.
    1. Vos SB, Tax CM, Luijten PR, Ourselin S, Leemans A, Froeling M, 2017. The importance of correcting for signal drift in diffusion MRI. Magn. Reson. Med 77, 285–299.
    1. Wang F, Dong Z, Tian Q, Liao C, Fan Q, Hoge WS, Keil B, Polimeni JR, Wald LL, Huang SY, Setsompop K, 2021. In vivo human whole-brain Connectom diffusion MRI dataset at 760 μm isotropic resolution. Sci. Data 8, 122.
    1. Wang ZM, Shan Y, Zhang M, Wei PH, Li QG, Yin YY, Lu J, 2019. Projections of Brodmann Area 6 to the Pyramidal Tract in Humans: quantifications Using High Angular Resolution Data. Front. Neural Circuits 13.
    1. Wang ZM, Wei PH, Shan Y, Han M, Zhang M, Liu H, Gao JH, Lu J, 2020. Identifying and characterizing projections from the subthalamic nucleus to the cerebellum in humans. Neuroimage 210, 116573.
    1. Wegmayr V, Giuliari G, Buhmann JM, 2019. Entrack: A Data-Driven Maximum-Entropy Approach to Fiber Tractography. Springer International Publishing, Cham, pp. 232–244.
    1. Weiger M, Overweg J, Rösler MB, Froidevaux R, Hennel F, Wilm BJ, Penn A, Sturzenegger U, Schuth W, Mathlener M, 2018. A high-performance gradient insert for rapid and short-T2 imaging at full duty cycle. Magn. Reson. Med 79, 3256–3266.
    1. Weiskopf N, Edwards LJ, Helms G, Mohammadi S, Kirilina E, 2021. Quantitative magnetic resonance imaging of brain anatomy and in vivo histology. Nat. Rev. Phys 3, 570–588.
    1. Westin CF, Knutsson H, Pasternak O, Szczepankiewicz F, Ozarslan E, van Westen D, Mattisson C, Bogren M, O’Donnell LJ, Kubicki M, Topgaard D, Nilsson M, 2016. Q-space trajectory imaging for multidimensional diffusion MRI of the human brain. Neuroimage 135, 345–362.
    1. Wieseotte C, Witzel T, Polimeni JR, Nummenmaa A, Gruber B, Schreiber L, Wald LL, 2015. Pushing the limits of ex-vivo diffusion MRI and tractography of the human brain. In: Proc. 23th Annual Meeting of the ISMRM, Toronto, Canada, p. 2847.
    1. Wilm BJ, Barmet C, Gross S, Kasper L, Vannesjo SJ, Haeberlin M, Dietrich BE, Brunner DO, Schmid T, Pruessmann KP, 2017. Single-shot spiral imaging enabled by an expanded encoding model: demonstration in diffusion MRI. Magn. Reson. Med 77, 83–91.
    1. Wilm BJ, Barmet C, Pavan M, Pruessmann KP, 2011. Higher order reconstruction for MRI in the presence of spatiotemporal field perturbations. Magn. Reson. Med 65, 1690–1701.
    1. Wilm BJ, Hennel F, Roesler MB, Weiger M, Pruessmann KP, 2020. Minimizing the echo time in diffusion imaging using spiral readouts and a head gradient system. Magn. Reson. Med 84, 3117–3127.
    1. Wilm BJ, Nagy Z, Barmet C, Vannesjo SJ, Kasper L, Haeberlin M, Gross S, Dietrich BE, Brunner DO, Schmid T, Pruessmann KP, 2015. Diffusion MRI with concurrent magnetic field monitoring. Magn. Reson. Med 74, 925–933.
    1. Xu D, Maier JK, King KF, Collick BD, Wu G, Peters RD, Hinks RS, 2013. Prospective and retrospective high order eddy current mitigation for diffusion weighted echo planar imaging. Magn. Reson. Med 70, 1293–1305.
