Lipophilic Bioactive Compounds Transported in Triglyceride-Rich Lipoproteins Modulate Microglial Inflammatory Response

Juan M Espinosa, Jose M Castellano, Silvia Garcia-Rodriguez, Angélica Quintero-Flórez, Natalia Carrasquilla, Javier S Perona, Juan M Espinosa, Jose M Castellano, Silvia Garcia-Rodriguez, Angélica Quintero-Flórez, Natalia Carrasquilla, Javier S Perona

Abstract

Microglial cells can contribute to Alzheimer's disease by triggering an inflammatory response that leads to neuronal death. In addition, the presence of amyloid-β in the brain is consistent with alterations in the blood-brain barrier integrity and triglyceride-rich lipoproteins (TRL) permeation. In the present work, we used lab-made TRL as carriers of lipophilic bioactive compounds that are commonly present in dietary oils, namely oleanolic acid (OA), α-tocopherol (AT) and β-sitosterol (BS), to assess their ability to modulate the inflammatory response of microglial BV-2 cells. We show that treatment with lab-made TRL increases the release and gene-expression of IL-1β, IL-6, and TNF-α, as well as NO and iNOS in microglia. On the other hand, TRL revealed bioactive compounds α-tocopherol and β-sitosterol as suitable carriers for oleanolic acid. The inclusion of these biomolecules in TRL reduced the release of proinflammatory cytokines. The inclusion of these biomolecules in TRL reduced the release of proinflammatory cytokines. AT reduced IL-6 release by 72%, OA reduced TNF-α release by approximately 50%, and all three biomolecules together (M) reduced IL-1β release by 35% and TNF-α release by more than 70%. In addition, NO generation was reduced, with the inclusion of OA by 45%, BS by 80% and the presence of M by 88%. Finally, a recovery of the basal glutathione content was observed with the inclusion of OA and M in the TRL. Our results open the way to exploiting the neuro-pharmacological potential of these lipophilic bioactive compounds through their delivery to the brain as part of TRL.

Keywords: bioactive compounds; inflammation; microglia; oxidative stress; triglyceride-rich lipoprotein.

Conflict of interest statement

J.S.P. has received a speaker honorarium from Organización Interprofesional del Aceite de Orujo de Oliva. No other conflicts of interest are disclosed.

Figures

Figure 1
Figure 1
Oil Red O microphotographs of untreated (a) BV-2 microglial cells or treated with TRL (b) for 24 h at 37 °C.
Figure 2
Figure 2
Cytokine release in BV-2 cells stimulated by TRL (positive control) or TRL carrying oleanolic acid (TRL-OA), α-tocopherol (TRL-AT), β-sitosterol (TRL-BS) or a mixture of the three compounds (TRL-M) for 24 h: (a) Interleukin-1 β (IL-1β); (b) Interleukin-6 (IL-6); (c) Tumour necrosis factor-α (TNF-α); Saline (0.9%, pH 7.4) was used as references for calculations. Values are expressed as mean ± SD of three independent experiments. Different signs indicate significant difference (* p < 0.05, *** p < 0.001 vs. saline; # p < 0.05 vs. TRL, ## p < 0.01 vs. TRL, ### p < 0.001 vs. TRL) by one-way ANOVA analysis and Tukey’s post-hoc test.
Figure 3
Figure 3
Cytokine RNA expression of cytokines in BV-2 cells stimulated by TRL (positive control) or TRL carrying oleanolic acid (TRL-OA), α-tocopherol (TRL-AT), β-sitosterol (TRL-BS), or a mixture of the three compounds (TRL-M) for 24 h: (a) Interleukin-1 β (IL-1β); (b) Interleukin-6 (IL-6); (c) Tumor necrosis factor-α (TNF-α); Saline (0.9%, pH 7.4) was used as references for calculations. Values are expressed as mean ± SD of three independent experiments. Different signs indicate significant difference (* p < 0.05, ** p < 0.01, *** p < 0.001 vs. saline) by one-way ANOVA analysis and Tukey’s post-hoc test.