    1. Xu J, 2021. Probing neural tissues at small scales: recent progress of oscillating gradient spin echo (OGSE) neuroimaging in humans. J. Neurosci. Methods 349, 109024.
    1. Xu PC, Liu HF, Ieee, 2019. Simultaneous reconstruction and segmentation of MRI image by manifold learning. 2019 Ieee Nuclear Science Symposium and Medical Imaging Conference.
    1. Yang G, McNab JA, 2019. Eddy current nulled constrained optimization of isotropic diffusion encoding gradient waveforms. Magn. Reson. Med 81, 1818–1832.
    1. Yang G, Tian Q, Leuze C, Wintermark M, McNab JA, 2018. Double diffusion encoding MRI for the clinic. Magn. Reson. Med 80, 507–520.
    1. Yeh F-C, Verstynen TD, 2016. Converting Multi-Shell and Diffusion Spectrum Imaging to High Angular Resolution Diffusion Imaging. Front. Neurosci 10.
    1. Yendiki A, Witzel T, Huang SY, 2020. Connectome 2.0: cutting-Edge Hardware Ushers in New Opportunities for Computational Diffusion MRI. Computational Diffusion MRI. Springer, pp. 3–12.
    1. Yendiki A, Aggarwal M, Axer M, Howard AFD, van Cappellen van Walsum A-M, Haber SN, 2021. Post mortem mapping of connectional anatomy for the validation of diffusion. MRI bioRxiv:2021.2004.2016.440223
    1. Yu AC, Badve C, Ponsky LE, Pahwa S, Dastmalchian S, Rogers M, Jiang Y, Margevicius S, Schluchter M, Tabayoyong W, Abouassaly R, McGivney D, Griswold MA, Gulani V, 2017. Development of a Combined MR Fingerprinting and Diffusion Examination for Prostate Cancer. Radiology 283, 729–738.
    1. Yu F, Fan Q, Tian Q, Ngamsombat C, Machado N, Bireley JD, Russo AW, Nummenmaa A, Witzel T, Wald LL, Klawiter EC, Huang SY, 2019. Imaging G-Ratio in Multiple Sclerosis Using High-Gradient Diffusion MRI and Macromolecular Tissue Volume. AJNR Am. J. Neuroradiol 40, 1871–1877.
    1. Zhang B, Yen YF, Chronik BA, McKinnon GC, Schaefer DJ, Rutt BK, 2003. Peripheral nerve stimulation properties of head and body gradient coils of various sizes. Magn. Reson. Med 50, 50–58.
    1. Zhang H, Hubbard PL, Parker GJ, Alexander DC, 2011. Axon diameter mapping in the presence of orientation dispersion with diffusion MRI. Neuroimage 56, 1301–1315.
    1. Zhang Y, 2018. Corticospinal Tract (CST) Reconstruction Based on Fiber Orientation Distributions (FODs) Tractography. 2018 IEEE 18th International Conference on Bioinformatics and Bioengineering (BIBE). IEEE, pp. 305–310.
    1. Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS, 2018. Image reconstruction by domain-transform manifold learning. Nature 555, 487–492.
    1. Zhu T, Tian Q, Huang S, Huang H, 2021. Sensitivity of cortical kurtosismeasurement to diffusion time inKINSAmodeling assessed with Connectomescanner diffusionMRI. In: Proc. 29th Annual Meeting of ISMRM, Online, p. 495.
    1. Keil B, Biber S, Rehner R, Tountcheva V, Wohlfarth K, Hoecht P, Hamm M, Meyer H, Fischer H, Wald LL, 2011. A 64-Channel Array Coil for 3T Head/Neck/C-spine Imaging. In: Proc. 19th Annual Meeting of the ISMRM, Montreal, Quebec, Canada, p. 160.
    1. keil and wald, 2013) to the reference list:Keil B, Wald LL, 2013. Massively parallel MRI detector arrays. J Magn Reson 229, 75–89.

Source: PubMed

3
Subskrybuj