Figure 4
Figure 4
(a) Nitrite production and inducible nitric oxide synthase; (b) (iNOS) gene expression in BV-2 cells stimulated by TRL or TRL carrying oleanolic acid (TRL-OA), α-tocopherol (TRL-AT), β-sitosterol (TRL-BS) or a mixture of the three compounds (TRL-M) for 24 h, Saline (0.9%, pH 7.4) was used as references for calculations. Values are expressed as mean ± SD of three independent experiments. Different signs indicate significant difference (* p < 0.05, ** p < 0.01, *** p < 0.001 vs. saline; # p < 0.05, ## p < 0.01, vs. TRL) by one-way ANOVA analysis and Tukey’s post-hoc test.
Figure 5
Figure 5
Intracellular concentrations of total glutathione (GSH + GSSG) in BV-2 cells stimulated by TRL or TRL carrying oleanolic acid (TRL-OA), α-tocopherol (TRL-AT), β-sitosterol (TRL-BS) or a mixture of the three compounds (TRL-M) for 24 h, Saline (0.9%, pH 7.4) was used as references for calculations Values are expressed as mean ± SD of three independent experiments. Different signs indicate significant difference (** p < 0.01, vs. saline; ## p < 0.01, vs. TRL) by one-way ANOVA analysis and Tukey’s post-hoc test.

References

    1. Van Bulck M., Sierra-Magro A., Alarcon-Gil J., Perez-Castillo A., Morales-Garcia J. Novel Approaches for the Treatment of Alzheimer’s and Parkinson’s Disease. Int. J. Mol. Sci. 2019;20:719. doi: 10.3390/ijms20030719.
    1. Serrano-Pozo A., Frosch M.P., Masliah E., Hyman B. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2011;1:a006189. doi: 10.1101/cshperspect.a006189.
    1. Kivipelto M., Helkala E.L., Laakso M.P., Hänninen T., Hallikainen M., Alhainen K., Soininen H., Tuomilehto J., Nissien A. Midlife vascular risk factors and Alzheimer’s disease in later life: Longitudinal, population based study. BMJ. 2001;322:1447–1451. doi: 10.1136/bmj.322.7300.1447.
    1. Skoog I., Kalaria R.N., Breteler M.M. Vascular factors and Alzheimer disease. Alzheimer Dis. Assoc. Disord. 1999;13((Suppl. S3)):S106–S114. doi: 10.1097/00002093-199912003-00016.
    1. Kalmijn S., Launer L.J., Ott A., Witteman J., Hofman A., Breteler M. Dietary fat intake and the risk of incident dementia in the Rotterdam study. Ann. Neurol. 1997;42:776–782. doi: 10.1002/ana.410420514.
    1. Grant W.B. Dietary links to Alzheimer’s disease: 1999 update. J. Alzheimers Dis. 1999;1:197–201. doi: 10.3233/JAD-1999-14-501.
    1. Galloway S., Jian L., Johnsen R., Chew S., Mamo J.C.L. β-amyloid or its precursor protein is found in epithelial cells of the small intestine and is stimulated by high-fat feeding. J. Nutr. Biochem. 2007;18:279–284. doi: 10.1016/j.jnutbio.2006.07.003.
    1. Roher A.E., Esh C.L., Kokjohn T.A., Castaño E.M., Van Vickle G.D., Kalback W.M., Patton R.L., Luehrs D.C., Daugs I.D., Kuo Y.-M., et al. Amyloid β peptides in human plasma and tissues and their significance for Alzheimer’s disease. Alzheimers Dement. 2009;5:18–29. doi: 10.1016/j.jalz.2008.10.004.
    1. Takechi R., Galloway S., Pallebage-Gamarallage M., Wellington C., Johnsen R., Mamo J.C. Three-dimensional colocalization analysis of plasma-derived apolipoprotein B with amyloid plaques in APP/PS1 transgenic mice. Histochem. Cell Biol. 2009;131:661–666. doi: 10.1007/s00418-009-0567-3.
    1. Dyall S.C. Amyloid-Beta Peptide, Oxidative Stress and Inflammation in Alzheimer’s Disease: Potential Neuroprotective Effects of Omega-3 Polyunsaturated Fatty Acids. Int. J. Alzheimers Dis. 2010;2010:274128. doi: 10.4061/2010/274128.
    1. Galloway S., Takechi R., Nesbit M., Pallebage-Gamarallage M.M., Lam V., Mamo J.C.L. The differential effects of fatty acids on enterocytic abundance of amyloid-β. Lipids Health Dis. 2019;18:209. doi: 10.1186/s12944-019-1162-9.
    1. Ponomarev E.D., Veremeyko T., Weiner H.L. MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia. 2013;61:91–103. doi: 10.1002/glia.22363.
    1. Bhat N.R., Feinstein D.L., Shen Q., Bhat A.N. p38 MAPK-mediated transcriptional activation of inducible nitric-oxide synthase in glial cells. Roles of nuclear factors, nuclear factor kappa B, cAMP response element-binding protein, CCAAT/enhancer-binding protein-β, and activating transcription fact. J. Biol. Chem. 2002;277:29584–29592. doi: 10.1074/jbc.M204994200.
    1. Button E.B., Mitchell A.S., Domingos M.M., Chung J.H.J., Bradley R.M., Hashemi A., Marvyn P.M., Patterson A.C., Stark K.D., Quadrilatero J., et al. Microglial cell activation increases saturated and decreases monounsaturated fatty acid content, but both lipid species are proinflammatory. Lipids. 2014;49:305–316. doi: 10.1007/s11745-014-3882-y.
    1. Toscano R., Millan-Linares M.C., Lemus-Conejo A., Claro C., Sanchez-Margalet V., Montserrat-de la Paz S. Postprandial triglyceride-rich lipoproteins promote M1/M2 microglia polarization in a fatty-acid-dependent manner. J. Nutr. Biochem. 2020;75:108248. doi: 10.1016/j.jnutbio.2019.108248.
    1. Castellano J.M., Espinosa J.M., Perona J.S. Modulation of Lipid Transport and Adipose Tissue Deposition by Small Lipophilic Compounds. Front. Cell Dev. Biol. 2020;8:985. doi: 10.3389/fcell.2020.555359.
    1. Castellano J.M., Garcia-Rodriguez S., Espinosa J.M., Millan-Linares M.C., Rada M., Perona J.S. Oleanolic Acid Exerts a Neuroprotective Effect Against Microglial Cell Activation by Modulating Cytokine Release and Antioxidant Defense Systems. Biomolecules. 2019;9:683. doi: 10.3390/biom9110683.
    1. Jäger S., Trojan H., Kopp T., Laszczyk M.N., Scheffler A. Pentacyclic Triterpene Distribution in Various Plants—Rich Sources for a New Group of Multi-Potent Plant Extracts. Molecules. 2009;14:2016–2031. doi: 10.3390/molecules14062016.
    1. Guinda Á., Rada M., Delgado T., Gutiérrez-Adánez P., Castellano J.M. Pentacyclic Triterpenoids from Olive Fruit and Leaf. J. Agric. Food Chem. 2010;58:9685–9691. doi: 10.1021/jf102039t.
    1. Jeanes Y.M., Hall W.L., Ellard S., Lee E., Lodge J.K. The absorption of vitamin E is influenced by the amount of fat in a meal and the food matrix. Br. J. Nutr. 2004;92:575–579. doi: 10.1079/BJN20041249.
    1. Mortimer B.C., Tso P., Phan C.T., Beveridge D.J., Wen J., Redgrave T.G. Features of cholesterol structure that regulate the clearance of chylomicron-like lipid emulsions. J. Lipid Res. 1995;36:2038–2053. doi: 10.1016/S0022-2275(20)41121-6.
    1. Kasem Kasem I. Ph.D. Thesis. Universidad de Sevilla; Sevilla, Spain: 2019. [(accessed on 2 June 2022)]. Bioavailability of the Unsaponifiable Fraction Components of Olive Oil in Humans. Available online: .
    1. Batt K.V., Avella M., Moore E.H., Jackson B., Suckling K.E., Botham K.M. Differential effects of low-density lipoprotein and chylomicron remnants on lipid accumulation in human macrophages. Exp. Biol. Med. 2004;229:528–537. doi: 10.1177/153537020422900611.
    1. Moore E.H., Napolitano M., Avella M., Bejta F., Suckling K.E., Bravo E., Botham K.M. Protection of chylomicron remnants from oxidation by incorporation of probucol into the particles enhances their uptake by human macrophages and increases lipid accumulation in the cells. Eur. J. Biochem. 2004;271:2417–2427. doi: 10.1111/j.1432-1033.2004.04164.x.
    1. Antelo A., Perona J.S. Evaluation of a method of preparation of lipid emulsions as a model for chylomicron-like particles. J. Liposome Res. 2013;23:126–133. doi: 10.3109/08982104.2012.754464.
    1. Shemer A., Erny D., Jung S., Prinz M. Microglia Plasticity during Health and Disease: An Immunological Perspective. Trends Immunol. 2015;36:614–624. doi: 10.1016/j.it.2015.08.003.
    1. Chen G., Zhang Y.-Q., Qadri Y.J., Serhan C.N., Ji R.-R. Microglia in Pain: Detrimental and Protective Roles in Pathogenesis and Resolution of Pain. Neuron. 2018;100:1292–1311. doi: 10.1016/j.neuron.2018.11.009.
    1. Ransohoff R.M. How neuroinflammation contributes to neurodegeneration. Science. 2016;353:777–783. doi: 10.1126/science.aag2590.
    1. Liu B., Hong J.-S. Role of Microglia in Inflammation-Mediated Neurodegenerative Diseases: Mechanisms and Strategies for Therapeutic Intervention. J. Pharm. Exp. 2003;304:1–7. doi: 10.1124/jpet.102.035048.
    1. Refolo L.M., Malester B., LaFrancois J., Bryant-Thomas T., Wang R., Tint G.S., Sambamurti K., Duff K., Pappolla M.A. Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol. Dis. 2000;7:321–331. doi: 10.1006/nbdi.2000.0304.
    1. Thirumangalakudi L., Prakasam A., Zhang R., Bimonte-Nelson H., Sambamurti K., Kindy M.S., Bhat N.R. High cholesterol-induced neuroinflammation and amyloid precursor protein processing correlate with loss of working memory in mice. J. Neurochem. 2008;106:475–485. doi: 10.1111/j.1471-4159.2008.05415.x.
    1. Davidson T.L., Monnot A., Neal A.U., Martin A.A., Horton J.J., Zheng W. The effects of a high-energy diet on hippocampal-dependent discrimination performance and blood-brain barrier integrity differ for diet-induced obese and diet-resistant rats. Physiol. Behav. 2012;107:26–33. doi: 10.1016/j.physbeh.2012.05.015.
    1. Maesako M., Uemura K., Iwata A., Kubota M., Watanabe K., Uemura M., Noda Y., Asada-Utsugi M., Kihara T., Takahashi R., et al. Continuation of exercise is necessary to inhibit high fat diet-induced β-amyloid deposition and memory deficit in amyloid precursor protein transgenic mice. PLoS ONE. 2013;8:e72796. doi: 10.1371/journal.pone.0072796.
    1. Eiselein L., Wilson D.W., Lamé M.W., Rutledge J. C Lipolysis products from triglyceride-rich lipoproteins increase endothelial permeability, perturb zonula occludens-1 and F-actin, and induce apoptosis. Am. J. Physiol. Heart Circ. Physiol. 2007;292:H2745–H2753. doi: 10.1152/ajpheart.00686.2006.
    1. Doherty G.H. Nitric oxide in neurodegeneration: Potential benefits of non-steroidal anti-inflammatories. Neurosci. Bull. 2011;27:366–382. doi: 10.1007/s12264-011-1530-6.
    1. Chatterjee S., Noack H., Possel H., Keilhoff G., Wolf G. Glutathione levels in primary glial cultures: Monochlorobimane provides evidence of cell type-specific distribution. Glia. 1999;27:152–161. doi: 10.1002/(SICI)1098-1136(199908)27:2<152::AID-GLIA5>;2-Q.
    1. Forman H.J., Zhang H., Rinna A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Asp. Med. 2009;30:1–12. doi: 10.1016/j.mam.2008.08.006.
    1. Lindenau J., Noack H., Asayama K., Wolf G. Enhanced cellular glutathione peroxidase immunoreactivity in activated astrocytes and in microglia during excitotoxin induced neurodegeneration. Glia. 1998;24:252–256. doi: 10.1002/(SICI)1098-1136(199810)24:2<252::AID-GLIA10>;2-Z.
    1. Hirrlinger J., Gutterer J.M., Kussmaul L., Hamprecht B., Dringen R. Microglial cells in culture express a prominent glutathione system for the defense against reactive oxygen species. Dev. Neurosci. 2000;22:384–392. doi: 10.1159/000017464.
    1. Colton C.A., Gilbert D.L. Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett. 1987;223:284–288. doi: 10.1016/0014-5793(87)80305-8.
    1. Minghetti L., Levi G. Microglia as effector cells in brain damage and repair: Focus on prostanoids and nitric oxide. Prog. Neurobiol. 1998;54:99–125. doi: 10.1016/S0301-0082(97)00052-X.
    1. Persson M., Sandberg M., Hansson E., Rönnbäck L. Microglial glutamate uptake is coupled to glutathione synthesis and glutamate release. Eur. J. Neurosci. 2006;24:1063–1070. doi: 10.1111/j.1460-9568.2006.04974.x.
    1. Chrétien F., Vallat-Decouvelaere A.V., Bossuet C., Rimaniol A.C., Le Grand R., Le Pavec G., Créminon C., Dormont D., Gray F., Gras G. Expression of excitatory amino acid transporter-2 (EAAT-2) and glutamine synthetase (GS) in brain macrophages and microglia of SIVmac251-infected macaques. Neuropathol. Appl. Neurobiol. 2002;28:410–417. doi: 10.1046/j.1365-2990.2002.00426.x.
    1. Persson M., Rönnbäck L. Microglial self-defence mediated through GLT-1 and glutathione. Amin. Acids. 2012;42:207–219. doi: 10.1007/s00726-011-0865-7.
    1. Graham V.S., Lawson C., Wheeler-Jones C.P.D., Perona J.S., Ruiz-Gutierrez V., Botham K.M. Triacylglycerol-rich lipoproteins derived from healthy donors fed different olive oils modulate cytokine secretion and cyclooxygenase-2 expression in macrophages: The potential role of oleanolic acid. Eur. J. Nutr. 2012;51:301–309. doi: 10.1007/s00394-011-0215-2.
    1. Matumba M.G., Ayeleso A.O., Nyakudya T., Erlwanger K., Chegou N.N., Mukwevho E. Long-Term Impact of Neonatal Intake of Oleanolic Acid on the Expression of AMP-Activated Protein Kinase, Adiponectin and Inflammatory Cytokines in Rats Fed with a High Fructose Diet. Nutrients. 2019;11:226. doi: 10.3390/nu11020226.
    1. Shih M.-F., Cheng Y.-D., Shen C.-R., Cherng J.-Y. A molecular pharmacology study into the anti-inflammatory actions of Euphorbia hirta L. on the LPS-induced RAW 264.7 cells through selective iNOS protein inhibition. J. Nat. Med. 2010;64:330–335. doi: 10.1007/s11418-010-0417-6.
    1. Simão da Silva K.A.B., Paszcuk A.F., Passos G.F., Silva E.S., Bento A.F., Meotti F.C., Calixto J.B. Activation of cannabinoid receptors by the pentacyclic triterpene α,β-amyrin inhibits inflammatory and neuropathic persistent pain in mice. Pain. 2011;152:1872–1887. doi: 10.1016/j.pain.2011.04.005.
    1. Cho N., Moon E.H., Kim H.W., Hong J., Beutler J.A., Sung S.H. Inhibition of Nitric Oxide Production in BV2 Microglial Cells by Triterpenes from Tetrapanax papyriferus. Molecules. 2016;21:459. doi: 10.3390/molecules21040459.
    1. Vogel C., Marcotte E.M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 2012;13:227–232. doi: 10.1038/nrg3185.
    1. Perl K., Ushakov K., Pozniak Y., Yizhar-Barnea O., Bhonker Y., Shivatzki S., Geiger T., Avraham K.B., Shamir R. Reduced changes in protein compared to mRNA levels across non-proliferating tissues. BMC Genom. 2017;18:305. doi: 10.1186/s12864-017-3683-9.
    1. Jung H.A., Jin S.E., Ahn B.R., Lee C.M., Choi J.S. Anti-inflammatory activity of edible brown alga Eisenia bicyclis and its constituents fucosterol and phlorotannins in LPS-stimulated RAW264.7 macrophages. Food Chem. Toxicol. 2013;59:199–206. doi: 10.1016/j.fct.2013.05.061.
    1. Castellano J.M., Guinda A., Delgado T., Rada M., Cayuela J.A. Biochemical basis of the antidiabetic activity of oleanolic acid and related pentacyclic triterpenes. Diabetes. 2013;62:1791–1799. doi: 10.2337/db12-1215.
    1. Mateos R., Pereira-Caro G., Goya L., Bravo L.B. Biodisponibilidad y metabolismo de los compuestos fenólicos del aceite de oliva virgen. Aliment. Nutr. Salud. 2011;18:2–9.
    1. Bentley C., Hathaway N., Widdows J., Bejta F., De Pascale C., Avella M., Wheeler-Jones C.P.D., Botham K.M., Lawson C. Influence of chylomicron remnants on human monocyte activation in vitro. Nutr. Metab. Cardiovasc. Dis. 2011;21:871–878. doi: 10.1016/j.numecd.2010.02.019.
    1. Napolitano M., Bravo E. Lipid metabolism and TNF-α secretion in response to dietary sterols in human monocyte derived macrophages. Eur. J. Clin. Invest. 2005;35:482–490. doi: 10.1111/j.1365-2362.2005.01523.x.
    1. De Pascale C., Graham V., Fowkes R.C., Wheeler-Jones C.P.D., Botham K.M. Suppression of nuclear factor-κB activity in macrophages by chylomicron remnants: Modulation by the fatty acid composition of the particles. FEBS J. 2009;276:5689–5702. doi: 10.1111/j.1742-4658.2009.07260.x.
    1. Cabello-Moruno R., Sinausia L., Botham K.M., Montero E., Avella M., Perona J.S. Postprandial phase time influences the uptake of TAG from postprandial TAG-rich lipoproteins by THP-1 macrophages. Br. J. Nutr. 2014;112:1469–1477. doi: 10.1017/S000711451400244X.
    1. Xu M., Wang J., Zhang X., Yan T., Wu B., Bi K., Jia Y. Polysaccharide from Schisandra chinensis acts via LRP-1 to reverse microglia activation through suppression of the NF-κB and MAPK signaling. J. Ethnopharmacol. 2020;25:112798. doi: 10.1016/j.jep.2020.112798.
    1. Wen X., Xiao L., Zhong Z., Wang L., Li Z., Pan X., Liu Z. Astaxanthin acts via LRP-1 to inhibit inflammation and reverse lipopolysaccharide-induced M1/M2 polarization of microglial cells. Oncotarget. 2017;8:69370–69385. doi: 10.18632/oncotarget.20628.
    1. Shi Y., Andhey P.S., Ising C., Wang K., Snipes L.L., Boyer K., Lawson S., Yamada K., Qin W., Manis M., et al. Overexpressing low-density lipoprotein receptor reduces tau-associated neurodegeneration in relation to apoE-linked mechanisms. Neuron. 2021;109:2413–2426.e7. doi: 10.1016/j.neuron.2021.05.034.
    1. Katsouri L., Georgopoulos S. Lack of LDL receptor enhances amyloid deposition and decreases glial response in an Alzheimer’s disease mouse model. PLoS ONE. 2011;6:e21880. doi: 10.1371/journal.pone.0021880.
    1. Rutkowsky J.M., Lee L.L., Puchowicz M., Golub M.S., Befroy D.E., Wilson D.W., Anderson S., Cline G., Bini J., Borkowski K., et al. Reduced cognitive function, increased blood-brain-barrier transport and inflammatory responses, and altered brain metabolites in LDLr -/- and C57B,L/6 mice fed a western diet. PLoS ONE. 2018;13:e0191909. doi: 10.1371/journal.pone.0191909.
    1. Hughes M.M., Field R.H., Perry V.H., Murray C.L., Cunningham C. Microglia in the degenerating brain are capable of phagocytosis of beads and of apoptotic cells, but do not efficiently remove PrPSc, even upon LPS stimulation. Glia. 2010;58:2017–2030. doi: 10.1002/glia.21070.
    1. Kouadir M., Yang L., Tu J., Yin X., Zhou X., Zhao D. Comparison of mRNA expression patterns of class B scavenger receptors in BV2 microglia upon exposure to amyloidogenic fragments of β-amyloid and prion proteins. DNA Cell Biol. 2011;30:893–897. doi: 10.1089/dna.2011.1234.
    1. Castellano J.M., Ramos-Romero S., Perona J.S. Oleanolic Acid: Extraction, Characterization and Biological Activity. Nutrients. 2022;14:623. doi: 10.3390/nu14030623.
    1. Claro-Cala C.M., Jiménez-Altayó F., Zagmutt S., Rodriguez-Rodriguez R. Molecular Mechanisms Underlying the Effects of Olive Oil Triterpenic Acids in Obesity and Related Diseases. Nutrients. 2022;14:1606. doi: 10.3390/nu14081606.
    1. Santos-Lozano J.M., Rada M., Lapetra J., Guinda Á., Jiménez-Rodríguez M.C., Cayuela J.A., Ángel-Lugo A., Vilches-Arenas Á., Gómez-Martín A.M., Ortega-Calvo M., et al. Prevention of type 2 diabetes in prediabetic patients by using functional olive oil enriched in oleanolic acid: The PREDIABOLE study, a randomized controlled trial. Diabetes Obes. Metab. 2019;21:2526–2534. doi: 10.1111/dom.13838.
    1. Peng Y., Chu S., Yang Y., Zhang Z., Pang Z., Chen N. Neuroinflammatory In Vitro Cell Culture Models and the Potential Applications for Neurological Disorders. Front. Pharmacol. 2021;12:671734. doi: 10.3389/fphar.2021.671734.
    1. Henn A., Lund S., Hedtjärn M., Schrattenholz A., Pörzgen P., Leist M. The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX. 2009;26:83–94. doi: 10.14573/altex.2009.2.83.
    1. Stansley B., Post J., Hensley K. A comparative review of cell culture systems for the study of microglial biology in Alzheimer’s disease. J. Neuroinflamm. 2012;9:115. doi: 10.1186/1742-2094-9-115.
    1. Lee L.L., Aung H.H., Wilson D.W., Anderson S.E., Rutledge J.C., Rutkowsky J.M. Triglyceride-rich lipoprotein lipolysis products increase blood-brain barrier transfer coefficient and induce astrocyte lipid droplets and cell stress. Am. J. Physiol. Cell Physiol. 2017;312:C500–C516. doi: 10.1152/ajpcell.00120.2016.
    1. Albi T., Guinda Garín M.Á., Lanzón A. Procedimiento de obtención y determinación de ácidos terpénicos de la hoja de olivo (Olea europaea) Grasas Aceites. 2001;52:275–278.
    1. Rada M., Castellano J.M., Perona J.S., Guinda A. GC-FID determination and pharmacokinetic studies of oleanolic acid in human serum. Biomed. Chromatogr. 2015;29:1687–1692. doi: 10.1002/bmc.3480.
    1. Giustarini D., Dalle-Donne I., Milzani A., Fanti P., Rossi R. Analysis of GSH and GSSG after derivatization with N-ethylmaleimide. Nat. Protoc. 2013;8:1660–1669. doi: 10.1038/nprot.2013.095.

Source: PubMed

3
Subskrybuj